

Feeding Inhibition in the Soil Collembolan *Folsomia candida* as an Endpoint for the Estimation of Organic Waste Ecotoxicity

Xavier Domene^{†*}, Tiago Natal-da-Luz[‡], Josep M. Alcañiz[†], Pilar Andrés[†], José
Paulo Sousa[‡]

6
7 [†] Center for Ecological Research and Forestry Applications (CREAF),
8 Department of Plant Biology, Animal Biology, and Ecology, Autonomous
9 University of Barcelona, 08193 Bellaterra, Barcelona, Spain

¹⁰ [‡] Instituto do Ambiente e Vida (IAV), Department of Zoology, University of
¹¹ Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal

12 *To whom correspondence may be addressed (x.domene@creaf.uab.es).

13

14 **ABSTRACT**

15

16 Despite the increasing quantities of organic wastes that are being reused in
17 soils, there are few studies that focus on the selection of bioassays for the
18 ecotoxicological risk assessment of organic wastes to soils. In the present
19 study, differences in feeding inhibition in the soil collembolan *Folsomia candida*
20 were evaluated as an ecotoxicological endpoint for the assessment of risk to
21 soils amended with polluted organic wastes. Seven organic wastes (dewatered
22 sewage sludges, thermally dried sewage sludges, composted sewage sludges,
23 and a thermally dried pig slurry) were tested. These wastes had different
24 origins, treatments, and pollutant burdens, and were selected as a
25 representative sample of the wide variety of wastes currently generated. A clear
26 dose response was observed for this parameter, with an increase in percentage
27 of individual feeding inhibition with increased doses of organic wastes. More
28 significantly, feeding inhibition correlated highly with mortality and reproduction
29 inhibition in the different wastes. Composted sludges displayed the lowest
30 toxicity, followed by thermally-dried sludge and dewatered sludge. Thermally-
31 dried pig slurry showed the highest toxicity for feeding, with lower EC50 values
32 than the lowest dose tested. Among waste physicochemical parameters and
33 pollutants, low organic matter stability appeared to be the main predictor of
34 potential adverse effects on soil fauna, as it correlated significantly with feeding
35 inhibition and mortality. Furthermore, feeding inhibition tests were run over a
36 short exposure time (less than 7 d), which, together with the results obtained,
37 makes this bioassay a good screening tool for organic waste toxicity.

38 **KEYWORDS:** *Folsomia candida*, Feeding inhibition, Reproduction, Survival,
39 Ecotoxicity
40

41 **INTRODUCTION**

42

43 In recent decades, increase in the production of sewage sludge in the
44 European Union, as a result of the implementation of Directive 91/271/EEC, has
45 mainly been recycled to land, over other options such as landfill or incineration
46 ([1]; <http://ec.europa.eu/environment/waste/sludge/problems.htm>). Despite the
47 undeniable benefits of organic waste amendments in terms of soil fertility,
48 concerns may arise regarding waste with a higher pollutant content, which may
49 have deleterious effects on soil ecosystems and hence, counteract their
50 contribution to soil fertility. Despite the importance of soil fauna for soil
51 ecosystems [2], only a few studies have focused on the harmful effects of
52 sludge amendments to soil invertebrates in the field. None of them have
53 reported noxious effects of sludge at agronomical dosages ([3];
54 <http://www2.mst.dk/Udgiv/publications/1997/87-7810-865-9/pdf/87-7810-865-9.pdf>, [4,5]). On the other hand, several laboratory studies have shown
55 significant effects on soil fauna [3,6]. Despite the extent of soil reuse and the
56 existence of limit values for some pollutants in sludge for this practice, there is
57 still a paucity of studies which focus on the selection of laboratory assays to
58 determine the ecotoxicological risk of wastes for soil inhabiting organisms.
59 Among the few attempts that have been conducted are those involving plants
60 and earthworms [7-9], and collembolans [3,10-12].

62 Reproduction and growth are the most common sublethal endpoints in soil
63 ecotoxicity testing due to their ecological relevancy. However, they require a
64 great effort in terms of time and handling, which in recent decades has
65 encouraged research aimed at finding alternative endpoints which provide

66 similar information but require less experimental effort [13-15]. Reproduction
67 and growth are the ultimate objectives in a long line of processes that start with
68 biochemical and physiological events [16], and endpoints at the biochemical,
69 physiological or behavioral level might then be used as a complement to these
70 traditional endpoints as they are early-warning indicators which generally
71 provide results faster. This is the main reason for the attempts to relate
72 reproduction or growth with biomarkers [17,18] or avoidance responses [19].
73 However, it has been indicated that behavioral responses, together with growth
74 and reproduction, only show a weak correlation with effects at higher biological
75 levels. Furthermore, it has also been indicated that biomarkers rarely provide
76 useful predictions of effects at higher biological levels [20,21]. This is why
77 endpoints at the individual level such as reproduction, growth or behavioral
78 responses are preferred to those at lower biological levels and considered as
79 more ecologically relevant. An alternative to conventional individual endpoints
80 might be feeding inhibition, a parameter that has been recognized as a general
81 stress response to toxicants and demonstrated on a variety of aquatic species
82 [15,22,23], although not much is known about its importance in soil organisms.
83 Reduced feeding from artificially-polluted food has been reported in *F. candida*
84 by several authors [24-26], although this pattern has never been tested for
85 polluted organic wastes, despite the evidence in this species of active feeding
86 on these materials [10,27].

87 Feeding inhibition, either during or after exposure to contaminants, has been
88 used as an ecotoxicological endpoint in a variety of organisms, mainly aquatic
89 but also in terrestrial species. Feeding inhibition during exposure has been
90 especially demonstrated in the freshwater cladoceran, *Daphnia magna*, for a

91 variety of pollutants [14,28-31], and other aquatic invertebrates [13,32-35].
92 Other authors have detected feeding inhibition behavior in several crustaceans
93 [15,23,36], and fish [37] when relocated to uncontaminated environments, after
94 previous exposure to contaminants (so-called post-feeding inhibition).

95 On the other hand, only a few studies have addressed feeding inhibition in
96 terrestrial organisms, and with contradictory results. Several authors have
97 shown feeding inhibition with exposure to pollutants in nematodes [38,39] and
98 collembolans [24-26]. However, no feeding inhibition was observed in isopods
99 when leaves contaminated with the herbicide trifluralin were offered as food
100 [40].

