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ABSTRACT 

 

In understanding how visual signals function, quantifying the components of those 

patterns is vital. With the ever-increasing power and availability of digital 

photography, many studies are utilising this technique to study the content of animal 

colour signals. Digital photography has many advantages over other techniques, such 

as spectrometry, for measuring chromatic information, particularly in terms of the 

speed of data acquisition and its relatively cheap cost. Not only do digital photographs 

provide a method of quantifying the chromatic and achromatic content of spatially 

complex markings, but they can also be incorporated into powerful models of animal 

vision. Unfortunately, many studies utilising digital photography appear to be 

unaware of several crucial issues involved in the acquisition of images, notably the 

non-linearity of many cameras’ responses to light intensity, and biases in a camera’s 

processing of the images towards particular wavebands. In this paper, we set out 

step-by-step guidelines for the use of digital photography to obtain accurate data, 

either independent of any particular visual system (such as reflection values), or for 

particular models of non-human visual processing (such as that of a passerine bird). 

These guidelines include how to: linearise the camera’s response to changes in light 

intensity; equalise the different colour channels to obtain reflectance information or 

how to produce a mapping from camera colour space to that of another colour space 

(such as photon catches for the cone types of a specific animal species). 

 

 

Key Words: animal coloration - camera calibration - colour - colour measurement – 

digital cameras - imaging - photography - radiance - reflection - signals.
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Introduction 

 

Investigations into the adaptive functions of animal coloration are widespread in 

behavioural and evolutionary biology. Probably because humans are ‘visual animals’ 

themselves, studies of colour dominate functional and evolutionary investigations of 

camouflage, aposematism, mimicry, and both sexual and social signalling. However, 

with advances in our knowledge of how colour vision functions and varies across 

species, it becomes increasingly important to find means of quantifying the spatial and 

chromatic properties of visual signals as they are perceived by other animals or, at the 

very least, in a manner independent of human perception. This is non-trivial because 

colour is not a physical property, but rather a function of the nervous system of the 

animal perceiving the object (Newton, 1718: ‘For the rays, to speak properly, are not 

coloured’; Endler, 1990; Bennett, Cuthill & Norris, 1994). One way to produce an 

objective measure of the properties of a colour signal is to measure surface reflectance 

using spectrophotometry, which provides precise information on the intensity 

distribution of wavelengths reflected (e.g. Endler, 1990; Zuk & Decruyenaere, 1994; 

Cuthill et al., 1999; Gerald et al., 2001; Endler & Mielke, 2005). Reflectance data can 

also be combined with information on the illuminant and the photoreceptor 

sensitivities of the receiver (and, if available, neural processing) to model the colours 

perceived by non-human animals (e.g. Kelber, Vorobyev & Osorio, 2003; Endler & 

Meilke, 2005). However, conventional spectrometers provide only point samples, so 

to characterise adequately the colour of a heterogeneous object requires multiple 

samples across an appropriately designed sampling array, such as multiple transects or 

pre-specified regions (e.g. Cuthill et al., 1999; Endler & Mielke, 2005). This not only 

has a cost in terms of sampling time, but the information about spatial relationships 

between colours then needs to be reconstructed from the geometry of the sampling 
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array (e.g. Endler, 1984) and the spatial resolution is generally crude. Spectrometry 

also usually requires a static subject, either because of the need to sample an array or 

because the measuring probe often needs to be close to or touching the colour patch, a 

particular problem in the field or with delicate museum specimens. Focussing optics 

can obviate the need for contact with the animal or plant and offer a degree of ‘remote 

sensing’ (e.g. Marshall et al., 2003; Sumner, Arrese & Partridge, 2005), but this 

approach is rare. 

 An alternative to spectrometry is photography, which has a long history of use 

in studies of animal coloration (A. Thayer, 1896; G. Thayer, 1909; Cott, 1940; 

Tinbergen, 1974; Pietrewicz & Kamil, 1979) but is becoming increasingly used 

because of the flexibility and apparent precision that digital imaging provides. Colour 

change in the common surgeonfish (Goda & Fujii, 1998), markings in a population of 

Mediterranean monk seals (Samaranch & Gonzalez, 2000), egg crypsis in blackbirds 

(Westmoreland & Kiltie, 1996), the role of ultraviolet (UV) reflective markings and 

sexual selection in guppies (Kodric-Brown & Johnson, 2002), and the functions of 

primate colour patterns (Gerald et al., 2001), are a few recent examples. Digital 

photography bears many advantages over spectrometry, particularly in the ability to 

utilise powerful and complex image processing algorithms to analyse entire spatial 

patterns, without the need to reconstruct topography from point samples. More 

obviously, photographing specimens is relatively quick, allowing rapid collection of 

large quantities of data, from unrestrained targets and with minimal equipment. 

Imaging programs can be used to obtain various forms of data, including colour patch 

size and distribution measures, diverse ‘brightness’ and colour metrics, or broadband 

reflection values (such as in the long-, medium-, and short wavebands). Video 

imaging can provide temporal information too. Digital technology also has the 

potential for manipulating stimuli for use in experiments, the most impressive 
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examples being in animations within video playback experiments (e.g. Rosenthal & 

Evans, 1998; Künzler & Bakker, 1998), although there are problems with these 

methods that need to be understood (D’Eath, 1998; Fleishman et al., 1998; Cuthill et 

al., 2000; Fleishman & Endler, 2000). 

 Digital photography is increasingly incorporated into many studies of animal 

coloration due to its perceived suitability for objectively quantifying colour and colour 

patterns. However, many studies appear to be unaware of the complex image 

processing algorithms incorporated into many digital cameras, and make a series of 

assumptions about the data acquired that are rarely met. The images recorded by a 

camera are not only dependent upon the characteristics of the object photographed, 

the ambient light, and its geometry, but also upon the characteristics of the camera 

(Barnard & Funt, 2002; Westland & Ripamonti, 2004). Therefore, the properties of 

colour images are device-dependent, and images of the same natural scene will vary 

when taken with different cameras, since the spectral sensitivity of the sensors and 

firmware/software in different cameras varies (Hong, Lou & Rhodes, 2001; Yin & 

Cooperstock, 2004). Finally, the images are frequently modified in inappropriate ways 

(e.g. through ‘lossy’ image compression; for a glossary of some technical terms see 

Appendix 1) and ‘off-the-shelf’ colour metrics applied without consideration of the 

assumptions behind them. At best, most current applications of digital photography to 

studies of animal coloration fail to utilise the full potential of the technology; more 

commonly, they yield data that are qualitative at best and uninterpretable at worst. 

This paper aims to provide an accessible guide to addressing these problems. We 

assume the reader has two possible goals: to reconstruct the reflectance spectrum of 

the object (maybe just in broad terms such as the relative amounts of long-, medium- 

and short-wave light; although we will also consider something more ambitious), or to 

model the object’s colour as perceived by a non-human animal. As we are considering 
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applications of the accessible and affordable technology of conventional digital colour 

cameras, we are primarily focussed on the human-visible spectrum of ca. 400 – 700 

nm, but we also consider ultraviolet imaging and combining this information with that 

from a standard camera. Our examples come from an investigation of colour patterns 

on lepidopteran wings, and how these might be viewed by avian predators. This is a 

challenging problem (birds are potentially tetrachomatic and have an ultraviolet-

sensitive cone type; reviewed by Cuthill et al., 2000), yet it is both tractable and 

informative, because much of the avian colour world overlaps with ours and birds are 

the focal organisms in many studies of animal coloration (whether their sexual 

signals, or the defensive coloration of their prey). 

 

Conceptual background 

 

The light coming from an object, its radiance spectrum, is a continuous distribution of 

different intensities at different wavelengths. No animal eye, or camera, quantifies the 

entire radiance spectrum at a given point, but instead estimates the intensity of light in 

a (very) few broad wavebands. Humans and many other primates use just three 

samples, corresponding to the longwave (LW or ‘red’), mediumwave (MW or 

‘green’) and shortwave (SW or ‘blue’) cone types in the retina (Figure 1A); bees and 

most other insects also use three samples, but in the ultraviolet (UV), SW and MW 

wavebands; birds and some reptiles, fish and butterflies use four samples (UV, SW, 

MW and LW; Figure 1B). A corollary of colour vision based on such few, broadband, 

spectral samples is that the colour appearance of an object can be matched, perfectly, 

by an appropriate mixture of narrow waveband lights (‘primary colours’) that 

differentially stimulate the photoreceptors. Three primary colours (e.g. red, green and 

blue in video display monitors) are required for colour matching by normally-sighted 
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humans. All that is required is that the mix of primary colours stimulates the 

photoreceptors in the same way as the radiance spectrum of the real object (without 

actually having to mimic the radiance spectrum per se). The additive mixing of three 

primaries is the basis of all video and cinematographic colour reproduction, and 

colour specification in terms of the amounts of these primaries, the so-called 

tristimulus values, lies at the base of most human colour science (Wyscecki & Stiles, 

1982; Mollon, 1999; Westland & Ripamonti, 2004). That said, RGB values from a 

camera are not standardised tristimulus values and so, although they are easily 

obtained with packages such as Paintshop Pro (Jasc Software, Minneapolis, USA) or 

Photoshop (Adobe Systems Inc., San Jose, USA), simply knowing the RGB values for 

a point in a photograph is not sufficient to specify the colour of the corresponding 

point in the real object.  

