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Abstract

Using the tools of the stochastic integration with respect to the fractional Brownian
motion, we obtain the expression of the characteristic function of the random variable∫ 1

0
Bα

s dBH
s where Bα and BH are two independent fractional Brownian motions with

Hurst parameters α ∈ (0, 1) and H > 1
2 respectively. The two-parameter case is also

considered.
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1 Introduction

The theory of multiple stochastic integrals with respect to Brownian motion is well-known
(see for instance [9]), but in general, it is difficult to compute the law of a stochastic integral
with respect to the Wiener process when the integrand is not deterministic. There are some
known results in particular cases. Let us recall the context. Consider W 1 and W 2 two
independent Brownian motions. In [6] and [19] the authors studied the law of the random
variable

α

∫ 1

0
W 1

s dW 2
s + β

∫ 1

0
W 2

s dW 1
s .

1



When α = 1 and β = 0 they showed that the characteristic function of the stochastic
integral

∫
[0,1] W

1
s dW 2

s is given by

(1.1) Φ(t) =
(

cosh2

(
t

2

)
+ sinh2

(
t

2

))− 1
2

.

In the two-parameter case in [10] (see also [12]) the authors proved that the characteristic
function of the integral

∫
[0,1]2 W 1

s dW 2
s (here W 1 and W 2 denotes two independent Brownian

sheets) is given by

(1.2) Φ(t) =
∏
k≥1

cosh−
1
2

(
2t

(2k − 1)π

)
.

The aim of the present work is develop a similar study for the fractional Brownian
motion. The recent development of the stochastic integration with respect to the fractional
Brownian motion (fBm) (see for instance [14]) gives the tools for this analysis. Concretely,
we will consider two independent fractional Brownian motion BH and Bα with Hurst pa-
rameter α ∈ (0, 1) and H > 1

2 , and we will find an explicit expression for the characteristic
function of the stochastic integral

∫ 1
0 Bα

s dBH
s . We mention that this kind of integrals ap-

pears in the study of stochastic wave equations with fractional noise (see [5]). Related
results on the law of this integral have also been proved in [7].

2 Preliminaries: Fractional Brownian motion and Wiener in-
tegrals

Let T = [0, 1] the unit interval and let
(
BH

t

)
t∈T

be a fractional Brownian motion with Hurst
parameter H ∈ (0, 1). Denote by RH its covariance

RH(t, s) = E
(
BH

t BH
s

)
=

1
2
(
t2H + s2H − |t− s|2H

)
.

We denote by H(H) := H the canonical space of the fractional Brownian motion
BH . That is, H is the closure of the linear span of the indicator functions {1[0,t], t ∈ T}
with respect to the scalar product

〈1[0,t], 1[0,s]〉H = RH(t, s).

The structure of the Hilbert space H varies upon the values of the Hurst parameter. Let
us recall some basic facts about this space.

• If H > 1
2 the elements of H may be not functions but distributions of negative order (see

[15]). Therefore, it is of interest to know significant subspaces of functions contained
in it.
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Define the function

(2.1) θH(s, t) = H(2H − 1)|s− t|2H−2

and let L2
H (T ) be the set of function f : T → R such that

∫
T

∫
T |f(u)||f(v)|θ(u, v)dudv <

∞, endowed with the scalar product

(2.2) 〈f, g〉H =
∫

T

∫
T

f(u)g(v)θ(u, v)dudv.

It has been proved in [15] that L2
H (T ) is a strict subset of H and the scalar products

〈·, ·〉H and 〈·, ·〉H coincide on L2
H (T ). Moreover, we have the following inclusion

(2.3) L
1
H (T ) ⊂ L2

H(T ) ⊂ H.

• If H < 1
2 , then H is a set of functions; it coincides actually with the set I

1
2
−H

T−
(
L2(T )

)
where I

1
2
−H

T− is the fractional integral of order 1
2 −H (see [8], [1], [15]). A significant

subspace of H is the set of Hölder continuous functions of order 1
2 − H + ε for all

ε > 0,

(2.4) C
1
2
−H+ε(T ) ⊂ H ⊂ L2(T ) ⊂ L

1
H (T ).

Consider EH the class of step functions of the form

(2.5) ϕ(·) =
n∑

i=1

ai1(ti,ti+1](·) n ≥ 1, ti ∈ T, ai ∈ R.