101 Despite the relative abundance of literature using this endpoint, the exact
102 mechanisms involved in feeding inhibition as a response to pollution are still
103 unknown. More precisely, it is not clear whether it is due to direct avoidance of
104 pollutants in food or an indirect physiological or biochemical effect of toxicants
105 that finally impact on feeding activities, or both.

106 It has been suggested that direct avoidance of contaminated food occurs in
107 collembolans [24-26], soil nematodes [38], and *D. magna* [41]. The importance
108 of preingestive inhibition may be high in collembolans as it has been
109 demonstrated that their food preferences are linked to odor [42]. Furthermore,
110 regurgitation of polluted food in *D. magna* has also been reported [30]. Feeding
111 behavior may also be indirectly affected through physiological and biochemical
112 effects. The persistence of feeding inhibition after exposure to contaminants is
113 the main evidence of this mechanism. The explanation is that pollutants are
114 able to affect the organism's biochemistry and physiology, disturbing its
115 sensorial reception, enzymatic activities, and metabolism, with unavoidable

116 influences on feeding behavior and other parameters. Several studies have
117 demonstrated this mechanism in daphnids [15,28] and polychaetes [43]. Other
118 studies have even specifically linked feeding inhibition with a decrease in acetyl
119 cholinesterase (AChE) levels due to pollutant levels, as demonstrated in
120 crustaceans [32], fishes [44], and birds [45].

121 In summary, feeding inhibition seems to be a complex response involving
122 components which are not easy to separate. On the one hand, pollutants may
123 directly reduce consumption through active avoidance of polluted food, but
124 conversely, they can disrupt feeding mechanisms through effects on
125 biochemical and physiological processes.

126 The aim of this work was to evaluate the suitability of feeding inhibition in *F.*
127 *candida* as an ecotoxicological endpoint to assess potential risks of soil
128 amendments with polluted organic wastes. To achieve this goal, different
129 wastes and exposure times were tested, and feeding inhibition values were
130 compared with effects of survival and reproduction inhibition in the same
131 species in terms of sensitivity, correlation of responses and workload.

132

133 **METHODS**

134

135 **Test organisms**

136 The *F. candida* culture used in the tests was raised in our laboratory, and
137 was initiated four years ago from cultures of the Institute of Ecological Science
138 of the Vrije Universiteit (Amsterdam, The Netherlands). Breeding of individuals
139 was performed in polyethylene containers of 17.5 x 12.5 x 7.5 cm, with a 1 cm
140 layer of wet substrate made of a mixture of plaster of Paris and charcoal (9:1

141 v/v). Cultures were kept in darkness in a climatic chamber at a constant
142 temperature of $21\pm1^{\circ}\text{C}$. Every two months the substrate was renewed and the
143 density of individuals was reduced to avoid overcrowding. Synchronized
144 cultures were used in the tests, prepared as described in the International
145 Organization for Standardization (ISO) Guideline 11267 [46].

146

147 **Test substrate**

148 Artificial soil prepared as documented by the ISO Guideline 11267 [46] but
149 removing peat from the mixture. By doing this it was ensured that reported
150 consumptions in artificial soil-waste mixtures corresponded only to waste
151 ingestion, as in a preliminary test with conventional artificial soil it was shown
152 that individuals consumed peat from the substrate, a fact that would disturb the
153 assessment of feeding behavior. The test substrate was composed of 78%
154 quartz sand and 22% kaolin. A suitable amount of calcium carbonate was
155 added to provide a pH of approximately 6 ± 0.5 . In all tested doses of the organic
156 wastes, the water content of the mixture was adjusted to 50% of the water-
157 holding capacity of the artificial soil.

158

159 **Organic wastes**

160 One dried pig slurry and six sewage sludges, with different origins, and
161 subjected to different treatments and post-treatments, were selected in order to
162 provide a wide range of waste properties to evaluate the sensitivity of the
163 bioassay described in this work (Table 1). All wastes were dried at 60°C for 48
164 to 72 h, depending on the initial humidity, and then ground and sieved (<2mm).
165 This step was unavoidable in order to ensure the accuracy of the low doses

166 tested in most of the wastes. The resulting samples were used both for the
167 preparation of soil-waste mixtures and for waste characterization. Details of
168 physicochemical properties and concentrations of metals and organic pollutants
169 in the wastes together with methods for their characterization are described in
170 Domene et al. [12].

171 Sludge composts used in the present study were produced from a 1:4.5 (v/v)
172 mixture of dewatered sludge and pinewood chips. For the anaerobic sludge,
173 composting was carried out with pine splinters in a tunnel with air injection for
174 15 d, while aerobic sludge was composted in a heap for 50 d using chips from
175 recycled wood and furniture as a bulking agent. At the end of the process, both
176 composts were sieved to 1 cm to remove approximately 90% of the chips. This
177 post-treatment decreased the total, hydrolysable and ammonium nitrogen
178 content of the initial sludge, while increasing organic matter stability.

179 Thermal drying was carried out by placing dewatered sludge in a heated
180 rotary cylinder and injecting hot air, which subjected the sludge to a temperature
181 of approximately 130 to 150°C for 45 min. With this post-treatment, pollutant
182 levels did not change significantly, but N-NH₄ levels decreased and electrical
183 conductivity increased.

184 Pig slurry was obtained from a treatment plant where the raw slurry is
185 subjected to anaerobic digestion followed by thermal drying at 130°C, producing
186 a final product with a dusty appearance. The final product showed high
187 electrical conductivity, high levels of hydrolysable nitrogen and ammonium, and
188 low organic matter stability.

189

190

191 **Experimental setup**

192 A 4-d preliminary assay was performed in order to define the range of doses
193 for each organic waste to be tested in the definitive assay. The doses used in
194 this preliminary assay were 1, 10, 50, 100, 300, 500, 700, 1000 g Kg⁻¹. Based
195 on these results, a definitive concentration range was defined for each waste,
196 taking as definitive the range of concentrations with 20% to 80% of individuals
197 showing feeding inhibition. In the definitive test, five doses in an arithmetic
198 progression were defined for each waste, but always within the 1 to 500 g Kg⁻¹
199 range as maximum. Each dose tested was composed of 5 replicates and an
200 additional replicate for the determination of water content, pH and electric
201 conductivity. The test was carried out using 50 ml polyethylene containers filled
202 with only 5 g of wet substrate mixture in order to maximize retrieving of the
203 individuals and their observation. 15 individuals (10 – 12 d old) were placed in
204 each test container. Three exposure times (2, 4, and 7 d) were defined for each
205 waste and concentration. The number of individuals was determined in a
206 preliminary experiment that showed that feeding patterns were similar
207 regardless of the number of individuals tested (10, 15, and 20). The number of
208 individuals selected (15) is considered high enough to minimize the impact of
209 possible individual mortality or inability to refloat some of the animals, but low
210 enough to allow direct and simultaneous counting of all the individuals in the
211 test container.