 An over-riding principle to consider when using digital cameras for scientific 

purposes is that most digital cameras are designed to produce images that look good, 

not to record reality. So, just as Kodachrome and Fujichrome produce differing colour 

tones in ‘analogue’ film-based cameras, each film type having its own advocates for 

preferred colour rendition, the same is true of digital cameras. The values of R, G and 

B that are output from a camera need not be linearly related to the light intensity in 

these three wavebands. In technical and high-specification cameras they are, and the 

sensors themselves (the CCDs or Charge Coupled Devices) generally have linear 

outputs. In contrast most cameras designed for non-analytical use have non-linear 

responses (Cardei, Funt & Barnard, 1999; Lauziére, Gingras & Ferrie, 1999; Cardei & 

Funt, 2000; Barnard & Funt, 2002; Martinez-Verdú, Pujol & Capilla, 2002; Westland 

& Ripamonti, 2004). This is a function of post-CCD processing to enhance image 

quality, given the likely cross-section of printers, monitors and televisions that will be 

used to view the photographs (these devices themselves having diverse, designed-in, 



 8 

non-linearities; Westland & Ripamonti, 2004). Most digital images will display well 

on most monitors as the two non-linearities approximately cancel each other out. The 

first step in analysing digital images is therefore to linearise the RGB values. 

 Even with RGB values that relate linearly to R, G and B light intensity, there is 

no single standard for what constitutes ‘red’, ‘green’ and ‘blue’ wavebands; nor need 

there be, as different triplets of primary colours can (and, historically, have been) used 

in experiments to determine which ratios of primaries match a given human-

perceptible colour (Mollon, 1999; Westland & Ripamonti, 2004). The spectral 

sensitivities of the sensors in a digital camera need not, and usually do not, match 

those of human visual pigments, as was the case with the Nikon 5700 Coolpix camera 

primarily used in this study (Figure 1C). The RGB values in images from a given 

camera are specific to that camera. Indeed, the values are not necessarily even specific 

to a particular make and model, but rather specific to an individual camera, because of 

inherent variability in CCDs at the manufacturing stage (Figure 2). One can, however, 

map the camera RGB values to a camera-independent, human colour space (and, 

under some circumstances, that of another animal) given the appropriate mapping 

information. Therefore the mapping, through mathematical transformation, of the 

camera-specific RGB values to camera-independent RGB (or other tristimulus 

representation) is the second crucial step in obtaining useful data from a digital image. 

Furthermore, and often as part of the transformation step, it will usually be desirable 

to ‘remove’ variation due to the illuminating light. The camera measures R, G and B 

radiance, which is the product of the reflectance of the object and the three-

dimensional radiance spectrum illuminating the object (often approximated by the 

irradiance spectrum of the illuminant). The situation is rather more complex 

underwater, where the medium itself alters the radiance spectrum (Lythgoe, 1979) by 

wavelength-dependent attenuation. However, an object does not change colour 
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(much) when viewed under a blue sky, grey cloud, or in forest shade, even though the 

radiance spectra coming from it changes considerably. This phenomenon of ‘colour 

constancy’, whereby the visual system is largely able to discount changes in the 

illuminant and recover an object’s reflectance spectrum, is still not fully understood 

(Hurlbert, 1999), but equivalent steps must be taken with digital images if it is object 

properties that are of interest rather than the radiance itself. Many digital cameras 

allow approximations of colour constancy (white-point balancing) at the point of 

image acquisition, for instance by selecting illuminant conditions such as skylight, 

cloudy and tungsten. These settings are, however, an approximation, and in practice 

their effects need to be eliminated, as the effect of the illuminant itself needs to be 

‘removed’. Removing the effect of the light source characteristics can thus be coupled 

to eliminating any biases inherent in the camera’s image processing (such as an over-

representation of some wavelengths/bands to modify the appearance of the 

photograph; Cardei et al., 1999; Lauziére et al., 1999; Finlayson & Tian, 1999; 

Martinez-Verdú et al., 2002). This is essential if accurate data representing the 

inherent spectral reflection characteristics of an animal’s colour are to be obtained. 

 Many studies have used cameras to investigate animal colour patterns, but most 

fail to test their digital cameras to determine if all of the above assumptions are met 

and/or if the analysis yields reliable data (e.g. Frischknecht, 1993; Villafuerte & 

Negro, 1998; Wedekind et al., 1998; Gerald et al., 2001; Kodric-Brown & Johnson, 

2002; Bortolotti, Fernie & Smits, 2003; Cooper & Hosey, 2003), but see Losey (2003) 

for a rare exception.  

 We approach these problems in the sequence that a scientist would have to 

address them if interested in applying digital photography to a research question about 

biological coloration. This paper focuses on obtaining data corresponding to inherent 

animal colouration, such as reflection data, and of obtaining data corresponding to a 
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given receiver’s visual system. Either of these data types may be more suitable 

depending upon the research question. Reflection data does not assume specific 

environmental conditions or a particular visual system viewing the object, and so data 

can be compared across different specimens easily, even when measured in different 

places. The lack of assumptions about the receiver’s visual system, such as cone 

types, distributions, abundances, sensitivities, opponency mechanisms, and so on, 

means the data ‘stand alone’ and can be analysed as an inherent property of the animal 

or an object propagating the signal. This is useful if a researcher simply wishes to 

know if, for example, individual ‘a’ has more longwave reflection than individual ‘b’. 

Removing illumination information coincides with evidence that many animals 

possess colour constancy. Conversely, simply taking reflection into account could be 

misleading if what one really wants to know is how a signal is viewed by a receiver. 

For example if an individual possesses a marking high in reflection of a specific 

waveband, but the environment lacks light in that part of the spectrum or the receiver 

is insensitive to that waveband, the region of high spectral reflection will be 

unimportant as a signal. Therefore, it is often necessary to include the ambient light 

characteristics and, if known, information concerning the receiver’s visual system. 

However, calculated differences in quantal catches of various cone types (for 

example) between the different conditions do not necessarily lead to differences in 

perception of the signal, if colour constancy mechanisms exist. Furthermore, if 

reflection information is obtained, this may be converted into a visual system specific 

measure, either by mapping techniques, as discussed in this paper, or by calculations 

with illuminant spectra and cone sensitivities. Therefore, whilst this paper deals with 

both types of measurements, we focus more on the task of obtaining information 

about inherent properties of animal colouration. 
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 We assume that images are stored to a precision of 8 bits in each colour channel, 

such that intensity is on a scale of 0 to 255; such ‘true colour’ images (28 cubed, or 

>16 million colours) are the current norm. Whilst some studies have used 

conventional (non-digital) cameras in studying animal coloration, we would advise 

against doing so. Whilst conventional film can be linearised, the corrections required 

from one batch of film to the next are likely to differ, even from the same 

manufacturer. Film processing techniques such as scanning to digitise the images, are 

also likely to introduce considerable spatial and chromatic artefacts, which need to be 

removed/prevented before analysis. 

 

Choosing a camera 

 

We have mentioned the non-linear response of many digital cameras and whilst we 

show, below, how linearisation can be accomplished, non-linearity is better avoided. 

Other than this, essential features to look for are (see also Table 1):  

(a) The ability to disable automatic ‘white-point balancing’. This is a software feature 

built into most cameras to achieve a more natural colour balance under different 

lighting conditions. The brightest pixel in any image is set to 256 for R, G and B; that 

is, assumed to be white. Obviously, for technical applications where the object to be 

photographed has no white regions, this would produce data in which the RGB values 

are inappropriately weighted.  

(b) A high resolution. The resolution of a digital image is generally limited by the 

sensing array, rather than the modulation transfer function of the lens. Essentially, the 

number of pixels the array contains determines resolution, with higher resolution 

cameras able to resolve smaller colour patches allowing more detail to be measured, 

or the same amount of relative detail measured from a further distance from the 
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subject. Also important is the Nyquist frequency (half that of the highest waveform), 

which is the highest spatial frequency where the camera can still accurately record 

image spatial detail; spatial patterning above this frequency results in aliasing, which 

could be a problem for patterns with a very high level of spatial detail (Efford, 2000). 

