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HIGHER ORDER SYMMETRIZATION INEQUALITIES AND
APPLICATIONS

JOAQUIM MARTÍN∗ AND MARIO MILMAN

Abstract. We prove new extended forms of the Pólya-Szegö symmetrization

principle. As a consequence new sharp embedding theorems for generalized
Sobolev and Besov spaces are proved.

1. Introduction

Recently sharp forms of the Sobolev embedding theorem have been obtained
using new symmetrization inequalities. In [1] it was shown that the oscillation
of the decreasing rearrangement of f given by the quantity f∗∗(t) − f∗(t) can be
estimated by

(1.1) f∗∗(t)− f∗(t) ≤ cnt1/n |∇f |∗∗ (t), f ∈ C∞
0 (Rn),

where f∗∗(t) = 1
t

∫ t

0
f∗(s)ds, and f∗ is the non-increasing rearrangement of f .

While variants of (1.1) had been known before (cf. [18], [10]), the formulation
of inequalities in terms of the oscillation f∗∗(t) − f∗(t) leads to general forms of
the Sobolev embedding theorem that are sharp up to the end points. Moreover,
(1.1) has also proven to be particularly useful in the study of higher order Sobolev
inequalities (cf. [1], [14], [15]).

The fractional case was treated in [12] where the following estimate for moduli
of continuity was obtained: Let X(Rn) be a r.i. space, f ∈ X(Rn), then

(1.2) f∗∗(t)− f∗(t) ≤ c
ωX(t1/n, f)1

φX(t)
,

where φX(t) is the fundamental function1 of X(Rn). Using (1.2), sharp embeddings
for generalized Besov spaces of order s ≤ 1 were derived in [12].

Higher order derivatives pose a challenge for symmetrization methods since the
Pólya-Szegö symmetrization principle,

(1.3) |∇f◦|∗∗ (t) ≤ |∇f |∗∗ (t),

where f◦(x) = f∗ (γn |x|n) (x ∈ Rn, γn = measure of the unit ball in Rn) denotes
the spherical decreasing rearrangement of f , which underlies the validity of (1.1)
and (1.2), fails for higher order derivatives. Nevertheless, in [14] it was shown
that starting from the embedding theorem implied by (1.1) one could develop an
iteration argument that leads to sharp higher order Sobolev estimates.
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The method of [14] is indirect, based on certain inequalities and constructions
for r.i. spaces. For further analysis it is of interest to have a pointwise inequality of
the type (1.1) for higher order derivatives. Observe that (1.1) readily implies the
somewhat weaker pointwise estimate

(1.4) f∗∗(t)− f∗(t) ≤ Cnt1/n

∫ ∞

t

|∇f |∗∗ (s)
ds

s
, f ∈ C1

0 (Rn),

from which we can iterate (cf. Corollary 2 below) an estimate involving higher
order derivatives of all orders

(1.5) f∗∗(t)− f∗(t) ≤ c(n, k)t1/n
∑
|α|=k

∫ ∞

t

s
k−1

n (Dαf)∗∗ (s)
ds

s
, f ∈ Ck

0 (Rn).

This simple formula leads efficiently to sharp higher order Sobolev embeddings and
clarifies the role of the assumptions in the embedding theorems in [14]. We remark
that using

− d

dt
f∗∗(t) =

f∗∗(t)− f∗(t)
t

, and f◦∗∗ = f∗∗,

we can rewrite (1.1) as

(1.6)
d

dt
(−f◦∗∗(t)) ≤ cnt1/n−1 |∇f |∗∗ (t).

In comparing (1.6) with the classical Pólya-Szegö principle (1.3) we note that the
expression that appears on the left hand side of (1.6) involves a derivative associated
with the spherical nonincreasing rearrangement of f , but the order in which we take
the operations ∗∗ and d

dt has been reversed. Nevertheless, one feels that (1.6), which
is a consequence of (1.3), can be considered as a form of the Pólya-Szegö principle
from which it is a consequence. A similar comment applies to (1.5), which could
then be considered as a “higher order inequality of Pólya-Szegö type”.

For the higher order fractional case we extend (1.2) as follows (cf. section 6):
for all f ∈ Ck

0 (Rn) we have

(1.7) f∗∗(t)− f∗(t) ≤ ct1/n

∫ ∞

t

s
k−1

n

φX(s)

(∫ s

0

ωX(f, z
1
n )k+1

z
k
n

dz

z

)
ds

s
, k ≥ 2.

Here ωX(f, t)r is the r−modulus of continuity of f ∈ X (Rn) , defined by

ωX(f, t)r = sup
|h|≤t

‖∆r
hf‖X (t > 0),

with ∆1
hf(x) = f(x + h) − f(x) and ∆r+1

h f(x) = ∆1
h(∆r

h)f(x), and φX is the
fundamental function of X (see section 2 below).

Using (1.7) will allows us to extend the embedding results obtained in [12] to
higher order generalized Besov spaces.

When working with functions defined on domains, the Pólya-Szegö principle
(1.3), which underlies the validity of (1.1)-(1.5), requires that the Sobolev func-
tions vanish at the boundary and therefore the extension by approximation requires
strong conditions on the boundary of the domains. In this direction we note that
Rakotoson [16] obtained independently an inequality closely connected to (1.1) on
domains with boundary satisfying a Lipschitz condition and without assuming that
the Sobolev functions vanish at the boundary.

In this paper we prove versions of (1.1) and (1.5) for Maz’ya domains and without
assuming that the functions vanish at the boundary. For example, in Theorem 2
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below we show that if Ω is bounded open domain in Rn (for the sake of definiteness
we fix |Ω| = 1) which belongs to the Maz’ya class Jα, 1 − 1

n ≤ α < 1, then for all
f ∈ W 1,1(Ω) we have

(1.8) f∗∗(t)− f∗(t) ≤ ct1−α(|∇f |)∗∗(t), t ∈ (0, 1/2),

and (
f −

∫
Ω

f

)∗∗
(t)−

(
f −

∫
Ω

f

)∗
(t) ≤ ct1−α(|∇f |)∗∗(t), t ∈ (0, 1).

In particular, we see that for Maz’ya domains in the class Jα, 1 − 1
n ≤ α < 1,

(1.8) holds for all t ∈ (0, 1), whenever
∫
Ω

f = 0. In fact, as we shall see in Theorem
3 below, the last inequality characterizes the domains in Maz’ya’s class Jα. For
higher order derivatives (see Lemma 1 below) we get that for all k ≥ 1, for all
f ∈ W k,1(Ω), and for all 0 < t < 1/2, we have

f∗∗(t)−f∗(t) ≤ c(k, n)t1−α

∑
|β|=k

∫ 1

t

s(k−1)(1−α)
(
Dβf

)∗∗
(s)

ds

s
+

∑
1≤|β|≤k−1

∥∥Dβf
∥∥

L1


In particular, Lipschitz domains correspond to α = 1− 1

n (cf. Example 1 below).
This leads to the following general form of the Sobolev embedding theorem (cf.

Theorem 6 below):

Theorem 1. (see [14]) Let Y (Ω) be a r.i. space, the Sobolev space W k,Y (Ω) is
defined2 by

W k,Y (Ω) =
{
f : Dβf ∈ Y, for all β, |β| ≤ k

}
,

‖f‖W k,Y (Ω) =
∑

0≤|β|≤k

∥∥Dβf
∥∥

Y (Ω)
.