It has been proved in [16] that EH is dense in H. For ϕ ∈ EH of the form (2.5) we define its
Wiener integral with respect to the fBm BH by

(2.6)
∫ 1

0
ϕ(s)dBH

s :=
n∑

i=1

ai

(
BH

ti+1
−BH

ti

)
The mapping ϕ →

∫ 1
0 ϕ(s)dBH

s provides an isometry between EH and the first chaos of the
fBm BH and it can be extended as follows:

• If H > 1
2 , it has been proved in [15] that EH is dense in L2

H(T ) with respect to the norm
‖·‖H . As a consequence, the Wiener integral

∫ 1
0 ϕ(s)dBH

s can be defined in a consistent
way as limit in L2(Ω) of integrals of elementary functions for any ϕ ∈ L2

H(T ).

• If H < 1
2 , then EH is dense in H (see [8], [15]) and the integral

∫ 1
0 ϕ(s)dBH

s can be
defined by isometry for any function ϕ ∈ H.
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We will need in this paper stochastic integrals of the form
∫
T usdBH

s where u is a
stochastic process independent by BH . Using the above facts, it follows that this integral
can be defined by isometry for any u ∈ L2(Ω)× L2

H(T ) if H > 1
2 and for any u ∈ L2(Ω;H)

if H < 1
2 .

REMARK (2.7). The integral
∫
T usdBH

s coincides also with the Skorohod integral
introduced in [2], [1] since, by independence, the Malliavin derivative of u with respect to
BH is zero.

More generally, for H > 1
2 , let L2

H (Tn) be the set of functions f : Tn → R such that∫
T n

|f (u1, . . . , un) ||f (v1, . . . , vn) |

(
n∏

i=1

θH(ui, vi)

)
du1 . . . dundv1 . . . dvn < ∞,

endowed with the scalar product

(2.8) 〈f, g〉Hn =
∫

T n

f (u1, . . . , un) g (v1, . . . , vn)

(
n∏

i=1

θH(ui, vi)

)
du1 . . . dundv1 . . . dvn.

Obviously, L2
H (Tn) is a subset of H⊗n and if f, g ∈ L2

H (Tn) then we have

〈f, g〉Hn = 〈f, g〉H⊗n .

We will denote by L2
s,H(Tn) the set of symmetric functions f ∈ L2

H(Tn) and if f ∈
L2

s,H(T 2) let us introduce the (Hilbert-Schmidt) operator (see [7]) KH
f : L2

H(T ) → L2
H(T )

given by

(2.9)
(
KH

f ϕ
)
(y) =

∫
T

∫
T

f(x, y)ϕ(x′)θH(x, x′)dxdx′.

REMARK (2.10). Note that if f is positive and H > 1
2 , then the operator KH

f is a
positive operator. Indeed, we can write(

KH
f ϕ
)
(y) =

∫
T

A(x′, y)ϕ(x′)dx′

where A(x′, y) =
∫
T f(x, y)θH(x, x′)dx is positive. Thus the eigenvalues of KH

f are positive.

3 The characteristic function of the double integral

Throughout this section BH and Bα will denote two independent fractional Brownian mo-
tion with parameter H and α respectively. We compute the characteristic function of the
random variable

(3.1) S :=
∫

T
Bα

s dBH
s .
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Note that, when H > 1
2 , the random variables S (3.1) is well-defined since obviously Bα

belongs to L2(Ω) × L2
H(T ) for any α. When H < 1

2 , if we assume that α + H > 1
2 , then

we have Bα ∈ C
1
2
−H+ε(T ). But, in the following we will need to restrict ourselves to the

situation H > 1
2 .

We start with the following lemma which gives an approximation of the random
variable S given by (3.1) when the Hurst parameter of the integrator fbm BH is bigger
than one half.