Each pixel on a digital camera sensor contains a light sensitive photodiode, measuring 

the intensity of light over a broadband spectrum. A colour filter array (CFA) is 

positioned on top of the sensor to filter the red, green and blue components of light, 

leaving each pixel sensitive to one waveband of light alone. Commonly there is a 

mosaic of pixels, with twice as many green sensitive ones as red or blue. The two 

missing colour values for each individual pixel are estimated based on the values of 

neighbouring pixels, via so-called demosaicing algorithms, including Bayer 

interpolation. It is not just the number of pixels a camera produces (its geometrical 

accuracy) that matters, but also the quality of each pixel. Some cameras are becoming 

available which have ‘foveon sensors’, with three photodetectors per pixel, and can 

thus create increased colour accuracy by avoiding artefacts resulting from 

interpolation algorithms. However, due to the power of the latest interpolation 

software, colour artefacts are usually minor, especially as the number of pixels 

increases, and foveon sensors may have relatively low light sensitivity. Higher quality 

sensors have a greater dynamic range, which can be passed on to the images, and 

some cameras are now being produced with two photodiodes per pixel, one of which 

is highly sensitive to low light levels, the other of which is less sensitive and is used to 

estimate higher light levels without becoming saturated. A distinction should also be 

made between the number of overall pixels and the number of effective pixels. A 

conventional 5 megapixel camera actually may output 2560x1920 pixel images 

(4,915,200 pixels), since some of the pixels in the camera are used for various 

measurements in image processing (dark current measurements for instance).  
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(c) The ability to store images as uncompressed TIFF (Tagged Image File Format) or 

RAW files. Some mid-range cameras allow storage as RAW files, others do not but 

often allow images to be saved as Tiff files. This is something to determine before 

purchasing a camera. Other file types, JPEG’s (Joint Photographic Experts Group) in 

particular, are unsuitable since information is lost in the compression process. JPEG 

compression is of the ‘lossy’ type, which changes the data coming from the CCD 

array, and where the lost information cannot be recovered. This is often undetectable 

to the human eye, but introduces both spatial and chromatic artefacts in the underlying 

image data, particularly if the level of compression is high (see Figures. 3 & 4 for two 

simple illustrations). JPEGs compress both the colour and spatial information, with 

the spatial detail sorted into fine and coarse detail. Fine detail is discarded first, since 

this is what we are less sensitive to. Gerald et al. (2001), for example, used digital 

images to investigate the scrota of adult vervet monkeys Cercopithecus aethiops 

sabaeus. They saved the images as JPEG files, but since the level of compression of 

the files is not stated, it is impossible to assess the degree of error introduced. Camera 

manuals may state the level of compression used on different settings, and image 

software should also state the level of compression used when saving JPEG files. 

However, even if the level of compression is known, the introduction of artefacts will 

be unpredictable and so JPEG files should be avoided. Lossy compression is different 

from some other types of compression, such as those involved with ‘zipping’ file 

types, where all the compressed information can be recovered. Uncompressed TIFF 

files are loss-less, but they can be compressed in either lossy or loss-less ways, and, 

like JPEGs, TIFFs can be modified before being saved other ways if the necessary 

camera functions are not turned off (such as white-point balancing). For most 

cameras, a given pixel on a CCD array has only one sensor type (R, G or B), so 

interpolation is required to estimate the two unknown colour values of a given pixel. 
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Both JPEGs and TIFF files undergo interpolation at the stage of image capture by the 

camera’s internal firmware, which cannot be turned off, and the method is usually 

opaque to the user. Some cameras have the capacity to store RAW images. RAW files 

are those that are the direct product of the CCD array, and, unlike TIFFs or JPEGs 

which are nearly always 8-bit, RAW files are usually 12- or 16-bit. This means they 

can display a wider variety of colours and are generally linear since most CCDs are 

linear, and undergo none of the processing potentially affecting other file types. The 

RAW files from the camera in our study occupy approximately half of the memory of 

an uncompressed TIFF file because even though the TIFF file only retains 8-bits of 

information, it occupies twice the storage space because it has three 8-bit colour 

channels, as opposed to one 12-bit RAW channel per CCD pixel. However, before 

being useable as an image, RAW files must also go through interpolation steps in the 

computer software into which the files are read. Thumbnails of unprocessed RAW 

files in RGB format can be read into some software, but these are relatively useless, 

being only 160x120 pixels in resolution, compared to 2560x1920 for the processed 

images. The conversion to another file type can proceed with no modification, just as 

would be the case if taking photos directly as uncompressed TIFF images. One 

problem with RAW files is that they can differ between manufacturers and even 

between camera models, and so special software and/or ‘plug-ins’ may be needed, or 

the software provided by the manufacturer must be used, to convert the images to 

other file formats. Unfortunately, the interpolation process is rarely revealed by the 

manufacturer, and may introduce non-linearities into the file. It is possible to write 

custom programmes to read RAW files into software programmes and this has the 

advantage that the user can then either use the RAW data directly or decide exactly 

what method should be used to interpolate the RAW file into a Tiff file. Once our 

RAW files had been processed by software supplied by the manufacturer they had 
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almost identical properties to the uncompressed TIFF files (the introduction of non-

linearities could be due to the software processing or a non-linear CCD). Some 

imaging software should allow the RAW files to be processed into TIFFs without 

introducing non-linearities. RAW files can be converted into 16-bit TIFF files, which 

show higher accuracy than 8-bit TIFFs and may highlight extra detail. These 16-bit 

file types occupy approximately 30 Mb, so considerable storage space is needed to 

keep a large number of these files. However, relatively more unprocessed RAW files 

can be stored than TIFFs on a memory card.  

(d) The capacity for manual exposure control or, at the very least, aperture priority 

exposure. The calibration curve may vary with different aperture settings and focus 

distances so, to avoid the need for a large number of separate calibration estimates, it 

is more convenient to fix the aperture at which photographs are taken and work at 

constrained distances. If the aperture value is increased, more light from the edge of 

the lens is allowed through, and these rays usually do not converge on the same point 

as those rays coming through the centre of the lens (spherical aberration). This is 

especially true for colours near the edges of the human visible spectrum. By keeping 

the aperture constant and as small as possible (large F-numbers) this problem is 

unlikely to be significant.  

(e) The ability to take a remote shutter release cable (manual or electronic) to 

facilitate photography at long integration times (slow shutter speeds) when light levels 

are low.  

(f) Known metering characteristics. Many cameras have multiple options for light 

metering, such that the exposure is set dependent upon average intensity across the 

entire field imaged, only the intensity at the central spot, or one or more weighted 

intermediates. Knowing which area of the field in view determines exposure 

facilitates image composition.  
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(g) Optical zoom can be useful, particularly if the level of enlargement can be fixed 

manually, so it can be reproduced exactly, if needed, each time the camera is turned 

on. Digital zoom is of no value because it is merely equivalent to post-image-capture 

enlargement and so does not change the data content of the area of interest.  

(h) Good quality optics. Hong et al. (2001) noted that in some camera lenses, light is 

not uniformly transmitted across its area, with the centre of the lens transmitting more 

light. This would result in the pixels in the centre of the image being over-represented 

in terms of intensity. For example, Losey (2003) found that the edges of images were 

slightly darker. Another problem with lenses is chromatic aberration, in which light of 

different wavelengths is brought to a focus in a different focal plane, thus blurring 

some colours in the image. This can be caused by the camera lens not focussing 

different wavelengths of light onto the same plane (longitudinal chromatic aberration), 

or by the lens magnifying different wavelengths differently (lateral chromatic 

aberration). Párraga, Troscianko & Tolhurst (2002) tested camera Nikon lenses of the 

type in our camera, by taking images in different parts of the spectrum through 

narrowband spectral filters and verified that the optimal focus settings did not vary 

significantly, meaning that the lenses did not suffer from this defect. Narrow bandpass 

filters selectively filter light of specific narrow wavebands, for example from 400 to 

410 nm. Using a set of these filters enables images to be obtained where the only light 

being captured is in a specific waveband. Other lenses may not be as good, especially 

if they have a bigger optical zoom range. In some situations, a good macro lens is also 

highly desirable, since this allows close up images of complex patterns to be obtained. 

Without a macro lens it may not be possible to move the camera close enough to 

resolve complex patterns. Some cameras even come with a ‘super’ macro lens, such 

as the Fujifilm FinePix S7000, which allows photographs to be taken up to a 

centimetre from the object. 
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(i) The capacity to take memory cards of high capacity. TIFF files are very large (ca. 

15 Mb for an image 2560 by 1920 pixels), so that a 512Mb card that can store over 

200 medium-compression JPEG’s will only store 34 TIFF’s.  

 

Image colour values 

The colour values to be calculated and used in any analysis are stored as RGB values 

in Tiff files automatically when a camera saves an image or when a file is converted 

into a Tiff image from its RAW file format, and if 8-bit, this is on a scale of 0-255. 

The camera or computer conversion software may have the option to save the image 

as either 8-bit or 16-bit, but 8-bit is currently more standard. The steps that follow to 

calculate values corresponding to, for example reflection or photon catches, are spelt 

out below. However, one crucial point to emphasise is that many image software 

programmes offer the option to convert values into other colour spaces, such as HSB 

(three images corresponding to hue, saturation and brightness). Conversions such as 

HSB should be avoided and we strongly advise against this type of conversion. HSB 

is a subjective measurement, generally for human vision, and even in terms of human 

vision, it is unlikely to be accurate – a more widely used and well tested colour space 

for humans is CIE Lab (Commission Internationale de l'Éclairage), which may in 

some cases be appropriate. There are numerous pitfalls with using methodological 

techniques based on human vision to describe animal colours (Bennett et al., 1994; 

Stevens & Cuthill, 2005). 

 

Software 

One of the biggest advantages of using images to analyse coloration is the existence 

of a huge number of flexible and powerful software programmes, coupled with the 

option to write custom programmes in a variety of programming languages. Some of 
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the programmes available to deal with image processing are standard and quite 

affordable, such as Paintshop Pro (Jasc Software, Minneapolis, USA) or Photoshop 

(Adobe Systems Inc., San Jose, USA), which can be used for a range of simple tasks. 

However, there are a range of other options available, including, the popular freeware 

Java-based (Sun Microsystems, Inc. Santa Clara, USA; Efford, 2000) imaging 

programme ‘Image J’ (Rasband, 1997-2006; Abrámoff, Magalhäes & Ram, 2004), 

with its huge variety of available ‘plugins’, written by various people for a range of 

tasks. This also permits custom programmes written in the language Java to 

accompany it. For instance, a plugin we used, called ‘radial profile,’ is ideal for 

analysing lepidopteran eyespots, and other circular features. This works by calculating 

the normalised intensities of concentric circles, starting at a central point, moving out 

along the radius. Figure 5 gives an example of this plug-in, used to analyse an eyespot 

of the ringlet butterfly Aphantopus hyperantus.  