212

213 **Observation of feeding behavior**

214 It has been suggested that *F. candida* ingests sludge from test substrate
215 when this is available [10,27]. Since gut content in *F. candida* is easily observed

216 in vivo, given the lack of pigment in its cuticle [26], individuals feeding on the
217 organic wastes could be easily assessed at the end of the test by the presence
218 of dark content in the gut. Direct observation of the individuals was possible
219 after flooding the test container, allowing the animals to float on the surface of
220 the water (Fig. 1).

221

222 **Data treatment**

223 The 50% effective concentration (EC50) values and their associated 95%
224 confidence intervals were estimated by probit analysis using Minitab 13.2
225 software (Minitab, State College, PA, USA). A logistic distribution was assumed
226 to carry out probit analysis as it displayed the best adjustment to the data.

227 After calculations, EC50 values for feeding in each waste after 2, 4, and 7 d
228 of exposure were compared by Pearson correlation with the 50% lethal
229 concentration values (LC50) and EC50 reproduction values for *F. candida*,
230 obtained from the same wastes in a previous study [12]. These values were
231 obtained in accordance with ISO Guideline 11267 [46] with some modifications
232 to adapt it to waste testing, and were derived using linear and non-linear
233 regression models according to Stephenson et al. [47]. EC50 feeding values
234 were also compared by Pearson correlation with all the physicochemical
235 parameters and pollutants assessed for each waste in order to detect any
236 significant relationship. All correlations in the present study were carried out
237 with log-transformed values.

238

239

240

241 **RESULTS**

242

243 **Feeding behavior**

244 Retrieving of individuals with the substrate used averaged 75%. Losses
245 should be attributed mainly to an inability to float all the individuals in this type
246 of substrate rather than to mortality, since losses of individuals in replicates
247 were similar with increasing waste doses and also because these were not
248 expected to affect survival according to the LC50 values found by Domene et al.
249 [12] (Table 2). The main reason may be a lack of peat in the substrate, which
250 gave it a less crumbly structure. This made flotation of individuals more difficult
251 in comparison with conventional artificial soil. For the reasons already indicated,
252 we assumed that this phenomenon did not affect the test results.

253 Feeding inhibition increased with increasing doses of the different wastes,
254 presenting a linear or linear-like form depending on waste and exposure time
255 tested (data not shown, see an example in Fig. 2). Mean feeding inhibition rates
256 in the lower test doses varied between 12 and 34% depending on the waste,
257 while at the highest tested doses mean rates were between 68 and 95%. The
258 exception was pig slurry (SLT), which showed an inhibition of approximately
259 72% at the lowest tested dose (1 g Kg⁻¹). This inhibition continued to increase
260 towards the highest dose (data not shown). An additional experiment (results
261 not presented) showed that the feeding inhibition of this waste remained very
262 high even at concentrations as low as 0.1 g Kg⁻¹. As no feeding EC50 could be
263 calculated for this waste, we excluded this waste for comparisons with
264 reproduction and survival inhibition values.

265 The EC50 feeding values of the different wastes generally did not overlap in
266 their 95% confidence intervals, suggesting a satisfactory precision of the
267 method (Table 2), and were below 5 g Kg⁻¹ in the aerobic dewatered (AED) and
268 thermally-dried (AET) sludges, while the anaerobic dewatered (AND) and
269 thermally-dried (ANT) sludges showed values below 30 g Kg⁻¹. On the other
270 hand, composted sludges showed the highest EC50 values, approximately 165
271 to 300 g Kg⁻¹ for ANC, and 423 to 456 g Kg⁻¹ for AEC.

272 Feeding rates for each waste and concentration showed no significant
273 differences between times tested (analysis of variance [ANOVA], $p > 0.05$),
274 indicating that the response of this endpoint remains nearly constant within one
275 week of exposure.

276

277 **Comparison of endpoints**

278 Feeding inhibition in *F. candida* correlated highly with effects on survival and
279 reproduction (Table 3). This correlation was maintained throughout the different
280 exposure times, both with survival and reproduction. Maximum correlation was
281 found with feeding inhibition after 7 d of exposure and reproduction. This
282 relationship is interesting given the lack of correlation between survival and
283 reproduction in the present study ($r = 0.636$, $p = 0.174$). Furthermore, it is also
284 worth noting that feeding behaviour was usually inhibited at lower waste
285 concentrations than those affecting mortality, with the exception of AEC.
286 Conversely, feeding was usually inhibited at concentrations above those
287 affecting reproduction (except AED and AET). It is also noteworthy that, despite
288 being less sensitive than reproduction, feeding inhibition was more reliable, as it
289 displayed narrower confidence intervals.

290 **Influence of waste properties on feeding behavior**

291 The EC50 feeding values correlated positively and significantly with organic
292 matter stability of wastes throughout the experimental period. Furthermore,
293 significant negative correlation was found with ammonium at 7 d, and marginally
294 significant at 4 d. Finally, a significant negative relationship was found with total
295 nitrogen after 4 d of exposure, although the relationship also appeared
296 marginally significant at 2 d (Table 3). These correlations agree with a previous
297 study, where LC50 values in *F. candida* were correlated with the same
298 properties [12].

299

300 **DISCUSSION**

301

302 **Relevance and sensitivity of feeding inhibition**

303 Feeding inhibition is a suitable endpoint for ecotoxicity testing because it is a
304 general stress response to exposure to toxicants in a variety of species
305 [15,22,23]. Whether feeding inhibition is an avoidance response to polluted food
306 or a result of physiological or biochemical processes finally impacting on
307 feeding behavior, the reduction of food intake has an impact at least at the
308 individual level. Acquisition and allocation of energy determines developmental
309 rate, growth rate, fecundity, and survival. Hence, any disturbance in the energy
310 allocation to any of these processes, is expected to be also translated into
311 effects at the population level [14,15,34,48,49]. For example, Maltby [50]
312 showed that feeding inhibition in the amphipod, *Gammarus pulex*, correlated
313 both with lethality and reproduction. This pattern has been confirmed in the
314 freshwater rotifer, *Brachionus calyciflorus* [13]. Barata and Baird [14] also

315 concluded for *Daphnia magna* that chemicals affecting endpoints like feeding
316 rate or viability of eggs were predictive of effects in traits like reproduction and
317 survival, given the influence of the former endpoints on the latter. However,
318 Lopes et al. [51] found no correlation between feeding inhibition and survival in
319 *Daphnia longispina* when exposed to copper. Results from our study suggest a
320 link between feeding inhibition in the first week of exposure and reproduction
321 and survival after a month.