Let Ω ∈ Jα, 1− 1
n ≤ α < 1. Let k ∈ N, 1 ≤ k < n, and let Y (Ω) be a r.i. space with

Boyd indices3 such that (k − 1)(1− α) < αY ≤ αY < 1. Then

W k,Y (Ω) ⊂ Y(1−α)k(Ω),

where Y(1−α)k(Ω) denotes the rearrangement invariant set (which with a different
notation was introduced in [14]) defined by

Y(1−α)k(Ω) :=
{

f : t−k(1−α)(f∗∗(t)− f∗(t)) ∈ Y (Ω)
}

,

‖f‖Y(1−α)k
=
∥∥∥t−k(1−α)(f∗∗(t)− f∗(t))

∥∥∥
Y

.

In particular, we obtain the following sharp version of the Sobolev embedding
theorem for Maz’ya’s domains Ω ∈ Jα, 1− 1

n ≤ α < 1,

(1.9) W k,p(Ω) ⊂ Lp∗,p(Ω),

where 1 < p ≤ 1
k(1−α) ,

1
p∗ = 1

p−(1−α)k, with the convention that p∗ = ∞ when p =
1

k(1−α) , in which case L∞,p(Ω) =
{

f : ‖f‖p
L∞,p(Ω) =

∫ 1

0
(f∗∗(t)− f∗(t))p dt

t < ∞
}

.

Theorem 1 (and in particular (1.9)) extends the results of [14] to Sobolev spaces
with rough domains and without requiring the Sobolev functions to vanish at the
boundary. We note that, for Lipschitz domains and r.i. spaces, somewhat related

2When Y = Lp we use the classical notation W k,Y (Ω) = W k,p(Ω).
3See Section 2 below.
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results were recorded in [9] but with an indirect formulation that only concerns
with Banach spaces, while the sharp form of the Sobolev embedding theorem (1.9)
uses spaces that are not necessarily linear spaces. In this direction we should also
note the dissertation of Kalis [8] where results of this type are extended to Sobolev
spaces of vector fields through the use of a connection to Poincaré inequalities.

As usual, the symbol f ' g will indicate the existence of a universal constant
c > 0 (independent of all parameters involved) so that (1/c)f ≤ g ≤ c f , while the
symbol f � g means that f ≤ c g, and f � g means that f ≥ c g.

2. Preliminaries

We rather briefly collect some definitions, notations and properties about func-
tions and function spaces which are used in this paper.

In what follows, given a vector u ∈ Rm, we denote by |u| its Euclidean norm.
Let g be a locally integrable function having weak derivatives of all orders up to

r ∈ N, we denote by drg the vector
(
Dβg

)
|β|=r

of all derivatives of order |β| = r.
It is well-know and easy to see that

(2.1)
∣∣∇ ∣∣dk−1g

∣∣∣∣ � ∣∣dkg
∣∣ , k = 1, 2, · · · , r.

A rearrangement invariant space (r.i. space), Y = Y (Ω), is a Banach function
space of Lebesgue measurable functions on Ω ⊂ Rn endowed with a norm ‖·‖Y that
satisfies the Fatou property and is such that, if f ∈ Y and g∗ = f∗, then g ∈ Y and
‖g‖Y = ‖f‖Y .

Every r.i. space Y has a representation as a function space on Y ˆ(0, |Ω|) such
that

‖f‖Y (Ω) = ‖f∗‖Y ˆ(0,|Ω|) .

Since the measure space will be always clear from the context it is convenient to
“drop the hat” and use the same letter Y to indicate the different versions of the
space Y that we use.

The upper and lower Boyd indices associated with a r.i. space Y are defined by

(2.2) αY = inf
s>1

lnhY (s)
ln s

and αY = sup
s<1

lnhY (s)
ln s

,

where hY (s) denotes the norm on Y ˆ(0, |Ω|) of the dilation operator Es, s > 0,
defined by

Esf(t) =
{

f∗( t
s ) 0 < t < s|Ω|,

0 s|Ω| < t < |Ω| .

It is also useful sometimes to consider a slightly different set of indices obtained
by means of replacing hY (s) in (2.2) by

MY (s) = sup
t∈(0,min(1, 1

s )|Ω|)

φY (ts)
φY (t)

, s > 0,

where φY (s) is the fundamental function of X :

φY (s) = ‖χE‖Y ,

where E is any measurable subset of Ω with |E| = s.
The corresponding indices are denoted βY , β

Y
, and will be referred to as the

upper and lower fundamental indices of Y . Actually, we have (cf. [2])

0 ≤ αY ≤ β
Y
≤ βY ≤ αY ≤ 1.
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We shall usually formulate conditions on r.i spaces in terms of the Hardy oper-
ators defined by

Pf(t) =
1
t

∫ t

0

f(s)ds; Qaf(t) =
1
ta

∫ ∞

t

saf(s)
ds

s
, 0 ≤ a < 1.

In particular, it is well known that if Y is a r.i. space, P (resp. Qa) is bounded on
Y if and only if αY < 1 (resp. a < αY ) (see for example [2, Chapter 3]). If a = 0,
we shall write Q instead of Q0.

3. Rearrangement Inequality and isoperimetric Inequality

In this section we show how to derive the basic rearrangement inequality (1.1),
without requiring the Sobolev functions to vanish at the boundary, on rough do-
mains. For example, combining Theorem 2 and Example 1 below, it follows that for
a bounded domain Ω ⊂ Rn with Lipschitz boundary we have the following version
of (1.1)

(3.1) f∗∗(t)− f∗(t) ≤ cnt1/n |∇f |∗∗ (t), t ∈ (0, |Ω| /2), f ∈ W 1,1(Ω).

More generally, for domains Ω in Maz’ya’s class Jα (1 − 1/n ≤ α < 1) (see Def-
inition 1 below) we need to replace t1/n by t1−α on the right hand side of (3.1).
Interestingly, as we shall soon see, this leads to Sobolev embeddings that depend
on α (see Example 2 bellow for domains with cusps connected with the exponent
α)

In what follows we consider bounded domains.

Definition 1. (See [13, page 162]) A domain Ω belongs to the class Jα (1− 1/n ≤
α < 1) if there exists a constant M ∈ (0, |Ω|) such that

Uα(M) = sup
|S|α

PΩ(S)
< ∞

where the sup is taken over all S open bounded subsets of Ω such that Ω ∩ ∂S is
a manifold of class C∞ and |S| ≤ M, (in which case we will say that S is an
admissible subset) and where for a measurable set E ⊂ Ω, PΩ(E) is the De Giorgi
perimeter of E in Ω defined by

PΩ(E) = sup
{∫

E

divϕ dx : ϕ ∈ [C1
0 (Ω)]n, ‖ϕ‖L∞(Ω) ≤ 1

}
.

By an approximation process it follows that if Ω is a bounded domain in Jα,
then for any 0 < M < |Ω| , there is a constant cM > 0 such that, for all measurable
set E ⊂ Ω with |E| ≤ M, we have

(3.2) PΩ(E) ≥ cM |E|α .