 The programme MATLAB (The Mathworks Inc. Massachusetts, USA) is also 

an extremely useful package for writing calibrations and designing sophisticated 

computational models of vision. This is a relatively easy programming language to 

learn, is excellent for writing custom and powerful programmes, and due to its matrix 

manipulation capabilities is excellent for dealing with images (images are simply 

matrices of numbers). MATLAB can also be bought with a range of ‘toolboxes’ 

which have numerous functions already written for various tasks, including, image 

processing, statistics, wavelet transformations and various other disciplines. 

MATLAB has available an Image Processing Toolbox with a range of useful 

functions (Hanselman & Littlefield, 2001; Hunt et al., 2003; Gonzalez, Woods & 

Eddins, 2004; Westland & Ripamonti, 2004). 

 

How frequently should calibrations be undertaken? 
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The frequency with which calibrations should be undertaken depends upon the 

specific calibration required. For instance, determining the spectral sensitivity of a 

camera’s sensors need only be done once as this should not change with time. 

Additionally, the calculation of the camera’s response to changing light levels and the 

required linearisation need only be done once as this too does not change with time. 

However, if calculating reflection the calibration needs to be done for each 

session/light setup as the light setup changes the ratio between the LW, MW and SW 

sensors. 

 

Calibrating a digital camera 

 

There are several steps that should be followed when wishing to obtain values of 

either reflection, or data corresponding to an animal’s visual system. To obtain values 

of reflection: 

1.  Obtain photographs of a set of reflectance standards used to fit a calibration 

curve. 

2.  Determine a calibration curve for the camera’s response to changes in light 

intensity in terms of RGB values. 

3.  Derive a linearisation equation, if needed, to linearise the response of the 

camera to changes in light intensity, based on the parameters determined from 

step 2. 

4.  Determine the ratio between the camera’s response in the R, G and B channels, 

with respect to the reflectance standards, and equalise the response of the 

different colour channels to remove the effects of the illuminating light and 

any biases inherent in the camera’s processing. 
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If data corresponding to an animal’s visual system is required (such as relative photon 

catches): 

1.  Obtain photographs of reflectance standards through a set of narrow band-pass 

filters, whilst also measuring the radiance with a spectrophotometer. 

2.  Determine the linearity of the camera’s response to changing light levels and if 

necessary derive a linearisation. Also, using radiance data and the photographs 

through the band-pass filters, determine the spectral sensitivity of the camera’s 

different sensor types. 

3.  Using data on the spectral sensitivity of the camera’s sensors, and the 

sensitivity of the animal’s sensors to be modelled, produce a mapping based 

on the response to many different radiance spectra between the two different 

colour spaces. 

These different steps are discussed in detail below. 

 

Linearisation 

 

If one photographs a set of grey reflectance standards and then plots the measured 

RGB values against the nominal reflectance value, the naïve expectation would be of 

a linear relationship (Lauziére et al., 1999). One might also expect the values obtained 

for each of the three colour channels to be the same for each standard, as greys fall on 

the achromatic locus of R=G=B (see e.g. Kelber et al., 2003). However, as mentioned 

previously, many cameras do not fulfil such expectations, and they did not for the 

Nikon 5700 Coolpix camera that we used in our study (Figure 6; see Appendix 2). A 

different non-linear relationship between grey value and nominal reflection for each 

colour channel requires that the linearising transformation must be estimated 

separately for each channel. Also, it means that an image of a single grey reflection 
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standard is insufficient for camera calibration; instead a full calibration experiment 

must be performed. 

 We used a modification of the linearization protocols developed by Párraga 

(2003) and Westland and Ripamonti (2004). The first step is to photograph a range of 

standard greyscales of known reflectance value. Westland and Ripamonti (2004) used 

the greyscale of the Macbeth ColorChecker chart (Macbeth, Munsell Color Lab, New 

Windsor, N.Y. USA). In our study, as we required reflection standards suitable for 

UV photography (see later), we used a set of SpectralonTM diffuse reflectance 

standards (Labsphere Inc., North Sutton, NH, USA). These standards, made of a 

Teflon micro-foam, reflect light of wavelengths between 300 nm and 800 nm (and 

beyond) approximately equally, and are one of the most highly Lambertian substances 

available over this spectral range. The standards had nominal percentage reflection 

values of 2%, 5%, 10%, 20%, 40%, 50% and 75%. If the object of the study, as in 

Westland and Ripamonti (2004; Chapter 10) and here, is to recover reflectance data 

from the images, then the nature of the illuminant, as long as it is stable over time 

(e.g. Angelopoulou, 2000) and of adequate intensity in all wavebands, is irrelevant. 

We used a 150 Watt Xenon arc lamp (Light Support, Berkshire, UK), allowed to 

warm up and stabilise for 1 hr before the calibration exercise, and then tested for 

stability before and after the calibration. In Párraga (2003) the goal was to recover 

spectral radiance, so at the same time as photographing the standards, the radiance of 

each greyscale patch was measured using a spot-imaging telespectroradiometer 

(TopCon Model SR1, Calibrated by the National Physical Laboratory, UK). After 

that, each sensor’s grey level output was plotted against a measure of the total spectral 

radiance that stimulated it, at various shutter speeds. The next step is to determine the 

function relating the intensity values (0 to 255) for each of the RGB sensors to true 

reflection, or radiance, as appropriate, as measured spectrometrically. Many studies 
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describe power functions of the same family as those relating intensity to voltage in 

CRT (Cathode Ray Tube) monitors; so-called gamma functions of the type: Output = 

constant * (input ^ gamma), or refer to the process of ‘gamma correction’ in 

linearising data. The term gamma function means different things in film 

photography, digital photography and algebraic mathematics, and so is a potentially 

confusing term that is best avoided. Since the response of the camera’s sensors is 

likely to be camera specific, we recommend determining the curve that best fits the 

data. Whilst many curves will no doubt fit the data very closely (for example, a 

Modified Hoerl and Weibull model, amongst others, fitted our reflection data very 

well), it is important to choose a function that is the same for each of the camera’s 

three sensors; this makes producing the calibrations much easier since the calibration 

equation will be of the same form for each channel, with only the parameters varying. 

If there are several curves that all fit the data well, then choosing the simplest 

equation and with the lowest number of parameters makes calibration much easier. 

We found that the function below fitted our camera well; 

 

QS = a*bP          (1) 

 

where Qs is the photon catch of a given sensor S (R,G or B), P the value of the pixel 

of sensor S, and a and b are constants. Qs is the product of the measured radiance 

spectrum and the sensor’s spectral sensitivity, but it is rare for manufacturers to 

publish such data. Westland and Ripamonti (2004) mention that luminance is 

sometimes used as an approximation, on the assumption that for a grey standard the 

radiance in all three channels should be the same. But this assumes a spectrally flat 

light source, which no light source ever really is. Therefore the spectral sensitivity 

needs to be measured directly, by measuring the camera RGB values when imaging 
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greyscales illuminated through narrow band-pass filters. In this way one can construct 

spectral sensitivity curves analogous to the spectral sensitivity curves of animal 

photoreceptors (Figure 1). Párraga (2003) contains technical details of how to achieve 

this. 

 In Párraga’s (2003) linearization exercise, the value of b in the equation above 

was found to be similar for all conditions tested (sunny, cloudy and incandescent 

artificial light) and all sensors. Thus, the value of a defined each curve. As the 

linearised values for R, G and B represented radiance in the wavebands specific to 

each sensor, the photograph’s exposure was also taken into account in the calibration 

process (a longer exposure time representing lower radiance). Therefore, the 

following three equations were derived to linearise and scale each RGB value to 

radiance measures, where QS is the radiance measured by sensor S, b and the ai are 

the coefficients estimated by ordinary least-squares regression of log-transformed 

values, c is a value to account for inherent dark current (see below) in the camera, and 

t is the integration time the photograph was taken on [1/shutter speed]): 

 

QR = a1(bR – c1)/ t         (2) 

 

QG = a2(bG – c2)/ t         (3) 

 

QB = a3(bB – c3)/ t         (4) 

 

  

If the object of the research is to obtain reflection rather than radiance 

measures, then t can be ignored and functions such as equation 1 could be used, 

provided that t is constant and measurements of known reflection standards are also 



 24 

made. Because the reflection values of greyscales are, by definition, equal in all 

wavebands, sensor spectral sensitivity does not in principle need to be known for 

linearisation in relation to reflection, although in practice, one would want to know 

the spectral sensitivity curves for the camera’s sensors in order for the data to be 

readily interpreted (in terms of the sensitivity corresponding to each sensor). In the 

case of either radiance or reflection calibration, one should check that it is valid to 

force the calibration curve through the origin. All digital imaging sensors have 

associated with them an inherent ‘dark current’ (due to thermal noise in the sensors) 

(Efford, 2000; Stokman, Gevers & Koenderink, 2000; Barnard & Funt, 2002; 

Martinez-Verdú et al., 2002), so that a set of images with the lens cap on may not 

produce measurements of zero. As with spectrometry, the dark current can be 

estimated by taking images at the same exposure settings as calibration photos, and 

using the pixel values as an offset for the curve. One should also check whether 

increasing the integration time, or temperature changes within the range at which the 

camera will be used for data collection, alters these background dark current values. 