322 Furthermore, some studies have suggested that feeding inhibition might be
323 an ecologically relevant parameter, since impacts of pollutants on this endpoint
324 have correlated with changes at the community and ecosystem levels. Maltby et
325 al. [33] found that in situ feeding rates of the aquatic crustacean, *Gammarus*
326 *pulex*, correlated significantly with stream macroinvertebrate diversity and
327 detritus processing. On the other hand, McWilliam and Baird [15] found no
328 correlation between postexposure feeding depression of *Daphnia magna* and
329 macroinvertebrate community structure. No studies are available for terrestrial
330 ecosystems, but given the key role of soil fauna in facilitating microbial
331 decomposition and nutrient turnover [52], effects at the individual level may
332 provoke effects at higher biological levels [34].

333 In the present study, feeding inhibition of *F. candida* in the set of wastes
334 studied correlated highly with mortality and reproduction inhibition, indicating the
335 relevance of this endpoint for estimating effects on other more commonly used
336 endpoints which require a longer experimental period. Furthermore, EC50
337 values for feeding also remained significantly constant during the first week of
338 exposure. This may permit a reduction of the exposure time to only two days
339 while still providing relevant information on waste toxicity. In addition, feeding

340 inhibition values displayed narrower confidence intervals than survival and
341 reproduction inhibition values, showing the high reliability of this endpoint. An
342 explanation might be the lower chance of mortality (due to the feeding test
343 running for a shorter period), and/or the best adjustment of the model used for
344 feeding data with respect to those used for survival and reproduction.

345 When inhibition values were compared, it was apparent that feeding
346 behavior was generally inhibited at lower waste concentrations than mortality,
347 while feeding was usually inhibited at concentrations above those affecting
348 reproduction. This trend is usual for lethality in studies with aquatic organisms
349 exposed to pollutants [13,14,23,29]. However, there is no agreement on what is
350 typical with respect to reproduction. Some published studies have shown that
351 reproduction is generally affected at lower concentrations than feeding [13,5],
352 while others have reported inhibition at similar concentrations [14,39] or the
353 opposite relationship [54].

354

355 ***Suitability of F. candida for feeding inhibition bioassays***

356 Among the most commonly used soil test species, *F. candida* is especially
357 recommended for the assessment of feeding inhibition responses, as it is
358 possible to observe the consumption of some food sources, in this case organic
359 wastes, as a dark gut content due to the lack of pigment in its cuticle [26]. Like
360 other collembolans, *F. candida* molts throughout its entire life cycle. During
361 molting the whole cuticle and gut epithelium is completely regenerated, and at
362 this stage individuals stop feeding. This may interfere with the observation of
363 feeding activities [55]. Despite this fact, we assumed that this phenomenon is
364 negligible for the purposes of this study as a synchronized culture was used for

365 the experiments, which should reduce any variability in results caused by these
366 molting events. In addition, the rate of non-feeding individuals in the lower
367 waste concentrations is similar, independent of the waste type and exposure
368 time (approximately 25%, data not reported), suggesting a low bias on the
369 results of moulting stages. These rates are in accordance with the 20% reported
370 by Thimm et al. [55] in mixed-age cultures, which were assigned by the authors
371 to moulting individuals. Moreover, the feeding rates observed offer an accurate
372 assessment of the instantaneous situation of individuals, as the period between
373 ingestion and excretion of food boluses in this species lasts only 35 minutes in
374 similar experimental conditions to those used in our study [55].

375 The consumption of sewage sludge has already been suggested for *F.*
376 *candida* [12] and *F. fimetaria* [27]. However, this consumption seems to be
377 important only when an alternative clean food source is not available. In a
378 previous unpublished work we observed that individuals of *F. candida* showed
379 lower consumption rates of sewage sludge when yeast was available, in
380 accordance with its near relative *F. fimetaria* [3]. This behavior agrees with
381 findings from other authors who reported avoidance of contaminated food in this
382 species [24-26]. Filser and Hölscher [24] also showed that the appeal of potato
383 bait decreased with copper concentration. Pedersen et al. [25] found that both
384 *F. candida* and *F. fimetaria* consumed less contaminated yeast with increasing
385 concentrations of copper. Fountain and Hopkin [26] reported a lower feeding
386 rate for *F. candida* with increasing concentrations of heavy metals in yeast
387 offered as food. These authors also demonstrated an active avoidance of
388 polluted food, as a higher percentage of individuals fed on culture substrate with
389 increasing concentrations of metals in yeast. The authors attributed this

390 behavior to an attempt to use the substrate as an alternative food source,
391 demonstrating the existence of mechanisms of contaminant recognition in this
392 species.

393 The use of feeding inhibition as an endpoint has the main advantage of
394 providing results more quickly than other endpoints and generally requires
395 simpler experimental setups [13-15]. However, no endpoint could be generally
396 considered to be better than others, as each chemical has its main mode of
397 action and each species may present a different sensitivity to a given
398 parameter. Despite this, feeding inhibition seems to be a general response to a
399 variety of pollutants with different modes of action and toxicities, making this
400 parameter a sensitive and robust response for use as an ecotoxicological
401 endpoint [15].

402

403 **Parameters involved in feeding inhibition behavior**

404 Results from this study indicate the suitability of feeding inhibition in *F.*
405 *candida* as a sensitive endpoint for organic waste ecotoxicity testing, as it was
406 clearly affected at different doses depending on the waste. We have no
407 evidence about the main mechanism involved in the feeding inhibition observed
408 in the present study. However, by not adding an alternative food source to test
409 containers we forced individuals to interact with the waste offered. By doing this
410 we obtained an integrative response, regardless of whether direct avoidance of
411 polluted food and/or biochemical and physiological disruption of feeding
412 behavior were the main cause.

413 Composted sewage sludges inhibited feeding at much higher doses when
414 compared to the effects obtained with dewatered and thermally-dried sludges.

415 On the other hand, it was not possible to assess the EC50 feeding values of the
416 thermally-dried pig slurry as they were below 1 g Kg⁻¹, given the higher toxicity
417 of this sludge with respect to the other wastes [12].