Indeed, this was already observed in [17, Lemma 1.12] and follows as a direct
consequence of [13, Corollary 3.2.4 and Theorem 6.1.3]4.

4We include a proof for the sake of completeness. Let 0 < ε < |Ω| − M and let cM =

sup
{

|S|α
PΩ(S)

, S ⊂Ω admissible, |S| ≤ M + ε
}

. From [13, Corolary 3.2.4], 0 < cM < ∞ and we

can find an admissible sequence Em ⊂ Ω such that, |Em| → |E| and PΩ(Em) → PΩ(E). Then
|Em| ≤ |E| + ε ≤ M + ε for m large. Since by the definition of cM , |Em|α ≤ cMPΩ(Em), and
(3.2) follows.
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Example 1. If Ω is a bounded domain, starshaped with respect to a ball, or a
bounded domain having the cone property, or a Lipschitz domain, then Ω belongs
to the class J1−1/n (see [13]).

Example 2. If

Ω =

{
x ∈ Rn :

N−1∑
i=1

x2
i < x2β

n , 0 < xn < a, β ≥ 1

}
then Ω ∈ Jα′ , α′ = β(n−1)

β(n−1)+1 and Ω /∈ Jα, for α < α′ (see [13, page 176]).

Example 3. If Ω is a John domain then Ω ∈ J1−1/n (see [3]).

In what follows it will be convenient to normalize our domains so that |Ω| = 1.

Theorem 2. Let Ω be a domain in Jα. Then there exists a constant c > 0 such
that for all f ∈ W 1,1(Ω) we have

(3.3) f∗∗(t)− f∗(t) ≤ ct1−α |∇f |∗∗ (t), t ∈ (0, 1/2).

If
∫
Ω

f = 0, then (3.3) holds up to t = 1, more precisely there exists a constant
c > 0 such that for all f ∈ W 1,1(Ω) we have

(3.4)
(

f −
∫

Ω

f

)∗∗
(t)−

(
f −

∫
Ω

f

)∗
(t) ≤ ct1−α |∇f |∗∗ (t), t ∈ (0, 1).

Proof. We first establish (3.3) assuming that f ∈ W 1,1(Ω)∩C∞(Ω). Then, since f
is smooth, by Federer’s co-area formula (cf. [5]), we have that

(3.5) I(t) =
∫

f∗(t)<|f |≤f∗(t/2)

|∇f(x)| dx =
∫ f∗(t/2)

f∗(t)

Hn−1({x : |f(x)| = r})dr,

where Hn−1 denotes the (n − 1)-Hausdorff measure. Since for any measurable set
E one has

PΩ(E) ≤ Hn−1(∂E ∩ Ω),
it follows that if E = {x : |f(x)| ≥ r}, we have ∂E ⊂ {x : |f(x)| = r} (in fact by
regularity of f it follows from Sard’s lemma that ∂E = {x : |f(x)| = r} a.e. r).
Consequently,

I(t) ≥
∫ f∗(t/2)

f∗(t)

PΩ({x : |f(x)| ≥ r})dr.

Now since for r ∈ (f∗(t), f∗(t/2)) we have

|{x : |f(x)| ≥ r}| ≤ |{x : |f(x)| > f∗(t)}| ≤ t <
1
2
,

it follows from (3.2) that

PΩ({x : |f(x)| ≥ r}) ≥ c1/2 |{x : |f(x)| ≥ r}|α .

Therefore for all 0 < t < 1
2 we have

I(t) =
∫ f∗(t/2)

f∗(t)

PΩ({x : |f(x)| ≥ r})dr ≥ c1/2

∫ f∗(t/2)

f∗(t)

|{x : |f(x)| ≥ r}|α dr

� |{x : |f(x)| ≥ f∗(t/2)}|α (f∗(t/2)− f∗(t))

�
(

t

2

)α

(f∗(t/2)− f∗(t)).
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On the other hand

I(t) =
∫

f∗(t)<|f |≤f∗(t/2)

|∇f(x)| dx ≤
∫ t/2

0

|∇f |∗ (s)ds

≤
∫ t

0

|∇f |∗ (s)ds = t |∇f |∗∗ (t).

So all together we have obtained,

[f∗(t/2)− f∗(t)] � t1−α |∇f |∗∗ (t), t ∈ (0, 1/2).

Consider now an arbitrary f ∈ W 1,1(Ω). Select fn ∈ W 1,1(Ω)∩C∞(Ω) such that
f∗n → f∗ a.e. and fn → f in W 1,1(Ω). Then, by the first part of the proof,

[f∗n(t/2)− f∗n(t)] � t1−α |∇fn|∗∗ (t), t ∈ (0, 1/2),

but

t |∇fn|∗∗ (t) ≤
∫ t

0

|∇(fn − f)|∗ (s)ds +
∫ t

0

|∇f |∗ (s)ds

≤ ‖|∇(fn − f)|‖L1(Ω) + t |∇f |∗∗ (t),

therefore

[f∗(t/2)− f∗(t)] = lim
n→∞

[f∗n(t/2)− f∗n(t)]

� lim
n→∞

t1−α |∇fn|∗∗ (t)

� t1−α |∇f |∗∗ (t), t ∈ (0, 1/2).

Finally to prove (3.3), simply note that the previous inequality yields

f∗∗(t)− f∗(t) ≤ 1
t

∫ t

0

(f∗(s/2)− f∗(s))ds + (f∗(t/2)− f∗(t))

�
(

1
t

∫ t

0

s1−α |∇f |∗∗ (s)ds + t1−α |∇f |∗∗ (t)
)

�
(
|∇f |∗∗ (t)

1
α

∫ t

0

s1−α ds

s
+ t1−α |∇f |∗∗ (t)

)
� t1−α |∇f |∗∗ (t).

If
∫
Ω

f = 0, and 1/2 ≤ t < 1, then

f∗∗(t)− f∗(t) ≤ f∗∗(1/2) ≤ 2
∫ 1

0

f∗(s)ds = 2 ‖f‖L1(Ω) .

Since Ω ∈ Jα, the following Sobolev-Poincaré inequality holds (see [13])

‖f‖L1(Ω) =
∥∥∥∥f − ∫

Ω

f

∥∥∥∥
L1(Ω)

� ‖|∇f |‖L1(Ω) .

Finally, since 1/2 ≤ t < 1

‖|∇f |‖L1(Ω) � t1−α ‖|∇f |‖L1(Ω) = t1−α |∇f |∗∗ (1) ≤ t1−α |∇f |∗∗ (t).

�
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Remark 1. (See Talenti [18]) Let Ω ⊂ Rn be an arbitrary domain and let f ∈
C∞

0 (Ω). Then by the isoperimetric inequality we have,

Hn−1({x : |f(x)| = r}) ≥ nβ1/n
n |{x : |f(x)| ≥ r}|1−1/n

,

where βn is the measure of the unit ball. Inserting this in (3.5) we find∫
f∗(t)<|f |≤f∗(t/2)

|∇f(x)| dx ≥ nβ1/n
n

∫ f∗(t/2)

f∗(t)

|{x : |f(x)| ≥ r}|1−1/n
dr

≥ nβ1/n
n |{x : |f(x)| ≥ f∗(t)}|1−1/n [f∗(t/2)− f∗(t)]

≥ nβ1/n
n t1−1/n[f∗(t/2)− f∗(t)].