Figure 7 is an example of linearisation performed on the RGB values from 

photographs of reflectance standards (Figure 6). This shows that generally the 

linearization was successful. However, one should note that the values of the 

reflectance standards with low nominal reflection values are not accurate, since these 

standards were partially underexposed (i.e. there are many pixels with values equal or 

close to the dark current values), and for this specific set of standards some standards 

are slightly closer to, or further away from, the light source. This means that the 

calibration line will not be perfectly straight. Since the relatively darker areas (low 

pixel values) of images are often inaccurate in the measurements they yield, these 

values may be non-linear (Barnard & Funt, 2002). However, the measurement error is 

relatively small.  
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RGB equalisation 

 

If the goal is to derive reflection data from the photographs, then greys should, by 

definition, have equal reflection in all three colour channels. So, if RGB in the 

calibration images, the next step is to equalise the three channels with respect to the 

images of the reflection standards, and then scale the values between 0 and 255. This, 

in theory, should be relatively simple: a matter of producing a ratio between the three 

channels and then scaling them, usually with respect to the green channel as a 

reference point, before multiplying the entire image by 2.55 to set the values on a 

scale between 0 and 255. So, for our data: 

 

R' = (RxR)2.55          (5) 

 

G' = (GxG)2.55         (6) 

 

B' = (BxB)2.55          (7) 

 

where xi is the scaling value for each channel, and R, G, and B are the linearised 

image values for each channel respectively. The equalised values were then tested for 

accuracy using a different set of calibration images. Figure 8 shows the result. The 

three channels closely match the required calibration line. Note that there is no need 

for 255 to represent 100% reflection; indeed, in order to obtain maximum resolution 

in colour discrimination within and between images, if all images to be analysed are 

relatively dark then it would be advisable the maximum pixel value within the dataset 

to 255. 
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An important issue is that of saturation. With regards to the above calibration 

results (Figures. 6-8), we maintained an integration time of 1/30 seconds and a lens 

aperture of 8.0. This resulted in images that were slightly under-exposed and guarded 

against the serious problem of saturation. Saturation (also known as ‘clipping;’ 

Lauziére et al., 1999) occurs when the light levels arriving at the sensors reaches an 

upper limit, above which any more photons are not registered. This can be a serious 

problem because it prevents measurements of the true value that the pixels would 

have reached had saturation not occurred; a problem recognised in some studies (e.g. 

Hong et al., 2001). The effects of saturation are easy to find, with saturated pixels in 

the original image yielding values of around 255, with little or no standard deviation. 

For example, images taken under similar circumstances, but with an integration time 

of 1/15 seconds produce results that at nominal reflection values of 75%, the red 

channel ceases to rise in pixel values. This is due to the effects of saturated pixels in 

the original image in the red channel, which causes the calibration to fail, since the 

linearisation becomes ineffective and the equalisation procedure results in the red 

channel grey values dropping away at higher reflection values (Figure 9). These 

problems can be avoided by changing the exposure/integration time (t), or altering the 

intensity of the light source, since these determine the flux of light reaching the 

camera’s sensors (Hong et al., 2001). However, if the exposure is to be changed 

between images it is important to test that the response of the camera is the same at all 

exposure settings, otherwise a separate calibration will need to be performed for every 

change in exposure. Therefore, where possible, it is recommended that the aperture 

value, at least, is kept constant (Hong et al., 2001).  

 It is often the case that the red channel of a digital camera is the first to 

saturate (as was the case with our camera; Figure 9), possibly because the sensors in 

some cameras may be biased to appeal to human perceptions, with increasing red 



 27 

channel values giving the perception of warmth. This may be particularly deleterious 

for studies investigating the content of red signals (e.g. Frischknecht, 1993; Wedekind 

et al., 1998), which are widespread because of the abundance of carotenoid-based 

signals in many taxa (e.g. Grether, 2000; Pryke, Lawes & Andersson, 2001; Bourne, 

Breden & Allen, 2003; Blount, 2004; McGraw & Nogare, 2004; McGraw, Hill & 

Parker, 2005) and theories linking carotenoid signals to immune function (Koutsos et 

al., 2003; McGraw & Ardia, 2003; Navara & Hill, 2003; Grether et al., 2004; 

McGraw & Ardia, 2005). Some cameras are also biased in their representation of 

relatively short wavelengths, to compensate for a lack of these wavelengths in indoor 

lights (Lauziére et al., 1999). 

 

Selecting/controlling light conditions 

The importance of selecting standardised lighting conditions and distances to some 

extent depends upon the calibration required. Lighting conditions should be as stable, 

standardised and consistent as possible for each photo if measurements of reflection 

are desired, especially if photographs of standards are taken only at the beginning and 

end of sessions. However, when photographing natural scenes and using measures of 

photon catch, for example, lighting conditions are likely to vary considerably. This 

may in fact be an important part of the study – to include information about the 

ambient light. Generally, it is best to avoid flashes since the output of these is difficult 

to measure and may be variable, however, a high-end flash with good light diffusers 

may be fine. 

 

Mapping to camera-independent measures 
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Having used the coefficients obtained in the linearisation procedure to linearise the 

RGB values in one’s images, the next step is to transform them to camera-

independent values. This is because the R, G and B data, whether in radiance or 

reflectance units, are specific to the wavebands designated by the camera sensors’ 

spectral sensitivity curves (e.g. as in Figure 1C). This may be sufficient for some 

research purposes; for example, if the sensitivities of the camera’s sensors broadly 

correspond to the bandwidths of interest. However, it will often be desirable, either 

because a specific visual system is being modelled (e.g. human, bird), or simply to 

facilitate comparison of the results across studies, to transform the camera-specific 

RGB values to camera-independent measures. In human studies, these are frequently 

one of the sets of three-coordinate representations devised by the CIE for colour 

specification and/or matching. Different three-variable representations have been 

devised to approximate colour-matching for images illuminating only the M-L-cone-

rich central fovea, or wider areas of the retina; for presentation of images on VDUs or 

printed paper; or representations that incorporate the colour balance arising from a 

specific illuminant, or are illumination independent (Wyszecki & Stiles, 1982; 

Mollon, 1999; Westland & Ripamonti, 2004). The advantage is that all these metrics 

are precisely defined, the formulae downloadable from the CIE website, and the 

values in one coordinate system can be transformed to another. Westland & 

Ripamonti (2004) provide formulae and downloadable MATLAB (The Mathworks 

Inc. Massachusetts, USA) code for such transformations. 

 Another possible camera-independent transformation is to map the linearised 

RGB values to the spectral sensitivities of the photoreceptors of either humans 

(Párraga et al., 2002) or non-human species. In the case of RGB radiance measures 

this corresponds to calculating the photon catches of an animal’s photoreceptors, 

rather than the camera’s sensors, when viewing a particular scene. In the case of RGB 
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reflectance measures, this can be thought of as a mapping to a species-specific 

estimate of reflectance in the wavebands to which the animal’s photoreceptors are 

sensitive. Both types of mapping are particularly relevant to studies involving non-

human animals, where accurate psychophysical estimates of colour-matching, of the 

sort used to calculate human-perceived colour from camera data, are not usually 

available. For such mapping to be viable, it is not necessary that the species’ cone 

spectral sensitivities match those of the camera’s sensors particularly closely (for 

example, this is not true for humans; compare Figure 1A with 1C). However, for the 

transformation to produce reliable data, the species’ overall spectral range has to fall 

within that of the camera, and the species has to have three or less photoreceptors. For 

example, one can map RGB data to the lower dimensional colour space of a 

dichromatic dog (with one short- and one medium/long-sensitive cone type; Jacobs, 

1993), but a camera with sensitivities such as shown in Figure 1C can never capture 

the full colour world of a trichromatic bee (with UV, short- and medium-wave 

photoreceptors; Chittka, 1992). Mapping RGB data to a bird’s colour space would 

seem invalid on two counts: birds have a broader spectral range than a conventional 

camera (extending into the UV-A) and are potentially tetrachromatic (reviewed by 

Cuthill et al., 2000). However, if the scenes or objects of interest lack UV 

information, then a mapping from RGB to avian short-, medium-, long-wave cone 

sensitivities can be achieved. We present the method here, which can be used for any 

analogous trichromatic system (e.g. human) or, with simple modification, a lower-

dimensional system of the type that is typical for most mammals (Jacobs, 1993). 

Subsequently, we consider how UV information from a separate imaging system can 

be combined with the RGB data to provide a complete representation of bird-

perceived colour. 
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 The goal is to predict the quantal catches, Qi, of a set of i photoreceptors (where 

i  3), given a triplet of camera-sensor-estimated radiance values, QR, QG and QB., 

derived from the calibration and linearisation process described above. This amounts 

to solving a set of simultaneous regression equations, which are likely to be non-

linear. Mappings can be done for more than three photoreceptor classes, provided that 

the spectral sensitivities of all types are covered by the spectral range of one or more 

of the camera’s sensors. For example, a mapping could be produced to calculate 

images corresponding to the longwave, mediumwave and shortwave cones of a bird’s 

visual system, plus a luminance image based on avian double cone sensitivity. Once 

mapped images have been obtained, further calculations also allow the production of 

images corresponding to various opponency channels. Westland and Ripamonti 

(2004) summarise their, and others’, research on the family of equations most likely to 

provide a good fit to data, and conclude that linear models (with interaction terms) of 

the following type perform well. For ease of interpretation we use the notation R, G 

and B to describe the camera pixel values rather than their calibrated and linearised 

equivalents, QR, QG and QB. 