LEMMA (3.2). Assume that H > 1
2 and α ∈ (0, 1). Denote by

(3.3) Tn =
n−1∑
i=0

Bα
ti

(
BH

ti+1
−BH

ti

)
where π : 0 = t0 < t1 < . . . < tn = 1 denotes a partition of [0, 1]. Then it holds that

Tn → S in L2(Ω) as |π| → 0.

Proof: Using the independence of Bα and BH we can write

Bα
ti

(
BH

ti+1
−BH

ti

)
=
∫ ti+1

ti

Bα
tidBH

s .

To prove the lemma it is enough to prove that

n−1∑
i=0

Bα
ti1[ti,ti+1](·) → Bα

· =
n−1∑
i=0

Bα
· 1[ti,ti+1](·) in L2(Ω)× L2

H(T ) as |π| → 0.

Actually in general, to prove the convergence of a sequence of stochastic integrals of diver-
gence type one needs also the convergence of the Malliavin derivatives, but in our case it is
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unnecessary due to the independence of the two fBms. We have, using formula (2.2),

E

∣∣∣∣∣
∣∣∣∣∣
n−1∑
i=0

(
Bα

ti −Bα
·
)
1[ti,ti+1]

∣∣∣∣∣
∣∣∣∣∣
2

H

=
n−1∑
i,j=0

H(2H − 1)
∫ ti+1

ti

∫ tj+1

tj

E
(
Bα

ti −Bα
s

) (
Bα

tj −Bα
r

)
|r − s|2H−2drds

≤
n−1∑
i,j=0

H(2H − 1)
∫ ti+1

ti

∫ tj+1

tj

|ti − s|α|tj − r|α|r − s|2H−2drds

≤ H(2H − 1)|π|2α
n−1∑
i,j=0

∫ ti+1

ti

∫ tj+1

tj

|r − s|2H−2drds

= |π|2α
n−1∑
i,j=0

〈1[ti,ti+1], 1[tj ,tj+1]〉H = |π|2α

and this goes to 0 for every α ∈ (0, 1).

We will also need to prove the following technical lemma:

LEMMA (3.4). a) Assume that α > 1
2 and consider the function

(3.5) fH(x, y) =
1
2
(
(1− x)2H + (1− y)2H − |x− y|2H

)
, x, y ∈ T = [0, 1].

Then fH ∈ L2
s,α(T 2).

b) Assume that H > 1
2 and consider the function

(3.6) fα(x, y) =
1
2
(
x2α + y2α − |x− y|2α

)
, x, y ∈ T = [0, 1].

Then fα ∈ L2
s,H(T 2).

Proof: Let us prove first the point 2a); the point 2b) is similar. We have to show
that

I :=
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
fH(x1, y1)fH(x2, y2)θα(x1, x2)θα(y1, y2)dx1dx2dy1dy2 < ∞.

Note that ∣∣fH(xi, yi)
∣∣ = E

(
BH

1 −BH
xi

) (
BH

1 −BH
yi

)
≤

(
E
(
BH

1 −BH
xi

)2)1/2 (
E
(
BH

1 −BH
yi

)2)1/2

= (1− xi)H(1− yi)H
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The integral I is therefore bounded by

I ≤ (c(α))2
∫

[0,1]4
(1− x1)H(1− y1)H(1− x2)H(1− y2)H |x1 − x2|2α−2|y1 − y2|2α−2dx1dx2dy1dy2

=
(

c(α)
∫ 1

0

∫ 1

0
(1− x1)H(1− x2)H |x1 − x2|2α−2dx1dx2

)2

with c(α) = α(2α− 1). Now, using the change of variables z = x−y
1−y , we get

I ′ :=
∫ 1

0

∫ 1

0
(1− x)H(1− y)H |x− y|2α−2dydx

= 2
∫ 1

0

∫ x

0
(1− x)H(1− y)H(x− y)2α−2dydx

= 2
∫ 1

0
(1− x)2H+2α−1

(∫ x

0
(1− z)−H−2αz2α−2dz

)
dx

=
1

H + α

∫ 1

0
(1− z)Hz2α−2dz < ∞,

using that α > 1
2 .

We state now our main result. The point b) allows to consider the situation when
the Hurst parameter of the integrand α is less than 1

2 .