Therefore by an easy argument, which actually is contained in the proof of the
previous theorem, we can recover the fundamental inequality

f∗∗(t)− f∗(t) ≤ cnt1/n |∇f |∗∗ (t), f ∈ C∞
0 (Ω).

One could also note that this last inequality follows from Theorem 2 on a ball to-
gether with a scaling argument.

We finish this section showing that the converse of Theorem 2 holds.

Theorem 3. Suppose that Ω ⊂ Rn is a bounded domain with |Ω| = 1. Assume
that there exists 1 − 1/n ≤ α < 1 such that for all f ∈ W 1,1(Ω) with

∫
Ω

f = 0 the
rearrangement inequality

(3.6) f∗∗(t)− f∗(t) ≤ ct1−α |∇f |∗∗ (t), t ∈ (0, 1),

holds. Then Ω ∈ Jα.

Proof. Let f ∈ W 1,1(Ω), set g = f −
∫
Ω

f . Then

‖g‖L1/α,∞(Ω) ≤ sup
0<t<1

tαg∗∗(t) = sup
0<t<1

tα(
∫ 1

t

(g∗∗(s)− g∗(s))
ds

s
+
∫ 1

0

g∗(s)ds)

� sup
0<t<1

tα (g∗∗(t)− g∗(t)) + ‖g‖L1(Ω)

� sup
0<t<1

∫ t

0

|∇f |∗ (s)ds + ‖g‖L1(Ω). (by (3.6))

� ‖|∇f |‖L1(Ω) +
∥∥∥∥f − ∫

Ω

f

∥∥∥∥
L1(Ω)

.

Therefore

(3.7) inf
c∈R

‖f − c‖L1/α,∞(Ω) ≤ ‖|∇f |‖L1(Ω) +
∥∥∥∥f − ∫

Ω

f

∥∥∥∥
L1(Ω)

.

Let us see now that (3.6) implies the Sobolev-Poincaré inequality

(3.8)
∥∥∥∥f − ∫

Ω

f

∥∥∥∥
L1(Ω)

� ‖|∇f |‖L1(Ω) , ∀f ∈ W 1,1(Ω).

By approximation it is enough to prove this claim assuming that f ∈ W 1,1(Ω) ∩
C∞(Ω). Then g = f −

∫
Ω

f ∈ W 1,1(Ω) ∩ C∞(Ω). By (3.6),

(g∗∗(t)− g∗(t)) � t−α

∫ t

0

|∇f |∗ (s) ≤ t−α ‖|∇f |‖1 , t ∈ (0, 1).
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Thus
t (g∗∗(t)− g∗(t)) � t1−α ‖|∇f |‖1 ≤ ‖|∇f |‖1 .

Since t (g∗∗(t)− g∗(t)) =
∫∞

g∗(t)
|{x : |g(x)| > s}|ds, and the last function is obvi-

ously increasing, we have

sup
0<t<1

t (g∗∗(t)− g∗(t)) = lim
t→1−

t (g∗∗(t)− g∗(t)) =
∫ 1

0

g∗(s)ds− g∗(1−).

Now,
g∗(1−) = inf

x∈Ω
|g(x)| ,

and since
∣∣f − ∫

Ω
f
∣∣ ∈ C(Ω),

inf
x∈Ω

∣∣∣∣f(x)−
∫

Ω

f

∣∣∣∣ = 0.

Combining these observations we see that for all f ∈ W 1,1(Ω) ∩ C∞(Ω),∫ 1

0

g∗(s)ds =
∥∥∥∥f − ∫

Ω

f

∥∥∥∥
L1(Ω)

� ‖|∇f |‖L1(Ω) .

Therefore we can write (3.7) as

inf
c∈R

‖f − c‖L1/α,∞(Ω) � ‖|∇f |‖L1(Ω) .

By Maz’ya’s truncation principle (cf. [6, Theorem 4]), this inequality implies the
strong type inequality,

inf
c∈R

‖f − c‖L1/α(Ω) � ‖|∇f |‖L1(Ω) .

We conclude using the fact that Sobolev-Poincaré type inequalities imply the va-
lidity of Maz’ya’s Jα conditions (see [13, Lemma 2 and Corollary, page 169]). �

4. Inequalities for higher order derivatives

In this section we shall obtain a higher order version of (3.3). Throughout this
section Ω will be a bounded domain with |Ω| = 1.

Lemma 1. Let Ω ∈ Jα, k ≥ 1. Then for all f ∈ W k,1(Ω), and all t ∈ (0, 1/2),

(4.1) f∗∗(t)− f∗(t) ≤ ct1−α

∫ 1

t

s(k−1)(1−α)
∣∣dkf

∣∣∗∗ (s)
ds

s
+

k−1∑
j=1

∥∥∣∣djf
∣∣∥∥

L1(Ω)


where c := c(n, k) > 0 is a constant independent of f.

Proof. (By induction). If k = 1, then, by Theorem 2, we have that for all f ∈
W 1,1(Ω),

f∗∗(t)− f∗(t) ≤ ct1−α |∇f |∗∗ (t), t ∈ (0, 1/2).
Thus, for all t ∈ (0, 1/2),

tα−1 (f∗∗(t)− f∗(t)) � (|∇f |)∗∗(t) =
1
t

∫ t

0

|∇f |∗(z) dz ≤ 2
∫ 1

t

ds

s2

∫ t

0

|∇f |∗(z) dz

≤ 2
∫ 1

t

ds

s2

∫ s

0

|∇f |∗(z) dz = 2
∫ 1

t

|∇f |∗∗(s) ds

s
.
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Assume now that (4.1) holds for 1, 2, . . . , k− 1, then, if f ∈ W k,1(Ω) ⊂ W k−1,1(Ω),
we can write

f∗∗(t)− f∗(t) ≤ ct1−α

∫ 1

t

s(k−2)(1−α)
∣∣dk−1f

∣∣∗∗ (s)
ds

s
+

k−2∑
j=1

∥∥∣∣djf
∣∣∥∥

L1


(4.2)

� t1−α

∫ 1/2

t

s(k−2)(1−α)
∣∣dk−1f

∣∣∗∗ (s)
ds

s
+

k−1∑
j=1

∥∥∣∣djf
∣∣∥∥

L1

 .

Since
∣∣dk−1f

∣∣ ∈ W 1,1(Ω), we have that for t ∈ (0, 1/2)

(4.3)
∣∣dk−1f

∣∣∗∗ (t)−
∣∣dk−1f

∣∣∗ (t) ≤ ct1−α
∣∣∇ ∣∣dk−1f

∣∣∣∣∗∗ (t).

But ∣∣dk−1f
∣∣∗∗ (s) =

∫ 1/2

s

(∣∣dk−1f
∣∣∗∗ (z)−

∣∣dk−1f
∣∣∗ (z)

) dz

z

+
∣∣dk−1f

∣∣∗∗ (1/2)

= I0(s) +
∣∣dk−1f

∣∣∗∗ (1/2)

� I0(s) +
∥∥∣∣dk−1f

∣∣∥∥
L1 .