418 The main factor influencing feeding patterns in this species was the organic
419 matter stability of wastes, a parameter which reflects ease of decomposition.

420 This relationship has already been pointed out in a previous study [12], where a
421 strong correlation was found between this waste parameter and mortality in this
422 species, although no significant relationship was found with reproduction.

423 During decomposition, the breakdown of the more labile fraction of organic
424 matter decreases the relative quantities of total nitrogen, mainly through
425 ammonia losses [56]. Soil amendments with organic wastes with a low degree

426 of stability may cause problems for soil biota, as during their decomposition
427 there is a release of secondary metabolites such as ammonium, phenols, and
428 organic acids, among other adverse effects [57]. Correlation between degree of

429 waste stability and toxicity has been widely reported for plants [58], and also for
430 soil fauna [2]. Furthermore, a correlation with the degree of stability may also
431 reflect the already mentioned degradation of the less persistent organic

432 pollutants in wastes through composting [59,60]. Whatever the reason,
433 according to results from this study, organic matter stability appears as the best
434 predictor for anticipating potential adverse effects for soil fauna derived from soil
435 amendments, at least in the short term.

436

437 CONCLUSION

438 Feeding inhibition of *F. candida* is a suitable endpoint to assess the
439 ecotoxicological risk of organic waste amendments in soils. It showed different

440 responses to different wastes, and presented a clear dose-response
441 relationship with increasing waste doses. More significantly, feeding inhibition
442 was correlated highly with mortality and reproduction inhibition in the different
443 wastes. Besides providing equivalent information, results involving feeding
444 inhibition could be obtained over a shorter exposure time (less than 7 d) in
445 comparison with other more conventional endpoints like reproduction. Results
446 from this study indicate the value of this bioassay as a screening tool for organic
447 waste toxicity.

448

449 *Acknowledgement*—The present study has been partly funded by the LODOTOX
450 project (AGL2002-03297) of the Spanish Ministry of Science and Technology,
451 the RESMINLOD project (4.3-236/2005/2-B) of the Spanish Ministry of
452 Environment, and through a scientific exchange program between Spain and
453 Portugal (Acciones Integradas Hispano-Portuguesas HP2004-0118, Acção
454 Integrada Luso-Espanhola E 5/05). We would also like to thank anonymous
455 referees for their helpful suggestions concerning this paper.

456

457 **REFERENCES**

458

459 1. Langenkamp H, Marmo L. 2000. *Proceedings of the Workshop on Problems*
460 *Around Sludge*. 18-19 November 1999, Stresa, Italy. European Communities.

461 EUR 19657. Brussels, Belgium.

462 2. Neher DA. 1999. Soil community composition and ecosystem processes.

463 Comparing agricultural ecosystems with natural ecosystems. *Agrofor Syst* 45:
464 159-185.

465 3. Krogh PH, Holmstrup M, Jensen J, Petersen SO. 1997. *Ecotoxicological*
466 *assessment of sewage sludge in agricultural soil*. Working Report 69. Ministry of
467 Environment and Energy. Danish Environmental Protection Agency,
468 Copenhagen, Denmark.

469 4. Cole LJ, McCracken DI, Foster GN, Aitken MN. 2001. Using Collembola to
470 assess the risks of applying metal-rich sewage sludge to agricultural land in
471 western Scotland. *Agric Ecosyst Environ* 83: 177-189.

472 5. Petersen SO, Henriksen K, Mortensen GK, Krogh PH, Brandt KK, Sorensen
473 J, Madsen T, Petersen J, Gron C. 2003. Recycling of sewage sludge and
474 household compost to arable land: Fate and effects of organic contaminants,
475 and impact on soil fertility. *Soil Tillage Res* 72: 139-152.

476 6. Andrés P, Domene X. 2005. Ecotoxicological and fertilizing effects of
477 dewatered, composted and dry sewage sludge on soil mesofauna: A TME
478 experiment. *Ecotoxicology* 14: 545-557.

479 7. Renoux AY, Rajeshwar DT, Samson R. 2001. Assessment of toxicity
480 reduction after metal removal in bioleached sewage sludge. *Water Res* 35:
481 1415-1424.

482 8. Pandiard P, Devillers J, Charissou A-M, Poulsen V, Jourdain M-J, Férand J-
483 F, Grand C, Bispo A. 2006. Selecting a battery of bioassays for ecotoxicological
484 characterization of wastes. *Sci Total Environ* 363: 114-125.

485 9. Renoux AY, Rocheleau S, Sarrazin M, Sunahara GI, Blais J-F. 2007.
486 Assessment of a sewage sludge treatment on cadmium, copper and zinc
487 bioavailability in barley, ryegrass and earthworms. *Environ Pollut* 145: 41-50.

488 10. Krogh PH, Pedersen MB. 1997. Ecological effects assessment of industrial
489 sludge for microarthropods and decomposition in a spruce plantation.
490 *Ecotoxicol Environ Saf* 36: 162-168.

491 11. Crouau Y, Gisclard C, Perotti P. 2002. The use of *Folsomia candida*
492 (Collembola, Isotomidae) in bioassays of waste. *Appl Soil Ecol* 19: 65-70.

493 12. Domene X, Alcañiz JM, Andrés P. 2007. Ecotoxicity assessment of organic
494 wastes using tests with the soil collembolan *Folsomia candida*. *Appl Soil Ecol*
495 35:461-472.

496 13. Juchelka CM, Snell TW. 1994. Rapid toxicity assessment using rotifer
497 ingestion rate. *Arch Environ Contam Toxicol* 26: 549-554.

498 14. Barata C, Baird DJ. 2000. Determining the ecotoxicological mode of action
499 of chemicals from measurements made on individuals: Results from instar-
500 based tests with *Daphnia magna* Straus. *Aquat Toxicol* 48: 195-209.

501 15. McWilliam RA, Baird DJ. 2002. Post-exposure feeding depression: A new
502 toxicity endpoint for use in laboratory studies with *Daphnia magna*. *Environ*
503 *Toxicol Chem* 21: 1198-1205.

504 16. Gerhardt A. 1996. Behavioural early warning responses to polluted water -
505 Performance of *Gammarus pulex* L. (Crustacea) and *Hydropsyche*

506 *angustipennis* (Curtis) (Insecta) to a complex industrial effluent. *Environ Sci*
507 *Pollut Res Int* 3: 63-70.