THEOREM (3.7). a). Let α > 1
2 and H > 1

2 . Then the characteristic function of
the random variable S given by (3.1) is

E
(
eitS
)

=
∏
i≥1

(
1

1 + t2µi

) 1
2

where (µi)i≥1 are the eigenvalues of the operator Kα
fH given by (2.9 ) where fH is defined

by (3.5).

b). Assume that H > 1
2 and α ∈ (0, 1). Then the characteristic function of S (3.1)

is

E
(
eitS
)

=
∏
i≥1

(
1

1 + t2ξi

) 1
2

−→

where (ξi)i≥1 are the eigenvalues of the operator KH
fα given by (2.9) and fα is defined by

(3.6).

REMARK (3.8). If α = 1
2 , then the operator Kα

fH must be replaced by

(3.9)
(

K
1
2

fH ϕ

)
(y) =

∫ 1

0
fH(x, y)ϕ(x)dx.
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Proof of Theorem (3.7). We prove first a). By Lemma (3.2) we have

E
(
eitS
)

= lim
n→∞

E
(
eitTn

)
where Tn is given by (3.3) with ti = i

n , for every i = 0, . . . , n − 1. Let us compute the
characteristic function of the random variable Tn.

We will use the following fact: If X, Y are two independent random variables, then

E (Φ(X, Y )/X) = ϕ(X)

where ϕ(x) = E(Φ(x, Y )). Let us put

(3.10) X =
(
Bα

0 , Bα
1
n

, . . . , Bα
n−1

n

)
and Y =

(
BH

1
n

−BH
0 , . . . , BH

n
n
−BH

n−1
n

)
.

Therefore, we obtain

ϕ(x) = E
(
eit

Pn−1
k=0 xkYk

)
= e−

t2

2
xT AHx

where the matrix AH =
(
AH

k,l

)
k,l=0,...,n−1

is given by

AH
k,l = E

(
BH

k+1
n

−BH
k
n

)(
BH

l+1
n

−BH
l
n

)
=

1
2n2H

(
|k − l + 1|2H + |k − l − 1|2H − 2|k − l|2H

)
.

We will obtain
E
(
eitTn

)
= E(e−

t2

2
Sn)

where

Sn :=
n−1∑
k,l=0

AH
k,lB

α
k
n

Bα
l
n

=
n−1∑
k,l=1

AH
k,lB

α
k
n

Bα
l
n

=
n−1∑
k,l=1

AH
k,l

(
k−1∑
k′=0

(
Bα

k′+1
n

−Bα
k′
n

))( l−1∑
l′=0

(
Bα

l′+1
n

−Bα
l′
n

))

=
n−2∑

k′,l′=0

(
Bα

k′+1
n

−Bα
k′
n

)(
Bα

l′+1
n

−Bα
l′
n

) n−1∑
l=l′+1

n−1∑
k=k′+1

AH
k,l.
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We calculate first
n−1∑

l=l′+1

n−1∑
k=k′+1

AH
k,l

=
1

2n2H

n−1∑
l=l′+1

[
n−1∑

k=k′+1

(
|k − l + 1|2H + |k − l − 1|2H − 2|k − l|2H

)]

=
1

2n2H

n−1∑
l=l′+1

[
n−1∑

k=k′+1

(
|k − l + 1|2H − |k − l|2H

)
−

n−1∑
k=k′+1

(
|k − l|2H − |k − l − 1|2H

)]

=
1

2n2H

n−1∑
l=l′+1

[
|n− l|2H − |k′ + 1− l|2H − |n− 1− l|2H + |k′ − l|2H

]
=

1
2n2H

[
n−1∑

l=l′+1

(
|l − k′|2H − |l − 1− k′|2H

)
−

n−1∑
l=l′+1

(
|l + 1− n|2H − |l − n|2H

)]

=
1

2n2H

[
(n− k′ − 1)2H + (n− l′ − 1)2H − |l′ − k′|2H

]
= fH

(
k′ + 1

n
,
l′ + 1

n

)
where the function fH is given by (3.5). By combining the above calculations we get

Sn =
n−1∑
k,l=0

fH

(
k + 1

n
,
l + 1

n

)(
Bα

k+1
n

−Bα
k
n

)(
Bα

l+1
n

−Bα
l
n

)
.