We estimate I0(s) using (4.3) and (2.1) to get

I0(s) ≤ c

∫ 1

s

z1−α
∣∣∇ ∣∣dk−1f

∣∣∣∣∗∗ (z) ≤ c

∫ 1

s

z1−α
∣∣dkf

∣∣∗∗ (z)
dz

z
.

Now, inserting this estimate in (4.2) and a short argument involving Fubini’s the-
orem yields (4.1). �

Corollary 1. Let Ω ∈ Jα. Then for all f ∈ W k,1(Ω) (k ≥ 1), t ∈ (0, 1), we have

(4.4) f∗∗(t) �
∫ 1

t

sk(1−α)
∣∣dkf

∣∣∗∗ (s)
ds

s
+

k−1∑
j=0

∥∥∣∣djf
∣∣∥∥

L1(Ω)
.

Proof. We start with the familiar formula

(4.5) f∗∗(t) =
∫ 1/2

t

(f∗∗(s)− f∗(s))
ds

s
+ f∗∗(1/2), t ∈ (0, 1/2).

Now, we estimate the integrand in (4.5) using Lemma 1 and find that for all t ∈
(0, 1/2)

f∗∗(t) �
∫ 1/2

t

s1−α

(∫ 1

s

z(k−1)(1−α)
∣∣dkf

∣∣∗∗ (z)
dz

z

)
ds

s
+

k−1∑
j=1

∥∥∣∣djf
∣∣∥∥

L1(Ω)
+ f∗∗(1/2)

�
∫ 1

t

s1−α

(∫ 1

s

z(k−1)(1−α)
∣∣dkf

∣∣∗∗ (z)
dz

z

)
ds

s
+

k−1∑
j=0

∥∥∣∣djf
∣∣∥∥

L1(Ω)

≤ I(t) +
k−1∑
j=0

∥∥∣∣djf
∣∣∥∥

L1(Ω)
.
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Fubini’s theorem yields

I(t) =
∫ 1

t

z(k−1)(1−α)
∣∣dkf

∣∣∗∗ (z)
(∫ z

t

s1−α ds

s

)
dz

z

�
∫ 1

t

sk(1−α)
∣∣dkf

∣∣∗∗ (s)
ds

s
.

Since for 1/2 < t < 1 we obviously have

f∗∗(t) ≤ f∗∗(
1
2
) ≤ 2 ‖f‖1

we get that (4.4) holds for all t ∈ (0, 1) . �

Using the same method given in the proof of Lemma 1 we obtain easily the
following result

Corollary 2. If f ∈ Ck
0 (Rn) (or f ∈ Ck

0 (Ω), where Ω an arbitrary domain in Rn)
and k ≥ 1, then

f∗∗(t)− f∗(t) ≤ ct1/n

∫ ∞

t

s
k−1

n

∣∣dkf
∣∣∗∗ (s)

ds

s
,

where c := c(n, k) > 0 is independent of f.

5. Applications

In this section we extend and complement recent results in [14], [4], [9] and [12].

5.1. Symmetrization inequalities and Sobolev-Poincaré type inequalities.
In this section we show some sharp Sobolev-Poincaré type inequalities that follow
from (3.3) and (3.4) in the context of Lp,q spaces.

Lemma 2. Let Ω ⊂ Rn be a bounded domain with |Ω| = 1. Assume that there
exists 1 − 1/n ≤ α < 1 such that for all f ∈ W 1,1(Ω) inequalities (3.3) and (3.4)
hold. Then,

1. If p > 1, 1− α < 1/p and r = p
p(α−1)+1 then W 1,p(Ω) ⊂ Lr,p(Ω), moreover

(5.1) inf
c∈R

‖f − c‖Lr,p(Ω) � ‖|∇f |‖Lp(Ω) , ∀f ∈ W 1,p(Ω).

(Notice that Lr,p(Ω) ⊂ Lr(Ω), since r > p).
2. If p > 1 and 1 − α = 1/p, then r = p

p(α−1)+1 = ∞, and we have W 1,p(Ω) ⊂
L∞,p(Ω) and

inf
c∈R

‖f − c‖L∞,p(Ω) � ‖|∇f |‖Lp(Ω) ,

where L∞,p(Ω) =
{

f : ‖f‖p
L∞,p(Ω) =

∫ 1

0
(f∗∗(t)− f∗(t))p dt

t < ∞
}

.

Proof. 1. Let f ∈ W 1,p(Ω) ⊂ W 1,1(Ω), and let I =
(∫ 1

0

(
(f∗∗(t)− f∗(t)) t1/r

)p dt
t

)1/p

.

Splitting the interval of integration (0, 1) = (0, 1
2 ) ∪ [ 12 , 1) and using (3.3) we see

that

I �
∥∥|∇f |∗∗

∥∥
p

+ ‖f‖1
� ‖f‖W 1,p(Ω) (since p > 1).
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By the fundamental theorem of Calculus we can write

f∗∗(t) =
∫ 1

t

(f∗∗(s)− f∗(s))
ds

s
+
∫ 1

0

f∗(s)ds,

therefore using that Q : Lr,p → Lr,p is bounded, and p > 1, we readily see that

(5.2) ‖f‖Lr,p(Ω) � I + ‖f‖1 � ‖|∇f |‖Lp(Ω) + ‖f‖1 .

Thus,
W 1,p(Ω) ⊂ Lr,p(Ω).

It follows from (5.2) that for any c ∈ R we have

‖f − c‖Lr,p(Ω) �
(
‖f − c‖L1(Ω) + ‖|∇f |‖Lp(Ω)

)
.

Therefore

inf
c∈R

‖f − c‖Lr,p(Ω) �
(

inf
c∈R

‖f − c‖L1(Ω) + ‖|∇f |‖Lp(Ω)

)
� ‖|∇f |‖L1(Ω) + ‖|∇f |‖Lp(Ω) (by (3.8))

≤ ‖|∇f |‖Lp(Ω) ,

and (5.1) follows.
2. If 1− α = 1/p, then I = ‖f‖L∞,p(Ω). We proceed as before, and we have

‖f‖L∞,p(Ω) =
(∫ 1

0

(f∗∗(t)− f∗(t))p dt

t

)1/p

�
∥∥|∇f |∗∗

∥∥
p

+ ‖f‖1
and hence

inf
c∈R

‖f − c‖L∞,p(Ω) � ‖|∇f |‖Lp(Ω) .

�

Remark 2. Consider the Brézis-Wainger spaces BW p(Ω) defined by

BW p(Ω) =

{
f : ‖f‖BW p(Ω) =

{∫ 1

0

(
f∗∗(s)
1 + ln 1

s

)p
ds

s

}1/p

< ∞

}
.

In the limiting case 1 − α = 1
p , the previous result implies a Poincaré-Sobolev

inequality involving these spaces. Indeed, since L(∞, p)(Ω) ⊂ BW p(Ω), and in fact
(cf. [1, Lemma 2])

‖f‖BW p(Ω) � ‖f‖L∞,p(Ω) + ‖f‖1 ,

the second part of Lemma 2 gives

inf
c∈R

‖f − c‖BW p(Ω) � ‖|∇f |‖Lp(Ω) , ∀f ∈ W 1,p(Ω).

Remark 3. In Lemma 2 we can also consider the case p = 1, which corresponds
to r = p

p(α−1)+1 = 1
α . We obtain

inf
c∈R

‖f − c‖L1/α,∞(Ω) ≤
∥∥∥∥f − ∫

Ω

f

∥∥∥∥
L1/α,∞(Ω)

� ‖|∇f |‖L1(Ω) .