 

Qi = bi1.R + bi2.G + bi3.B + bi4.R.G + bi5.R.B + bi6.G.B. + bi7.R.G.B   (8) 

 

Where the bi’s are coefficients specific to receptor i, and the curve is forced through 

the origin (when the calibrated camera sensor value is zero, the animal’s quantal catch 

is zero). In some cases, dependent on the camera and the nature of the visual system 

to which mapping is required, polynomials (i.e. including terms in R2, G2 and B2, or 

higher orders) may provide a significantly better fit (and did in our case); this should 

be investigated empirically. Cheung et al. (2004) note that even mapping functions of 

unconstrained form, obtained using neural networks applied to large datasets, do not 
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significantly outperform polynomials. The data required to estimate the coefficients 

for the i photoreceptors can either be radiances directly measured using an imaging 

spectroradiometer (as in Párraga, 2003) or, more conveniently, radiances 

approximated as the product of reflectance spectra and the irradiance spectrum of the 

illuminant. Using equation 8, applied to a trichromat, 37 coeffcients need to be 

estimated, so the number of radiance spectra must be considerably greater than this (> 

100 in our experience as a minimum, but more like a 1000 is better). Large numbers 

of radiance spectra can be obtained from internet databases (Parkkinen, Jaaskelainen 

& Kuittinen, 1988; Sumner & Mollon, 2000). The coefficients for each photoreceptor 

are then found by multiple regression (or, conveniently, if using MATLAB, by matrix 

algebra; see Westland and Ripamonti, 2004). Whilst, in principle, one could derive a 

mapping function (i.e. set of coefficients) for all possible natural spectra, viewed 

under all possible illuminants, greater precision can be achieved by determining a 

situation-specific mapping function for the research question at hand. For example, if 

the goal is to use a camera to quantify the coloration of orange to red objects under 

blue skies, then a very precise mapping function could be estimated by using radiance 

data calculated only from the reflectance spectra of orange to red objects viewed 

under blue sky irradiance. If one is to derive the mapping functions by calculation (i.e. 

calculate quantal catch for camera and desired cone sensitivities, using reflectance and 

irradiance data), then the sensitivity of the camera’s sensors is required. However, one 

could also derive the mapping empirically without ever measuring camera sensor 

sensitivities, by measuring the response of the camera’s three channels to different 

(known) radiance spectra, and by determining the response of the cones of the 

required animal’s visual system. To get an accurate mapping, the camera’s response 

would have to be measured for many hundreds of radiance spectra and this would be 

time-consuming, involving many stimuli.  
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UV imaging 

 

In our own research, we wished to quantify lepidopteran wing patterns, with respect to 

avian vision, so we also needed to measure the amount of reflection in the avian-

visible UV waveband. At the same time as RGB photography, images of the 

reflectance standards and the lepidopterans were taken with a UV sensitive video 

camera (see Appendix 2).  

 First we tested whether the camera was linear with respect to both changes in 

the integration time, and with respect to increases in the reflection value; being a high-

specification technical camera, it was. This meant that the only calibrations needed 

were to scale the images to between 0 and 255; not initially as easy as it sounds, since 

the calibrations have to account for different gain and the integration times. Figure 10 

is an example of the results for the UV calibration process. In most situations it will 

be simpler to maintain the same gain values, since this reduces the number of factors 

to consider in the calibration process. 

 If images are obtained from more than one camera, there is an additional 

consideration that must be addressed; that of ‘image registration’. Images derived 

from one RGB camera will all be the same angle and distance from the specimens, 

and so the objects photographed will be on an identical scale in each of the three 

channels, based on the interpolations implemented. This may not be the case if 

obtaining images from a second camera; such as in our study, meaning that the 

specimens were a different size in the photographs and would not necessarily be easy 

to align with the RGB images. Furthermore, one camera may produce images with a 

lower resolution, and with less high frequency information; different cameras will 

have different Nyquist frequencies, meaning that whilst aligning lower spatial 
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frequency patterns may be relatively easy, information may be lost or poorly aligned 

at higher frequencies. One potential approach is to use Fourier filtering to remove the 

highest spatial frequency information from those images which contain it, down to the 

highest frequencies contained in the images from the other camera. However, this 

may be undesirable if the high spatial frequency information is important, as it 

frequently will be with complex patterns, or where edge information between pattern 

components is critical. The task of aligning images is made easier if: (a) different 

cameras are set up as closely as possible, in particular with relation to the angle of 

photography, since this is the hardest factor to correct and; (b) rulers are included in at 

least a sample of the images, so they can be rescaled so specimens occupy the same 

scale in different images. Including rulers in images allows for true distance 

measurements to be obtained and for spatial investigations to be undertaken. If images 

from one camera are larger than those from another, then it is the larger images that 

should be scaled down in size, since this avoids artifactual data, generated by 

interpolation, if images are rescaled upwards. Once the objects in the photographs are 

of the same size, it may be a relatively trivial task to take measurements from the 

different images that directly correspond. However, if the images are still difficult to 

align then an automated computational approach can be used. A variety of these are 

available, and users should carefully consult available manuals/information for the 

corresponding software to be sure of how the registration is completed, and to check 

what changes may occur to the image properties. However, in many cases, changes to 

the image structure will probably be small, especially at lower spatial frequencies, and 

have little influence on the results. One such plug-in, for the freeware software Image 

J (Rasband, 1997-2006; Abràmoff et al., 2004), is ‘TurboReg’ (available from a link 

from the Image J website) (Thévenaz, Ruttimann & Unser, 1998), which comes with a 

variety of options to align sets of images. 
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How best to use colour standards 

A crucial step in calibrating a digital camera is to include colour standards in some or 

all of the photographs taken. Including a set of colour standards in each photo allows 

calibrations to be derived for each individual photo, which would be highly accurate. 

However, this is in most cases impractical and unnecessary. For example, when the 

light source used is consistent, a set of reflectance standards used to fit a calibration 

curve need only be included in photos at the start and end of a session. Including these 

in each photo may leave little space for the objects of interest. In contrast, in many 

cases, such as when photographing natural scenes where the illuminating light may 

change and when wishing to calculate values such as photon catches it may be 

important to include at least one grey standard in the corner of each photo. Possibly 

the best objects to include in a photo are SpectralonTM reflectance standards 

(Labsphere Inc., North Sutton, NH, USA), which reflect a known amount of light 

equally at all wavelengths in the ultraviolet and human visible spectrum. These are, 

however, expensive and easily damaged, and if a single standard is sufficient, a 

Kodak gray card (Eastman Kodak Company), which has an 18% reflectance, can be 

included. 

 

Spatial measurements 

Often, we do not wish to measure solely the ‘colour’ of a patch, but the area or shape 

of a region of interest. In principle, this sounds easy but has several complications. 

For example the colour boundary of an area visible to humans may not be exactly the 

same as for that of another animal. Additionally, there may be colours that we cannot 

see (such as ultraviolet), which have different boundaries to those visible by a human 

(although most colour patches generally have the same boundary for different colour 
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bands, such as UV, SW, MW and LW). Another problem corresponds to the acuity of 

the animal in question. Regions of interest with complex boundaries may be only 

discernable by animals with a high enough spatial acuity. Furthermore, there is a 

specific problem with gradual boundaries, particularly relating to defining where the 

actual edge of the colour region is. 

 There are several ways to address these issues. One method of determining the 

boundary of a colour patch is to produce an automated procedure to define a specific 

area of interest. This can be done by thresholding an 8-bit or colour image to a binary 

(black and white) image where each individual pixel has a value of either zero (white) 

or two (black) (Figure 11). This can be done by writing a custom programme where 

the threshold level is defined specifically by the user, perhaps based on some 

assumption or data. Otherwise, most imaging software has automatic thresholding 

algorithms, although it is not always known what the thresholding value used will be. 

 A different method that can be used to define an area of interest is that of edge 

detection. This is where an algorithm is used to determine edges in an image, 

corresponding to sharp changes in intensity (either luminance or in terms of individual 

colour channels). These edges may, for example, be found at the boundary of a colour 

patch (Figure 11). The useful thing about edge detection algorithms is that they can be 

optimised and not linked to any specific visual system, or they correspond to the way 

in which real visual systems work (Marr & Hildreth, 1980; Bruce, Green & 

Georgeson, 2003). 