508 17. Lagadic L, Caquet T, Ramade F. 1994. The role of biomarkers in
509 environmental assessment (5). Invertebrate populations and communities.
510 *Ecotoxicology* 3: 193-208.

511 18. Gillis PL, Diener LC, Reynoldson TB, Dixon DG. 2002. Cadmium-induced
512 production of a metallothioneinlike protein in *Tubifex tubifex* (Oligochaeta) and
513 *Chironomus riparius* (Diptera): Correlation with reproduction and growth.
514 *Environ Toxicol Chem* 21: 1836-1844.

515 19. Natal-da-Luz T, Ribeiro R, Sousa JP. 2004. Avoidance tests with collembola
516 and earthworms as early screening tools for site-specific assessment of polluted
517 soils. *Environ Toxicol Chem* 23: 2188-2193.

518 20. Forbes VE, Calow P. 1999. Is the per capita rate of increase a good
519 measure of population-level effects in ecotoxicology? *Environ Toxicol Chem* 18:
520 1544-1556.

521 21. Forbes VE, Palmqvist A, Bach L. 2006. The use and misuse of biomarkers
522 in ecotoxicology. *Environ Toxicol Chem* 25: 272-280.

523 22. Maltby L. 1999. Studying stress: The importance of organism level
524 responses. *Ecol Appl* 9: 431-440.

525 23. McLoughlin N, Yin D, Maltby L, Wood RM, Yu H. 2000. Evaluation of
526 sensitivity and specificity of two crustacean biochemical biomarkers. *Environ*
527 *Toxicol Chem* 19: 2085-2092.

528 24. Filser J, Holscher G. 1997. Experimental studies on the reactions of
529 Collembola to copper contamination. *Pedobiologia* 41: 173-178.

530 25. Pedersen MB, van Gestel CAM, Elmegaard N. 2000. Effects of copper on
531 reproduction of two collembolan species exposed through soil, food, and water.
532 *Environ Toxicol Chem* 19: 2579-2588.

533 26. Fountain MT, Hopkin SP. 2001. Continuous monitoring of *Folsomia candida*
534 (Insecta: Collembola) in a metal exposure test. *Ecotoxicol Environ Saf* 48: 275-
535 286.

536 27. Scott-Fordsmand JJ, Krogh PH. 2004. The influence of application form on
537 the toxicity of nonylphenol to *Folsomia fimetaria* (Collembola: Isotomidae).
538 *Ecotoxicol Environ Saf* 58: 294-299.

539 28. De Coen WM, Vangheluwe ML, Janssen CR. 1998. The use of biomarkers
540 in *Daphnia magna* toxicity testing. III. Rapid toxicity testing of pure chemicals
541 and sediment pore waters using ingestion and digestive enzyme activity.
542 *Chemosphere* 37: 2677-2694.

543 29. Villarroel MJ, Sancho E, Ferrando MD, Andreu E. 2003. Acute, chronic and
544 sublethal effects of the herbicide propanil on *Daphnia magna*. *Chemosphere* 53:
545 857-864.

546 30. Clément B, Zaid S. 2004. A new protocol to measure the effects of toxicants
547 on daphnid-algae interactions. *Chemosphere* 55: 1429-1438.

548 31. Christensen BT, Lauridsen TL, Ravn HW, Bayley M. 2005. A comparison of
549 feeding efficiency and swimming ability of *Daphnia magna* exposed to
550 cypermethrin. *Aquat Toxicol* 73: 210-220.

551 32. Fornstrom CB, Landrum PF, Weisskopf CP, La Point TW. 1997. Effects of
552 terbufos on juvenile red swamp crayfish (*Procambarus clarkii*): Differential
553 routes of exposure. *Environ Toxicol Chem* 16: 2514-2520.

554 33. Maltby L, Clayton SA, Wood RM, McLoughlin N. 2002. Evaluation of the
555 *Gammarus pulex* in situ feeding assay as a biomonitor of water quality:
556 Robustness, and relevance. *Environ Toxicol Chem* 21: 361-368.

557 34. Irving EC, Baird DJ, Culp JM. 2003. Ecotoxicological responses of the
558 mayfly *Baetis tricaudatus* to dietary and waterborne cadmium: Implications for
559 the toxicity testing. *Environ Toxicol Chem* 22: 1058-1064.

560 35. Bloor MC, Banks CJ. 2006. An evaluation of mixed species in-situ and ex-
561 situ feeding assays: the altered response of *Asellus aquaticus* and *Gammarus*
562 *pulex*. *Environ Int* 32: 22-27.

563 36. Moreira SM, Moreira-Santos M, Guilhermino L, Ribeiro R. 2006. An in situ
564 postexposure feeding assay with *Carcinus maenas* for estuarine sediment-
565 overlying water toxicity evaluations. *Environ Pollut* 139:318-329.

566 37. Branco-Castro B, Sobral O, Guilhermino L, Ribeiro R. 2004. An in situ
567 bioassay integrating individual and biochemical responses using small fish
568 species. *Ecotoxicology* 13: 667-681.

569 38. Jones D, Candido EPM. 1999. Feeding is inhibited by sublethal
570 concentrations of toxicants and by heat stress in the nematode *Caenorhabditis*
571 *elegans*: Relationship to the cellular stress response. *J Exp Zool* 284: 147-157.

572 39. Anderson GL, Boyd WA, Williams PL 2001. Assessment of sublethal
573 endpoints for toxicity testing with the nematode *Caenorhabditis elegans*.
574 *Environ Toxicol Chem* 20: 833-838.

575 40. Staak A, Frost M, Kratz W. 1998. Ecotoxicological studies on the impact of
576 the herbicide trifluralin on *Porcellio scaber* (Isopoda). *Appl Soil Ecol* 9: 405-409.

577 41. Taylor G, Baird DJ, Soares AMVM. 1998. Surface binding of contaminants
578 by algae: Consequences for lethal toxicity and feeding to *Daphnia magna*
579 Straus. *Environ Toxicol Chem* 17: 412-419.

580 42. Hedlund K, Bengtsson G, Rundgren S. 1995. Fungal odour discrimination in
581 two sympatric species of fungivorous collembolans. *Funct Ecol* 9: 869-875.

582 43. Chen Z, Mayer LM. 1998. Digestive proteases of the lugworm (*Arenicola*
583 *marina*) inhibited by Cu from contaminated sediments. *Environ Toxicol Chem*
584 17: 433-438.

585 44. Sandahl JF, Baldwin DH, Jenkins JJ, Scholz NL. 2005. Comparative
586 thresholds for acetylcholinesterase inhibition and behavioral impairment in coho
587 salmon exposed to chlorpyrifos. *Environ Toxicol Chem* 24: 136-145.