For the details see the proof of Theorem 3 above.
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5.2. Sobolev embeddings for domains Ω ⊂ Rn of class Jα. We extend the
results of the previous section to the setting of r.i. spaces.

Theorem 4. Let Ω be a bounded domain in Jα with |Ω| = 1. Let 1 ≤ k < n. Let
X(Ω) and Y (Ω) be r.i. spaces. Assume that

(5.3)
∥∥∥∥∫ 1

t

sk(1−α)g∗∗(s)
ds

s

∥∥∥∥
Xˆ(0,1)

≤ c ‖g‖Y ˆ(0,1) , ∀g ∈M+(0, 1).

Then the following statements hold:

(1) For 1 ≤ k < n we have,

W k,Y (Ω) ⊂ X(Ω).

(2)
inf

Λ∈Pk−1
‖f − Λ‖X(Ω) �

∥∥∣∣dkf
∣∣∥∥

Y (Ω)
,

where Pk−1 is the set of polynomials of degree k − 1.

Proof. (1). By Corollary 1, we can write

f∗∗(t) �
∫ 1

t

sk(1−α)
∣∣dkf

∣∣∗∗ (s)
ds

s
+

k−1∑
j=0

∥∥∣∣djf
∣∣∥∥

L1(Ω)
, t ∈ (0, 1).

Applying the X norm and then the triangle inequality we get

‖f‖X �
∥∥∥∥∫ 1

t

sk(1−α)
∣∣dkf

∣∣∗∗ (s)
ds

s

∥∥∥∥
X

+
k−1∑
j=0

∥∥∣∣djf
∣∣∥∥

L1(Ω)
.

The first term on the right hand side can be estimated using (5.3). To estimate∑k−1
j=1

∥∥∣∣djf
∣∣∥∥

L1(Ω)
, we simply use the fact that Y (Ω) ⊂ L1(Ω). It follows that

‖f‖X(Ω) � ‖f‖W k,Y (Ω) .

(2). For simplicity we only consider the case k = 2. Let f ∈ W 2,Y (Ω) and let

p(x) =
∫

Ω

f +
n∑

i=1

(∫
Ω

∂f

∂xi

)
xi and Π(x) = p(x) +

∫
Ω

(f − p) .

Let g = f −Π = (f − p)−
∫
Ω

(f − p) . By Corollary 1

g∗∗(t) �
∫ 1

t

s2(1−α)
∣∣d2f

∣∣∗∗ (s)
ds

s
+

1∑
j=0

∥∥∣∣djg
∣∣∥∥

L1(Ω)
.

Since W 2,Y (Ω) ⊂ X(Ω), we have

‖g‖X(Ω) �

∥∥∥∥∥∥
∫ 1

t

s2(1−α)
∣∣d2f

∣∣∗∗ (s)
ds

s
+

1∑
j=0

∥∥∣∣djg
∣∣∥∥

L1(Ω)

∥∥∥∥∥∥
X(Ω)

�
∥∥∣∣d2f

∣∣∥∥
Y (Ω)

+
1∑

j=0

∥∥∣∣djg
∣∣∥∥

L1(Ω)
(by (5.3)).
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Since Ω ∈ Jα,

‖|∇g|‖L1(Ω) �
n∑

i=1

∥∥∥∥ ∂f

∂xi
−
∫

Ω

∂f

∂xi

∥∥∥∥
L1(Ω)

�
n∑

i=1

∥∥∥∥∣∣∣∣∇ ∂f

∂xi

∣∣∣∣∥∥∥∥
L1(Ω)

�
∥∥∣∣d2f

∣∣∥∥
Y (Ω)

,

and

‖g‖L1(Ω) =
∥∥∥∥(f − p)−

∫
Ω

(f − p)
∥∥∥∥

L1(Ω)

� ‖|∇(f − p)|‖L1(Ω)

�
n∑

i=1

∥∥∥∥ ∂f

∂xi
−
∫

Ω

∂f

∂xi

∥∥∥∥
L1(Ω)

�
n∑

i=1

∥∥∥∥∣∣∣∣∇ ∂f

∂xi

∣∣∣∣∥∥∥∥
L1(Ω)

�
∥∥∣∣d2f

∣∣∥∥
Y (Ω)

.

Summarizing we have
‖g‖X(Ω) �

∥∥∣∣d2f
∣∣∥∥

Y (Ω)
.

This concludes the proof since

inf
Λ∈P1

‖f − Λ‖X(Ω) ≤ ‖f −Π‖X(Ω) = ‖g‖X(Ω) .

�

5.3. Optimal Sobolev embeddings for domains Ω ⊂ Rn of class J1−1/n. In
what follows Ω will be a bounded domain of class J1−1/n with |Ω| = 1. Let us
also recall (see Examples 1, 2 and 3 above) that the class J1−1/n includes several
important examples, like domains with the cone property, domains with Lipschitz
boundary or John domains. In fact if Ω ⊂ R2 is a bounded simply connected
domain with |Ω| = 1 then combining the results of [3] and Theorem 2 we have that

f∗∗(t)− f∗(t) ≤ ct1/2(|∇f |)∗∗(t), t ∈ (0, 1)

for all f ∈ W 11(Ω) such that
∫
Ω

f = 0, if and only if Ω is a John domain.

Theorem 5. Let X(Ω) and Y (Ω) be r.i. spaces such that 0 <αY , αY < 1. The
embedding

(5.4) W 1,Y (Ω) ⊂ X(Ω)

holds for every Ω bounded domain of class J1−1/n, with |Ω| = 1, if and only if

(5.5)
∥∥∥∥∫ 1

t

g∗∗(s)s
1
n

ds

s

∥∥∥∥
Xˆ(0,1)

≤ c ‖g‖Y ˆ(0,1) , ∀g ∈ Y ˆ(0, 1).

Moreover, if (5.4) holds,

(5.6) X(Ω) ⊂ Y1/n(Ω).
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Proof. Assume that condition (5.5) holds, then (5.4) follows by Theorem 4 with
α = 1− 1/n and k = 1.

Conversely, set

u(x) =
∫ 1

γn|x|n
f(s)s1/n−1ds, x ∈ B, f ∈M+(0, 1).

(γn = measure of the unit ball in Rn and B is the ball about the origin with radius
γ−n

n ).
Observe that for h ∈ Y ˆ(0, 1) we have that

|{x ∈ B : h(γn |x|n) > λ}| = |{t ∈ (0, 1) : h(t) > λ}| .
Consequently

u∗(t) =
∫ 1

t

s1/nf(s)
ds

s
.

Moreover, an easy computation shows that

|∇u(x)| = nγnf(γn |x|n).

Therefore (5.4) applied to the domain B yields∥∥∥∥∫ 1

t

f(s)s1/n−1ds

∥∥∥∥
X

= ‖u‖X � ‖∇u‖Y + ‖u‖Y

� ‖f‖Y + ‖u‖Y .

We conclude observing that

‖u‖Y =
∥∥∥∥∫ 1

t

f(s)s1/n−1ds

∥∥∥∥
Y

≤
∥∥∥∥∫ 1

t

|f(s)| ds

s

∥∥∥∥
L1

≤ c ‖f‖Y .