Let us denote by (µi)i≥1 the eigenvalues of the operator Kα
fH and by (gi)i≥1 the correspond-

ing eigenfunctions. Then, using Lemma (3.4), we can write

fH(x, y) =
∑
i≥1

µigi(x)gi(y)

with the vectors (gi)i≥1 orthogonal in L2
s,α(T ) and the µi are square-summable.

The sum Sn becomes

Sn =
n−1∑
k,l=0

∑
i≥1

µigi(
k + 1

n
)gi(

l + 1
n

)

(Bα
k+1

n

−Bα
k
n

)(
Bα

l+1
n

−Bα
l
n

)

=
∑
i≥1

µi

(
n−1∑
k=0

gi(
k + 1

n
)
(
Bα

k+1
n

−Bα
k
n

))2

.

Since α > 1
2 and gi ∈ L2

s,α(T ) it follows from [15] that

n−1∑
k=0

gi(
k + 1

n
)
(
Bα

k+1
n

−Bα
k
n

) |π|→0−→
∫ 1

0
gi(x)dBα(x) in L2(Ω)

9



and therefore we have that

Sn
n→∞−→

∑
i≥1

µiH
2
i in L1(Ω)

where
(
Hi =

∫ 1
0 gi(x)dBα(x), i ≥ 1

)
are independent, standard normal random variables.

As a consequence, since the eigenvalues are positive (see Remark 2.10)

E(eitT ) = E

exp

− t2

2

∑
i≥1

µiH
2
i


=

∏
i≥1

E

(
exp

(
− t2

2
µiH

2
i

))

=
∏
i≥1

(
1

1 + t2µi

) 1
2

.

Let us discuss now the point b). We follow the lines of a) by interchanging the roles

of X and Y in (3.10). We obtain that E(eitS) = limn→∞E

(
e−

t2

2
Sn

)
where

Sn =
n−1∑
k,l=0

E
(
Bα

k
n

Bα
l
n

)(
BH

k+1
n

−BH
k
n

)(
BH

l+1
n

−BH
l
n

)

=
n−1∑
k,l=0

fα

(
k

n
,

l

n

)(
BH

k+1
n

−BH
k
n

)(
BH

l+1
n

−BH
l
n

)
where fα is given by (3.6). Now we use Lemma (3.4) b) and we proceed as in the proof of
the point a).

REMARK (3.11). As a final comment, let us note that the points a). and b). of the
above theorem agree if α and H are bigger than 1

2 . In fact it can be shown that in this
case KH

fα and Kα
fH have the same eigenvalues and in this case their characteristic functions

coincide term by term. Indeed, let us suppose that λ 6= 0 is an eigenvalue for KH
fα . Then

there exists a non identically zero function ϕα,H ∈ L2
H(T ) such that

(KH
fαϕα,H)(y) = λϕα,H(y)

or

H(2H − 1)
∫ 1

0

∫ 1

0

1
2
(
x2α + y2α − |x− y|2α

)
ϕα,H(x′)|x− x′|2H−2dxdx′ = λϕα,H(y).

10



Let us denote by
χα,H(y) = ϕH,α(1− y).

It is easy to check that χα,H ∈ L2
α(T ) and by using the change of variables 1 − x = u and

1− x′ = v we obtain
(Kα

fH χα,H)(y) = λχα,H(y)

which implies that λ is also an eigenvalue for Kα
fH .

4 The two-parameter case

In this section, we will briefly discuss the case of the fractional Brownian sheet. Let us denote
by
(
Bα1,α2

s,t

)
s,t∈T

and
(
BH1,H2

s,t

)
s,t∈T

two independent fractional Brownian sheets. We recall

that a fractional Brownian sheet
(
BH1,H2

s,t

)
s,t∈T

with Hurst parameters H1,H2 ∈ (0, 1) is a

centered Gaussian process starting from 0 with covariance given by

E
(
BH1,H2

s,t BH1,H2
u,v

)
= RH1(s, u)RH2(t, v), s, t, u, v ∈ T,

where RHi is the covariance of the one-parameter fBm with Hurst index Hi (i = 1, 2). We
refer to [4] or [3] for the basic properties and [17], [18] or [11] for elements of the stochastic
calculus with respect to this process. We only point here the following facts:

• the canonical Hilbert space H(H1,H2) of the Gaussian process BH1,H2 is defined as the
closure of the linear vector space generated by the indicator functions {1[0,s]×[0,t], s, t ∈
T} with respect to the scalar product

〈1[0,s]×[0,t], 1[0,u]×[0,v]〉H(H1,H2) = RH1(s, u)RH2(t, v).