588 45. Fryday SL, Hart ADM, Langton SD. 1996. Effects of exposure to an
589 organophosphorous pesticide on the behaviour and use of cover by captive
590 starlings. *Environ Toxicol Chem* 15: 1590-1596.

591 46. International Organization for Standardization. 1999. Soil quality - Inhibition
592 of reproduction of Collembola (*Folsomia candida*) by soil pollutants. Geneva,
593 Switzerland.

594 47. Stephenson GL, Koper N, Atkinson GF, Salomon KR, Scroggins RP. 2000.
595 Use of nonlinear regression techniques for describing concentration-response
596 relationships of plant species exposed to contaminated site soils. *Environ*
597 *Toxicol Chem* 19: 2968-2981.

598 48. Kooijman SALM. 2000. *Dynamic Energy Mass Budgets in Biological*
599 *Systems*. Cambridge University Press, Cambridge, UK.

600 49. Maltby L, Kedwards TJ, Forbes VE, Grasman K, Kammenga JE, Munns Jr,
601 Ringwood AH, Weis JS, Wood SN. 2001. Linking individual-level responses and

602 population-level consequences. In Baird DJ, Burton Jr GA, eds, *Ecological*
603 *Variability: Separating Natural from Anthropogenic Causes of Ecosystem*
604 *Impairment*. Society of Environmental Toxicology and Chemistry Press,
605 Pensacola, FL, USA, pp 27-82.

606 50. Maltby L. 1994. Stress, shredders, and streams: Using *Gammarus*
607 energetics to assess water quality. In Sutcliffe DW, ed, *Water Quality and*
608 *Stress Indicators in Marine and Freshwater Systems: Linking Levels of*
609 *Organization*. Freshwater Biological Association, Ambleside, Cumbria, UK, pp
610 98-110.

611 51. Lopes I, Baird DJ, Ribeiro R. 2005. Genetically determined resistance to
612 lethal levels of copper by *Daphnia longispina*: Association with sublethal
613 response and multiple/coresistance. *Environ Toxicol Chem* 24: 1414-1419.

614 52. Bardgett RD, Griffiths BS. 1997. Ecology and biology of soil protozoa,
615 nematodes and microarthropods. In van Elsas JD, Trevors JT, Wellington EMH,
616 eds, *Modern Soil Microbiology*. Marcel Dekker, New York, NY, USA, pp 129-
617 163.

618 53. Fochtman P, Raszka A, Nierzedska E. 2000. The use of conventional
619 bioassays, microbiotests, and some “rapid” methods in the selection of an
620 optimal test battery for the assessment of pesticides toxicity. *Environ Toxicol* 15:
621 376-384.

622 54. Christensen PD, Borzek M, Hansen BW. 1998. Energetic and behavioural
623 responses by the common goby, *Pomatoschistus microps* (Krøyer), exposed to
624 linear alkylbenzene sulfonate. *Environ Toxicol Chem* 17: 2051-2057.

625 55. Thimm T, Hoffman A, Borkott H, Munch JC, Tebbe CC. 1998. The gut of the
626 soil microarthropod *Folsomia candida* (Collembola) is a frequently changeable

627 but selective habitat and a vector for microorganisms. *Appl Environ Microbiol*
628 64: 2660-2669.

629 56. Martins O, Dewes T. 1992. Loss of nitrogenous compounds during
630 composting of animal wastes. *Bioresour Technol* 42: 103-111.

631 57. Tiquia SM, Tam NFY. 1998. Elimination of phytotoxicity during co-
632 composting of spent pig-manure sawdust litter and pig sludge. *Bioresour*
633 *Technol* 65: 43-49.

634 58. Zmora-Nahum S, Markovitz O, Tarchitzky J, Chen Y. 2005. Dissolved
635 organic carbon (DOC) as a parameter of compost maturity. *Soil Biol Biochem*
636 37: 2109-2116.

637 59. Bagó B, Martín Y, Mejía G, Broto-Puig J, Díaz-Ferrero J, Agut M, Comellas
638 L. 2005. Di-(2-ethylhexyl)phthalate in sewage sludge and post treated sludge:
639 Quantitative determination by HRGC-MS and mass spectral characterization.
640 *Chemosphere* 59: 1191-1195.

641 60. Sanz E, Prats D, Rodríguez M, Camacho A. 2006. Effect of temperature and
642 organic nutrients on the biodegradation of linear alkylbenzene sulfonate (LAS)
643 during the composting of anaerobically digested sludge from a wastewater
644 treatment plant. *Waste Manag* 26: 1237-1245.

645

646 **FIGURE LEGENDS**

647

648 Figure 1. Group of *Folsomia candida* removed from a test chamber by flotation.

649 Four individuals have the ingested waste clearly visible in their gut.

650

651 Figure 2. Feeding inhibition values in *Folsomia candida* exposed to increasing

652 concentrations of the anaerobic thermally-dried sewage sludge (ANT) after 2, 4,

653 and 7 d of exposure. Bars indicate standard deviation. $n = 5$.