The proof of (5.6) follows from [14, Theorem 3.6]. �

Remark 4. Under the assumptions of Theorem 5 and starting from (5.5) and using
a suitable modification of an argument in [4] it is possible to show a higher order
version of (5.5), namely that if W k,Y (Ω) ⊂ X(Ω) holds for every bounded domain
of class J1−1/n then ∥∥∥∥∫ 1

t

g∗∗(s)s
k
n

ds

s

∥∥∥∥
Xˆ(0,1)

≤ c ‖g‖Y ˆ(0,1) .

We shall leave the details to the interested reader. Likewise, when dealing with
necessary conditions for the embedding W 1,Y

0 (Ω) ⊂ X(Ω), where Ω is a ball with
|Ω| = 1, if we assume the density of functions in L1(0, 1) that vanish in a neighbor-
hood of 1 in Y we can use the test functions u(x) =

∫ 1

γn|x|n f◦(s)s1/n−1ds, to prove
the validity of (5.5) in this case as well.

5.4. Extensions to the results of Milman-Pustylnik. Here we shall extend the
results of [14] to Sobolev spaces on domains in the class Jα and without boundary
conditions.

First at all, notice that if that Ω is a bounded domain in Jα with |Ω| = 1 and
Y (Ω) is a r.i. space such that αY < 1, then it follows from (3.3) that

W 1,Y (Ω) ⊂ Y1−α(Ω).

For the case 2 ≤ k < n we have
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Theorem 6. 5 Let Ω be a bounded domain of class Jα with |Ω| = 1. Let k ∈ N,
2 ≤ k < n, and let Y (Ω) be a r.i. space such that (k − 1)(1− α) < αY ≤ αY < 1.
Then

W k,Y (Ω) ⊂ Y(1−α)k(Ω).

Proof. By Lemma 1, for all t ∈ (0, 1/2),

f∗∗(t)− f∗(t) ≤ ct1−α

∫ 1

t

s(k−1)(1−α)
∣∣dkf

∣∣∗∗ (s)
ds

s
+

k−1∑
j=1

∥∥∣∣djf
∣∣∥∥

L1(Ω)

 .

Thus,

t−k(1−α)f∗∗(t)− f∗(t) � t(1−k)(1−α)

∫ 1

t

s(k−1)(1−α)|dkf |∗∗(s)ds

s

+ t(1−k)(1−α)
k−1∑
j=1

∥∥∣∣djf
∣∣∥∥

L1

= I0(t) + I1(t).

By Fubini’s theorem

I0(t) �
1
t

∫ t

0

|dkf |∗(s)ds(5.7)

+ t(1−k)(1−α)

∫ 1

t

s(k−1)(1−α)|dkf |∗(s)ds

s

= |dkf |∗∗(t) + Q(k−1)(1−α)(|dkf |∗)(t), t ∈ (0, 1/2).

Moreover, for 0 < t < 1/2

I1(t) = t(1−k)(1−α)
k−1∑
j=1

∥∥∣∣djf
∣∣∥∥

L1(5.8)

�
(

t(1−k)(1−α)

∫ 1

t

s(k−1)(1−α) ds

s

) k−1∑
j=1

∥∥∣∣djf
∣∣∥∥

L1

= Q(k−1)(1−α) (1) (t)(
k−1∑
j=1

∥∥∣∣djf
∣∣∥∥

L1).

Likewise, if 1/2 ≤ t < 1,

t−k(1−α) (f∗∗(t)− f∗(t)) ≤ sup
1/2≤t≤1

(
t−k(1−α)f∗o (t)

)
(5.9)

� f∗∗(1/2) � f∗∗(1) = ‖f‖L1
.

Thus by (5.7), (5.8), and (5.9) we get that for t ∈ (0, 1)

t−k(1−α)(f∗∗(t)− f∗(t)) � |dkf |∗∗(t) + Q(k−1)(1−α)

(
|dkf |∗

)
(t)

+ Q(k−1)(1−α) (1) (t)(
k−1∑
j=1

∥∥∣∣djf
∣∣∥∥

L1) + ‖f‖L1
.

5This Theorem coincides with Theorem 1 of the introduction
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Therefore, by the conditions on indices, and the fact that Y (Ω) ⊂ L1, we get
that ‖f‖Y(1−α)k(Ω) can be estimated by∥∥∥∥∥∥|dkf |∗∗(t) + Q(k−1)(1−α)

(
|dkf |∗

)
(t) + Q(k−1)(1−α) (1) (t)(

k−1∑
j=1

∥∥∣∣djf
∣∣∥∥

L1) + ‖f‖L1

∥∥∥∥∥∥
Y

�

∥∥∣∣dkf
∣∣∥∥

Y
+

k−1∑
j=0

∥∥∣∣djf
∣∣∥∥

L1


≤

k∑
j=0

∥∥∣∣dkf
∣∣∥∥

Y
.

�

Proposition 1. Let Ω ∈ Jα, let p > 1, and suppose that kp(1− α) ≤ 1. Then

W k,p(Ω) ⊂ Lq∗,p(Ω), q∗ =
p

1− kp(1− α)
.

Note that if kp(1− α) = 1, then

W k,p(Ω) ⊂ L∞,p(Ω) ⊂ BW p(Ω).

Remark 5. Using Corollary 2, we can obtain an easy proof of the following result
(see [14, Theorem 1.2]): Let Ω be an open domain in Rn, let k ∈ N, 2 ≤ k < n and
let Y (Ω) be a r.i. space such that k−1

n < αY ≤ αY < 1. Then

(5.10) W k,X
0 (Ω) ⊂ Yk/n(Ω).

In fact, by Corollary 2

f∗∗(t)− f∗(t) ≤ ct1/n

∫ ∞

t

s
k−1

n |dkf |∗∗(s)ds

s
.

Thus

t
−k
n (f∗∗(t)− f∗(t)) ≤ ct

1−k
n

∫ ∞

t

s
k−1

n |dkf |∗∗(s)ds

s
.

By Fubini

t
1−k

n

∫ ∞

t

s
k−1

n g∗∗(s)
ds

s
=

n

n− k + 1

(
1
t

∫ t

0

g∗(s)ds + t
1−k

n

∫ ∞

t

s
k−1

n g∗(s)
ds

s

)
=

n

n− k + 1

(
g∗∗(t) + Q k−1

n
(g∗)(t)

)
.

Therefore
‖f‖Yk/n

�
∥∥|dkf |∗∗

∥∥
Y

+
∥∥∥Q k−1

n
(|dkf |∗)

∥∥∥
Y

.

The conditions on the indices of the spaces imply that∥∥|dkf |∗∗
∥∥

Y
≤ c

∥∥|dkf |
∥∥

Y
and

∥∥∥Q k−1
n

(|dkf |∗)
∥∥∥

Y
≤ c

∥∥∣∣dkf
∣∣∥∥

Y
.

concluding the proof.
To compare this result with [14], recall that in [14, Theorem 1.2] the conditions

imposed on Y (Ω) are: αY < 1 and “Y satisfies the Q(k − 1) condition”, i.e.∫ ∞

1

s
k−1

n hY

(
1
s

)
ds

s
< ∞.
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If Y ′ denotes the associate space of Y then (cf. [2, Chapter 3, Proposition 5.11])
then hY

(
1
s

)
= 1

shY ′ (s) and we have: Y (Ω) satisfies the Q(k − 1) condition iff∫ ∞

1

s
k−1

n −1hY ′ (s)
ds

s
< ∞.