 Once the boundary of a colour patch has been defined it is simple to measure 

the area of the patch. Measuring the shape of an object is more difficult, though 

imaging software often comes with algorithms to measure attributes such as the 

relative circularity of an area, and occasionally more advanced shape analyses 

algorithms. 
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Drawbacks to using digital images 

 

The most notable drawback is that the information obtained is not wavelength 

specific; i.e. it is known what wavelengths contribute to each channel, but not the 

contribution of any specific wavelength to the RGB value of any one pixel. This 

drawback can be overcome by so-called multispectral imaging (or, if the number of 

wavebands is high, ‘hyperspectral imaging’). This can involve rotating a set of filters 

in front of the lens, allowing the acquisition of successive images of different 

wavebands (e.g. Brelstaff et al, 1995; Lauziére et al., 1999; Angelopoulou, 2000; 

Stokman et al., 2000; Losey, 2003). This method may be particularly useful if detailed 

wavelength information is required, or if the visual system of the receiver the signal is 

aimed at is poorly matched by the sensitivity of an RGB camera. We do not cover this 

technique in this paper because, although it combines many of the advantages of 

spectrometry with photography, the technology is not practical for most behavioural 

and evolutionary biologists. Hyperspectral cameras are often slow because they may 

have to take upwards of 20 images through the specified spectral range. The 

equipment, and controlling software, must be constructed de novo and conventional 

photography’s advantage of rapid, one-shot, image acquisition is lost. The specimens 

must be stationary during the procedure, since movement can cause problems with 

image registration. Also, as Losey (2003) acknowledges, images obtained sequentially 

in the field may be subject to short-term variations in environmental conditions, and 

thus introduce considerable noise. Averaging the values obtained from multiple 

frames of the same waveband may help to eliminate some of this effect (Losey, 2003). 

 

Problems with using the automatic camera settings 
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Many studies of animal coloration utilising cameras apparently use the camera with 

its automatic settings. There are numerous problems that can arise when using the 

‘auto’ mode. The main problem is that the settings used by the camera are adjusted 

according to the scene being photographed and so may be inconsistent. This need not 

always be an irretrievable flaw but would almost certainly need some highly complex 

calibration procedures to recover consistent data. One issue is that the white balance 

may change between photos, giving rise to different ratios between the LW, MW and 

SW sensor responses. Any low- to mid-range camera is likely to have some white 

balancing present, and most mid-range cameras will give the option to manually set 

the white balance. If the camera doesn’t allow this option and there is no indication of 

this in the manual then changing the white-balance settings may not be possible. An 

additional problem with automatic settings is that calibration curves/settings may also 

change at different aperture settings, in addition to the complication that the aperture 

and exposure (integration) time may change significantly simultaneously, leading to 

complicated calibrations if values of reflection, for example, are required. One of the 

most serious problems with using the auto mode is that the photograph will not 

optimise the dynamic range of the scene photographed, meaning that some parts of 

the scene may be underexposed, or far more seriously, saturated. 

 

Conclusions 

 

One of the earliest studies to outline how digital image analysis can be used to study 

colour patterns is that of Windig (1991), with an investigation of lepidopteran wing 

patterns. Windig (1991) used a video camera, connected to a frame grabber to digitize 

the images for computer analysis, a similar method to that which we used to capture 

the UV sensitive images. Windig (1991) stated that the method was expensive, and 
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the programmes were highly complex, but today flexible user friendly software is 

available, with various freeware programmes downloadable off the internet, and the 

purchase of a digital camera and software is possible for a fraction of the cost of 

Windig’s (1991) setup. 

 Windig (1991) argued that any image analysis procedure should meet three 

criteria. Firstly, completeness: a trait should be quantified with respect to all 

characters, such as ‘colour’ and area. Our procedure meets this criterion, since 

reflection, plus spatial measurements are attainable. Secondly, the procedure needs to 

be repeatable. This was also the case with our approach as the calibrations for a set of 

images of reflectance standards were still highly accurate for other images taken 

under the same conditions, but at different times. Finally, the process should be fast 

relative to other available methods, as was our study, with potentially hundreds of 

images taken in a day, quickly calibrated with a custom MATLAB programme and 

then analysed quickly with the range of tools in Image J. 

 Another advantage of capturing images with a digital camera is that there are 

potentially a host of other non-colour analyses. Detailed and complex measurements 

of traits can be undertaken rapidly, with measurements and calculations that would 

normally be painstakingly undertaken by hand performed almost instantaneously in 

imaging software, including measurements of distances, areas, analysis of shapes, 

plus complex investigations such as Fourier analysis (Windig 1991). This may be 

particularly useful if handling the specimens to take physical measurements is not 

possible.  

 The use of digital technology in studying animal coloration is a potentially 

highly powerful method, avoiding some of the drawbacks of other techniques. In 

future years, advances in technology, software and our understanding of how digital 

cameras work will add further advantages. In fact, it is even possible already to 
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extract data of a scene from behind a plane of glass (Levin & Weiss, 2004), which 

could become useful for studies of aquatic organisms (though most glass filters out 

UV wavelengths; Lauziére et al., 1999). Techniques are also being developed to 

remove the shadows from images; shadows can make edge recognition more difficult 

(e.g. Finlayson, Hordley & Drew, 2002), and hinder tasks such as image registration. 

With the explosion in the market of digital photography products, and the relatively 

low cost to purchase such items, there is the temptation to launch into using such 

techniques to study animal signals, without prior investigation into the technicalities 

of using such methods. This could result in misleading results. Therefore, whilst 

digital photography has the potential to transform studies of coloration, caution should 

be implemented and suitable calibrations developed before such investigations are 

undertaken. 

 

Key points/summary 

 

Below is a list of some of the main points to consider if using cameras to study animal 

coloration. 

1.  Images used in an analysis of colour should be either RAW or Tiff files and not 

JPEGs. 

2.  Grey reflectance standards should be included in images at the start of a 

photography session if the light source is constant, or in each image if the 

ambient light changes. 

3.  It is crucial not to allow images to become saturated or underexposed as this 

prevents accurate data to be obtained. 

4.  Many cameras have a non-linear response to changes in light intensity, which 

needs linearising before usable data can be obtained. 
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5.  To produce measurements of reflectance the response of the R, G and B colour 

channels needs to be equalised with respect to grey reflectance standards. 

6.  Measurements of cone photon catches corresponding to a specific visual system 

can be estimated by mapping techniques based upon sets of radiance spectra 

and camera/animal spectral sensitivity. 

7.  Digital images can be incorporated in to powerful and analyses of animal 

vision. 

8.  Do not convert image data to formats such as HSB, which are subjective and 

inaccurate. Instead, use reflection data, values of cone stimulation, or if 

working in human colour space, well tested colour spaces such as CIE Lab. 

9.  If using more than one camera, image registration may be a problem, especially 

if the different cameras have different resolutions. This problem can be 

minimised by setting up different cameras as close to one another as possible 

and ensuring that one camera does not capture significantly higher levels of 

spatial detail than the other. 

10.  Digital imaging is also a potentially highly accurate and powerful technology 

to study spatial patterns. 
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Figure Legends 

 

Figure 1: (A) Normalised absorptance (equal areas under curves) of human cones. 

Absorbance (N) data from Dartnall, Bowmaker & Mollon (1983) converted to 

absorptance (P) by the equation P = 1-10-1.N.L.S, where L is the length of the cone (20 

μm from Hendrickson & Drucker, 1992), and S is specific absorbance, 0.015/μm-1. 

(B) Normalised absorptance (equal areas under curves) of starling cones to different 

wavelengths of light. From Hart, Partridge & Cuthill (1998). (C) Normalised spectral 

sensitivity (equal areas under curves) of the sensors in the Nikon 5700 Coolpix 

camera used in our study. 

 

Figure 2: A plot of spectral sensitivity of two Nikon 5700 cameras for the LW, MW 

and SW channels. Even though the cameras are the same make and model, and were 

purchased simultaneously, there are some (albeit relatively small) differences in 

spectral sensitivity. 

 

Figure 3: Four images of the hind left spot on the emperor moth Saturnia pavonia 

illustrating the effects of compression on image quality. (A) An uncompressed TIFF 

image of the original photograph. (B) A JPEG image with minimal compression 

(10%). (C) A JPEG image with intermediate compression (50%), which still appears 

to maintain the original structure of the image, but careful examination of the image’s 

spatiochromatic content shows inconsistencies with the original TIFF file. (D) A 

JPEG image with maximal compression (90%) showing severe spatial and chromatic 

disruption. 
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Figure 4: Grey values measured when plotting a transect across a grey scale step 

image with increasing values from left to right. Grey values start at 0 on the left of the 

series of steps and increase in steps of 25 to reach values of 250 on the right. Plotted 

on the graph are the values measured for images of the steps as an uncompressed 

TIFF file, and JPEGs with ‘minimum’ (10%), ‘intermediate’ (50%) and ‘maximum’ 

(90%) levels of compression. Values of 30, 60 and 90 have been added to the JPEG 

files with minimum, intermediate and maximum levels of compression to separate the 

lines vertically. Notice as the level of compression increases the data measured are 

more severely disrupted, particularly at the boundary between changes in intensity. In 

the case of complex patterns, the disruption to the image structure means that 

measurements at any point in the image will be error prone. 

 

Figure 5: Results from a radial profile analysis performed upon one eyespot of the 

ringlet butterfly Aphantopus hyperantus, illustrating the high percentage reflectance 

values obtained for the centre of the spot and the ‘golden’ ring further from the centre, 

particularly in the red and green channels, and the lack of an eyespot in the UV. 

 

Figure 6: The relationship between the grey scale value measured for a set of seven 

Spectralon reflectance standards from raw digital TIFF file images and the nominal 

reflection value, showing a curved relationship for the R, G and B data. The ‘required’ 

line illustrates values that should be measured if the camera’s response was linear and 

the three channels equally stimulated. 

 

Figure 7: The relationship between measured greyscale value and nominal reflection 

value for the seven reflectance standards, showing the linearisation of the gamma 

curves.  
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Figure 8: The greyscale values measured for the set of reflectance standards 

following the process of RGB channel equalisation and scaling, showing a close fit to 

the required values. 