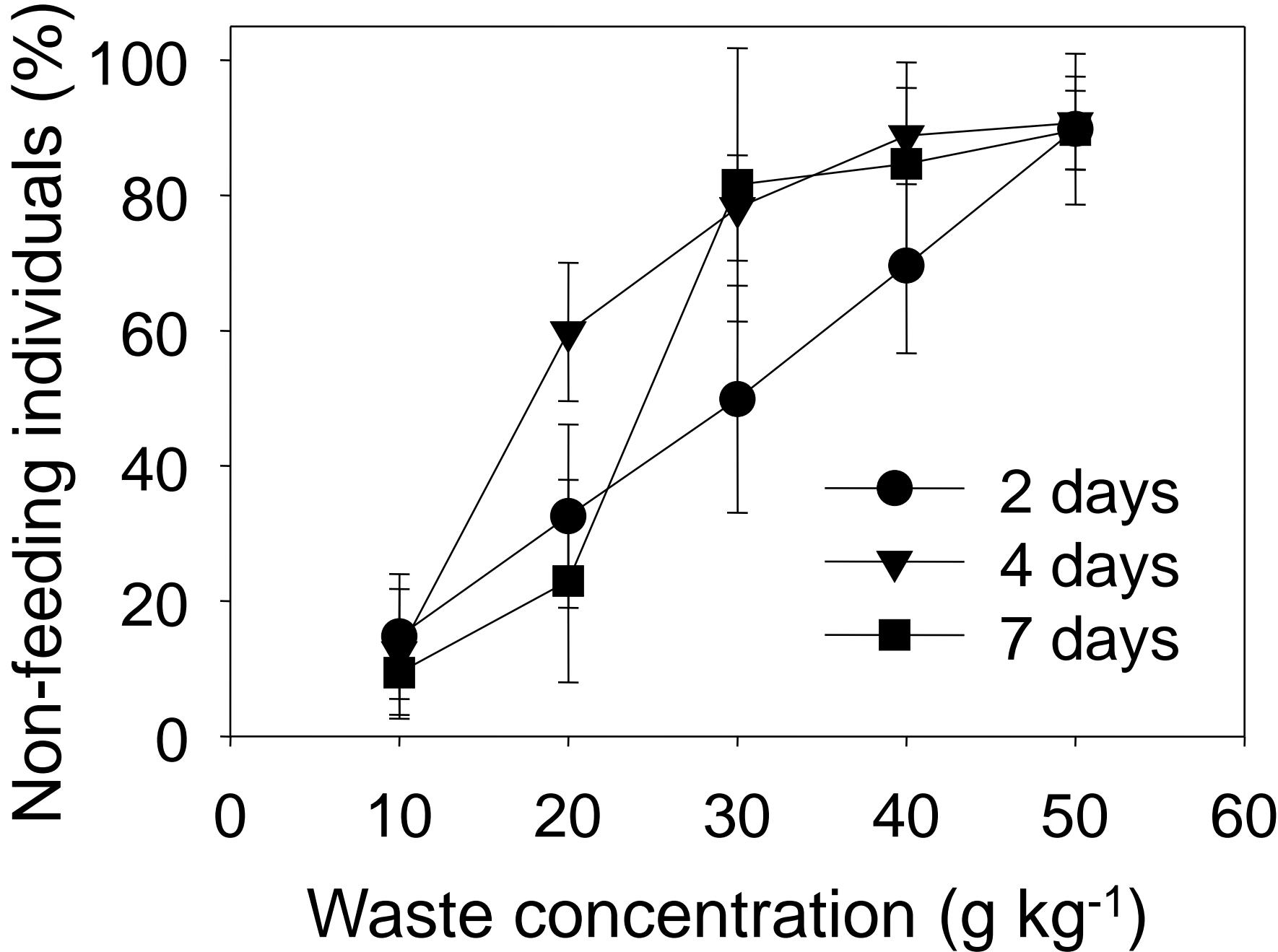


Table 1. Origin, treatments and post-treatments of the organic wastes.

Waste	Origin	Treatment	Post-treatment
AED	Banyoles WWTP	Aerobic digestion, dewatering	None
AEC	Banyoles WWTP	Aerobic digestion, dewatering	Composting in vessel
AET	Banyoles WWTP	Aerobic digestion, dewatering	Thermal drying
AND	Blanes WWTP	Anaerobic digestion, dewatering	None
ANC	Blanes WWTP	Anaerobic digestion, dewatering	Composting in heap
ANT	Blanes WWTP	Anaerobic digestion, dewatering	Thermal drying
SLT	Juneda WTP	Anaerobic digestion, dewatering	Thermal drying

Table 2. Feeding inhibition values (EC50, 2, 4, and 7 d), plus survival (LC50) and reproduction (EC50) (28 d) inhibition, after exposure to contaminated waste. Values expressed as g Kg⁻¹ (dry wt). * = from Domene et al. [15]. See Table 1 for waste abbreviations; EC50 = concentration of waste estimated to reduce the outcome in a sublethal endpoint rate by 50% compared to the control; LC50 = concentration of waste estimated to prove lethal at the end of the test by 50% compared to the control.

Waste	Feeding EC50, 2 d	Feeding EC50, 4 d	Feeding EC50, 7 d	LC50, 28 d*	Reproduction EC50, 28 d*
AEC	445.7 (435.3, 456.2)	455.9 (445.7, 466.0)	423.6 (411.1, 436.0)	252.3 (221.7, 287.2)	206.9 (36.8, 1141.8)
AED	3.9 (3.7, 4.2)	3.6 (3.4, 3.9)	4.4 (4.2, 4.6)	43.9 (34.1, 56.6)	10.0 (3.8, 23.8)
AET	1.7 (1.1, 2.2)	2.9 (2.7, 3.2)	3.9 (3.7, 4.1)	44.0 (37.4, 51.7)	5.3 (2.8, 9.4)
ANC	299.1 (290.3, 308.2)	281.5 (264.2, 304.0)	164.6 (155.2, 173.6)	833.8 (626.4, 1109.7)	28.7 (17.7, 46.0)
AND	18.1 (16.9, 19.3)	26.1 (25.2, 27.1)	20.5 (18.8, 22.0)	154.4 (133.7, 178.3)	16.4 (14.7, 18.2)
ANT	27.3 (26.2, 28.5)	20.0 (19.2, 20.8)	24.7 (24.0, 25.5)	85.6 (72.3, 101.3)	10.4 (7.5, 14.2)
SLT	-	-	-	23.7 (20.2, 27.8)	19.4 (3.8, 86.4)

Table 3. Pearson's correlations of values of feeding inhibition (EC50) *Folsomia candida* after 2, 4, and 7 d of exposure with survival (LC50), reproduction EC50, and some physicochemical parameters. Correlation analyses were carried out with log-transformed values. EC50 = concentration of waste estimated to reduce the outcome in a sublethal endpoint rate by 50% compared to the control; LC50 = concentration of waste estimated to prove lethal at the end of the test by 50% compared to the control. $n = 6$.

	Feeding EC50, 2 d	Feeding EC50, 4 d	Feeding EC50, 7 d
LC50, 28 d	$r = 0.890, p = 0.017$	$r = 0.908, p = 0.012$	$r = 0.858, p = 0.029$
Reproduction EC50, 28 d	$r = 0.865, p = 0.026$	$r = 0.880, p = 0.021$	$r = 0.905, p = 0.013$
Organic matter stability	$r = 0.897, p = 0.015$	$r = 0.913, p = 0.011$	$r = 0.884, p = 0.019$
NH ₄ -N	$r = -0.773, p = 0.071$	$r = -0.801, p = 0.056$	$r = -0.817, p = 0.047$
Total nitrogen	$r = -0.802, p = 0.055$	$r = -0.829, p = 0.041$	$r = -0.764, p = 0.077$