In turn the last condition is equivalent to (cf. [2, Chapter 3, Lemma 5.9])

αY ′ < 1− k − 1
n

.

Now, as is well known αY ′ = 1− αY , and therefore we see that Y (Ω) satisfies the
Q(k − 1) condition if and only if k−1

n < αY .

6. Sobolev embeddings on Rn: The fractional case

In this section we deal with the higher order version of (1.2). (A detailed study
of the fractional case on general domains will be considered in [11].)

Lemma 3. If f ∈ C∞
0 (Rn) then, for every k ≥ 2

(6.1) f∗∗(t)− f∗(t) ≤ ct1/n

∫ ∞

t

s
k−1

n

φX(s)

(∫ s

0

ωX(f, z
1
n )k+1

z
k
n

dz

z

)
ds

s
.

Proof. By Corollary 2,

(6.2) f∗∗(t)− f∗(t) � t1/n

∫ ∞

t

s
k−1

n

∣∣dkf
∣∣∗∗ (s)

ds

s
.

On the other hand by (1.2)∣∣dkf
∣∣∗∗
1

(s) =
∫ ∞

s

(∣∣dkf
∣∣∗∗ (x)−

∣∣dkf
∣∣∗ (x)

) dx

x

≤
∫ ∞

s

(
ωX(

∣∣dkf
∣∣ , x1/n)

φX(x)

)
dx

x
.

Inserting the last estimate in (6.2) and using Fubini we find

f∗∗(t)− f∗(t) � t1/n

∫ ∞

t

(
s

k−1
n

∫ ∞

s

(
ωX(

∣∣dkf
∣∣ , x1/n)

φX(x)

)
dx

x

)
ds

s

� t1/n
∑
|α|=k

∫ ∞

t

s
k−1

n ωX(Dαf, s1/n)
φX(s)

ds

s
.

Finally, using the well known estimate (see for example [7])

ωX(Dαf, s) �
∫ s

0

ωX(f, z)k+1

zk

dz

z
(|α| = k)

(6.1) follows readily. �

Let X = X(Rn) be a r.i. space, and let Y be a r.i space over (0,∞) and let
s > 0. Set r = [s] + 1 ([s]=integral part of s).

The Besov space B̊s
X,Y (Rn) is defined (see [12]) as the closure of C∞

0 (Rn) under
the seminorm

‖f‖B̊s
X,Y (Ω) =

∥∥∥∥∥ t−
s
n ωX

(
f, t1/n

)
r

φY (t)

∥∥∥∥∥
Y

.,
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Example 4. Let X = Lp (Rn) and Y = Lq ([0,∞)) , then φY (t) = t1/q and

‖f‖B̊s
X,Y (Ω) '

(∫ ∞

0

(
t−sωp (f, t)r

)q dt

t

)1/q

.

Thus B̊
s

Lp,Lq (Rn) coincides with the usual space B̊s
p,q (Rn) .

Theorem 7. (See [12] if 0 < s ≤ 1) Let X = X(Rn), Y (0,∞) be r.i. spaces, and
let s > 1. Moreover suppose that

s− 1
n

< αY − βY + β
X

and αY < β
Y

+
s− [s]

n
.

Then
B̊

s

X,Y (Rn) ⊂ Y s
n
(X)(Rn),

where Y s
n
(X) is the rearrangement invariant set introduced in [12], defined by6

Ys(X) =
{

f : ‖f‖Y (∞,s,X) =
∥∥∥∥t−s φX(t)

φY (t)
f∗0 (t)

∥∥∥∥
Y

< ∞
}

.

Proof. By Lemma 3 (with k = [s]) we have that

f∗∗(t)− f∗(t) � t1/n

∫ ∞

t

s
k−1

n

φX(s)

(∫ s

0

ωX(f, z
1
n )k+1

z
k
n

dz

z

)
ds

s
.

Thus

‖f‖Y s
n

(X) �

∥∥∥∥∥t 1−s
n

φX(t)
φY (t)

∫ ∞

t

s
k−1

n

φX(s)

(∫ s

0

ωX(f, z
1
n )k+1

z
k
n

dz

z

)
ds

s

∥∥∥∥∥
Y

= I.

The conditions on the indices (see [12, Lemma 1 and Remark 1]) ensure that∥∥∥∥t 1−s
n

φX(t)
φY (t)

Qh(t)
∥∥∥∥

Y

�
∥∥∥∥t 1−s

n
φX(t)
φY (t)

h(t)
∥∥∥∥

Y

.

Thus

I �

∥∥∥∥∥ t−
s−k

n

φY (t)

(∫ s

0

ωX(f, z
1
n )k+1

z
k
n

dz

z

)∥∥∥∥∥
Y

.

We claim that

(6.3)

∥∥∥∥∥ t−
s−k

n +1

φY (t)
Ph(t)

∥∥∥∥∥
Y

�

∥∥∥∥∥ t−
s−k

n +1

φY (t)
h(t)

∥∥∥∥∥
Y

.

This given we have

I �

∥∥∥∥∥ t−
s−k

n +1

φY (t)

(
1
s

∫ s

0

ωX(f, z
1
n )k+1

z
k
n

dz

z

)∥∥∥∥∥
Y

�

∥∥∥∥∥ t−
s
n ωX(f, s

1
n )k+1

φY (t)

∥∥∥∥∥
Y

= ‖f‖B̊s
X,Y (Ω) .

6If s
n

< αY − βY + β
X

, then∥∥∥∥t−s/n φX(t)

φY (t)
f∗0 (t)

∥∥∥∥
Y

'
∥∥∥∥t−s/n φX(t)

φY (t)
f∗∗(t)

∥∥∥∥
Y

thus, in this case Y s
n

(X) is a r.i. space.
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It remains to prove (6.3). Let α = s−k
n . Since P is a positive operator we may

assume without loss that h ≥ 0. Now

t1−α

φY (t)
Ph(t) =

∫ 1

0

h(st)(st)
φY (st)

1−α

sα−1 φY (st)
φY (t)

ds ≤
∫ 1

0

h(st)(st)
φY (st)

1−α

sα−1MY (s)ds.

Thus ∥∥∥∥ t1−α

φY (t)
Ph(t)

∥∥∥∥
Y

≤
∫ 1

0

sα−1dY (
1
s
)MY (s)ds

∥∥∥∥ t1−α

φY (t)
h(t)

∥∥∥∥
Y

,

and by the definitions of indices we have∫ 1

0

sα−1dY (
1
s
)MY (s)ds < ∞⇔ αY < β

Y
+ α.

�

Corollary 3. Let Y = Lq, and let X be a r.i. space such that s−1
n < β

X
. Then

for all f ∈ C∞
0 (Rn),∫ ∞

0

(
t−

s
n φX(t)(f∗∗(t)− f∗(t))

)q dt

t
≤ c

∫ ∞

0

(
t−sωX(f, t)[s]+1

)q dt

t
.
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