• if H1 or H2 is bigger than 1
2 , then the elements of H(H1,H2) maybe not functions

but distributions. In this case it is convenient to work with the following subspace of
H(H1,H2)

L2
H1,H2

(
T 2
)

:= L2
H1

(T )⊗ L2
H2

(T )

which is a space of functions (and which plays the role played by L2
H(T ) in the one-

parameter case). Therefore Wiener integrals with respect to BH1,H2 can be naturally
defined for integrands in L2

H1,H2

(
T 2
)
.

We prove here the following result.

THEOREM (4.1). a). Assume that Hi > 1
2 and αi > 1

2 , i = 1, 2. Then the
characteristic function of the random variable

(4.2) A :=
∫

T

∫
T

Bα1,α2
u,v dBH1,H2

u,v

11



is given by

(4.3) E
(
eitA

)
=
∏

i,j≥1

(
1

1 + t2µi,1µj,2

) 1
2

where (µi,1)i are the eigenvalues of the operator Kα1

fH1
given by (2.9), (µj,2)j are the eigen-

values of Kα2

fH2
and fH1 , fH2 are defined by (3.5).

b). If Hi > 1
2 and αi ∈ (0, 1), then

E
(
eitA

)
=
∏

i,j≥1

(
1

1 + t2ξi,1ξj,2

) 1
2

where for j = 1, 2, (ξi,j)i are the eigenvalues of the operator K
Hj

fαj , where fαj is defined by
(3.6).

Proof: We prove only the first part because the second point is similar. Denote by

An :=
n−1∑
k,l=0

Bα1,α2
k
n

, l
n

BH1,H2(∆k,l)

where
BH1,H2(∆k,l) = BH1,H2

k+1
n

, l+1
n

−BH1,H2
k
n

, l+1
n

−BH1,H2
k+1

n
, l
n

+ BH1,H2
k
n

, l
n

As in Lemma (3.2), we can prove that An → A when n →∞ in L2(Ω) for αi > 1
2 , Hi > 1

2 ,
i = 1, 2. We obtain, using the methods used in the proof of Lemma (3.2) (see also [10]) that

E(eitA) = lim
n→∞

E
(
eitSn

)
with

Sn =
n−1∑
k,l=0

n−1∑
k′,l′=0

fH1

(
k + 1

n
,
k′ + 1

n

)
fH2

(
l + 1

n
,
l′ + 1

n

)
Bα1,α2(∆k,l)Bα1,α2(∆k′,l′).

By Lemma (3.4) a) we get that fHi ∈ L2
s,αi

(T ) (i = 1, 2) and thus fHi =
∑

k µk,igk,i where
(gk,i)k≥1 are the eigenvectors of Kαi

fHi
(i = 1, 2).

Sn =
∏

i,j≥1

µi,1µj,2

 n−1∑
k,l=0

gi,1(
k + 1

n
)gj,2(

l + 1
n

)Bα1,α2(∆k,l)

2

.

12



Since gi,1 ∈ L2
α1

(T ) for every i ≥ 1 and gj,2 ∈ L2
α2

(T ) for every j ≥ 1, we have that
gi,1 ⊗ gj,2 ∈ L2

α1,α2
(T 2) and it is not difficult to see that

n−1∑
k,l=0

gi(
k + 1

n
)gj(

l + 1
n

)Bα1,α2(∆k,l) →n→∞

∫
T

∫
T

gi(x)gj(y)dBα1,α2
x,y := Hi,j

and the random variables Hi,j are mutually independent and N(0, 1) distributed. The
conclusion follows easily.
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