 

Figure 9: The greyscale values measured for the set of reflectance standards 

following the process of linearisation (A) and then RGB channel equalisation (B) and 

scaling, showing that the linearisation does not produce a linear response when there 

are saturated pixels in the image, as is the case in the R channel in this example. 

Saturated pixels also result in a poor equalisation result, indicated by a dropping off of 

the R channel at higher values.  

 

Figure 10: The effect of scaling the UV images obtained with the PCO Variocam 

camera and Nikon UV transmitting lens, showing a close fit to the required values. 

 

Figure 11: Different images of a clouded yellow butterfly Colias croceus, modified to 

show regions of interest, such as the wing spots, identified by various techniques. (A) 

The original 8-bit grey-level image (pixel values between 0 and 255). (B) The image 

after an edge detection algorithm has been applied, clearly identifying a boundary 

around the two forewing spots, but not the hindwing spots. (C) The original image 

after being thresholded to a binary (black/white) image with a threshold of 64. This 

clearly shows the forewing spots but does not produce spots where the hindwing spots 

were in the original image. (D) The original image when converted to a binary image 

with a threshold of 128, now picking out both the forewing and hingwing spots 

(although with some ‘noise’ around the hindwing spots). (E) The original image 

converted to a binary image with a threshold of 192, now not showing any clear wing 
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spots. (F) The original image when first converted to a pseudocolour image, where 

each pixel value falling between a given range is given a specific colour. The image is 

then reconverted to a grey-level image and now shows the hindwing spots with 

marginally sharper edges than in the original image. 

 

Table 1: Desirable characteristics when purchasing a digital camera for research 

 

Attribute Relative Importance 

High resolution (e.g. min 5 megapixels) High 

Manual white balance control High 

Macro lens Medium 

Ability to save Tiff/RAW file formats High 

Manual exposure control High 

Remote shutter release cable capability Low 

Ability to change metering method Medium 

Optical zoom Medium 
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Appendix 1: Glossary of technical terms 

 

Aliasing 

Aliasing refers to the jagged appearance of lines and shapes in an image.  

 

Aperture 

Aperture refers to the diaphragm opening inside a photographic lens. The size of the 

opening regulates the amount of light passing through onto the colour filter array. 

Aperture size is usually referred to in f-numbers. Aperture also affects the ‘depth of 

field’ of an image. 

 

Charge-coupled device (CCD)  

A small photoelectronic imaging device containing numerous individual light-

sensitive picture elements (pixels). Each pixel is capable of storing electronic charges 

created by the absorption of light and producing varying amounts of charge in 

response to the amount of light they receive. This charge is converts light into 

electrons, which pass through an analogue-to-digital converter, which produces a file 

of encoded digital information. 

 

Chromatic aberration 

This is caused by light rays of different wavelengths coming to focus at different 

distances from the lens causing blurred images. Blue will focus at the shortest 

distance and red at the greatest distance. 

 

Colour filter array (CFA) 
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Each pixel on a digital camera sensor contains a light sensitive photodiode which 

measures the brightness of light. These are covered with a pattern of colour filters, a 

colour filter array, to filter out different wavebands of light.  

 

Demosaicing algorithms 

Most digital cameras sample an image with red, green and blue sensors arranged in an 

array, with one type at each location. However, an image is required with an R, G and 

B value at each pixel location. This is produced by interpolating the missing sensor 

values via so called ‘demosaicing’ algorithms, which come in many types.  

 

Exposure 

The exposure is the amount of light received by the camera’s sensors and is 

determined by the aperture and the integration time.   

 

Foveon sensors 

Foveon sensors capture colour by using three layers of photosensors at each location. 

This means that no interpolation is required to obtain values of R, G, & B at each 

pixel. 

 

Image resolution 

The resolution of a digital image is the number of pixels it contains. A 5 megapixel 

image is typically 2,560 pixels wide and 1,920 pixels high and has a resolution of 

4,915,200 pixels. 

 

JPEG 
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JPEG (Joint Photographic Experts Group) is very common due to its small size and 

widespread compatibility. JPEG is a lossy compression method, designed to save 

storage space. The JPEG algorithm divides the image into squares, which can be seen 

on badly-compressed JPEGs. Then a Discrete Cosine Transformation is used to turn 

the square data into a set of curves, and throws away the less significant part of the 

data. The image information is rearranged into colour and detail information, 

compressing colour more than detail because changes in detail are easier to detect. It 

also sorts detail information into fine and coarse detail, discarding fine detail first. 

 

Lossy compression 

A data compression technique in which some data is lost. Lossy compression attempts 

to eliminate redundant or unnecessary information and dramatically reduces the size 

of a file by up to 90%. Lossy compression can generate artifacts such as false colours 

and blockiness. JPEG is an image format that is based on lossy compression. 

 

Lossless compression 

Lossless compression is similar to ‘zipping’ a file, whereby if a file is compressed and 

later extracted, the content will be identical. No information is lost in the process. 

TIFF images can be compressed in a lossless way. 

 

Macro lens 

A lens that provides continuous focusing from infinity to extreme close-ups. 

 

Modulation transfer function 

The modulation transfer function describes how much a piece of optical equipment, 

such as a lens, blurs the image of an object. Widely spaced features, such as broad 
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black and white stripes, do not lose much contrast, since a little blurring only affects 

their edges, but fine stripes may appear to be a uniform grey after being blurred by the 

optical apparatus. The modulation transfer function is a measure of how much bright-

to-dark contrast is lost, as a function of the width of the stripes, as the light goes 

through the optics. 

 

Nyquist frequency 

The Nyquist frequency is the highest spatial frequency where the CCD can still 

correctly record image detail without aliasing.  

 

Bit depth  

This relates to image quality. A bit is the smallest unit of data, such as 1 or 0. A 2 bit 

image can have 2^2 = 4 grey levels (black, low grey, high grey and white). An 8 bit 

image can have 2^8 = 256 grey levels, ranging from 0 to 255. Colour images are often 

referred to as 24 bit images because they can store up to 8 bits in each of the 3 colour 

channels and therefore allow for 256 x 256 x 256 = 16.7 million colours.   

 

RAW 

A RAW file contains the original image information as it comes off the sensor before 

internal camera processing. This data is typically 12 bits per pixel. The camera's 

internal image processing software or computer software can interpolate the raw data 

to produce images with three colour channels (such as a TIFF image). RAW data is 

not modified by algorithms such as sharpening. RAW formats differ between camera 

manufacturers, and so specific software provided by the manufacturer, or self written 

software, has to be used to read them.  
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Saturation 

In the context of calibrating a digital camera, we use this term to mean when a sensor 

reaches an upper limit of light captured and can no longer respond to additional light. 

This is also called ‘clipping’ as the image value cannot go above 255 (in an 8-bit 

image) regardless of how much additional light reaches the sensor. Saturation can also 

be used to refer to the apparent amount of hue in a colour, with saturated colours 

looking more vivid. 

 

Sensor resolution 

The number of effective non-interpolated pixels on a sensor. This is generally much 

lower than the image resolution as this is before interpolation has occurred. 

 

TIFF  

TIFF (Tagged Image File Format) is a very flexible file format. Tiffs can be 

uncompressed, lossless compressed, or can be lossy compressed. While JPEG images 

only support 8 bits per channel RGB images, TIFF also supports 16 bits per channel 

and multi-layer CMYK images in PC and Macintosh format. 

 

White balance 

Most digital cameras have an automatic white balance setting whereby the camera 

automatically samples the brightest part of the image to represent white. However, 

this automatic method is often inaccurate and is undesirable in many situations. Most 

digital cameras also allow you to choose a white balance manually. 
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Appendix 2: Technical details 

 

In our study we used a Nikon Coolpix 5700 camera, with an effective pixel count of 

just under 5.0 megapixels. This does not have all the desired features described in our 

article (the intensity response is non-linear and the zoom cannot be precisely fixed) 

and we offer no specific recommendation, but it is a good mid-priced product with 

high quality optics and full control over metering and exposure. UV photography was 

with a PCO Variocam, fitted with a Nikon UV-Nikkor 105 mm lens, a Nikon FF52 

UV pass filter and an Oriel 59875 “heat” filter (the CCD is sensitive to near-infra-

red). The camera was connected to a Toshiba Satellite 100cs laptop and also to an 

Ikegami PM-931 REV.A monitor, which displayed the images that were to be saved 

via a PCO CRS MS-DOS based programme. With the camera remote control, the gain 

and the integration time of the images could be adjusted, with the gain either set to 

12db or 24db and the integration time between 1 and 128 video frames (1 frame = 40 

milliseconds). 

 Images were transferred to a PC and all measurements were taken with the 

(free) imaging programme ‘Image J’ (Rasband, 1997-2006; Abràmoff et al., 2004). 

Measurements of standards were taken by drawing a box over the area of interest, and 

then using the histogram function to determine the mean grey scale value and standard 

deviation for each channel. All other image and data manipulations, including the 

linearization and transformation between coordinate systems, were performed with 

MATLAB (The Mathworks Inc. Massachusetts, USA), though other languages, such 

as Java (Sun Microsystems, Inc. Santa Clara, USA; Efford, 2000) are also useful. 

MATLAB has rapidly become an industry standard in vision science, on account of 

its efficiency at matrix mathematics and manipulation (photographic data are large 
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matrices). MATLAB and Image J benefit from the large number of plug-ins and 

toolboxes written by users for other users. 


