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Pathogen Proteins Eliciting Antibodies Do Not Share
Epitopes with Host Proteins: A Bioinformatics Approach
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The best way to prevent diseases caused by pathogens is by the use of vaccines. The advent of genomics enables genome-
wide searches of new vaccine candidates, called reverse vaccinology. The most common strategy to apply reverse vaccinology
is by designing subunit recombinant vaccines, which usually generate an humoral immune response due to B-cell epitopes in
proteins. A major problem for this strategy is the identification of protective immunogenic proteins from the surfome of the
pathogen. Epitope mimicry may lead to auto-immune phenomena related to several human diseases. A sequence-based
computational analysis has been carried out applying the BLASTP algorithm. Therefore, two huge databases have been
created, one with the most complete and current linear B-cell epitopes, and the other one with the surface-protein sequences
of the main human respiratory bacterial pathogens. We found that none of the 7353 linear B-cell epitopes analysed shares any
sequence identity region with human proteins capable of generating antibodies, and that only 1% of the 2175 exposed
proteins analysed contain a stretch of shared sequence with the human proteome. These findings suggest the existence of
a mechanism to avoid autoimmunity. We also propose a strategy for corroborating or warning about the viability of a protein
linear B-cell epitope as a putative vaccine candidate in a reverse vaccinology study; so, epitopes without any sequence identity
with human proteins should be very good vaccine candidates, and the other way around.
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INTRODUCTION

Vaccination is the preventive method of choice to fight against
microbial pathogens and presents the best cost/benefit ratio
among current clinical and pharmaceutical practices. There are
many reasons and serious threats which make the development of
new advanced vaccines necessary, for example, avian flu the
spread of antibiotic-resistant strains of pathogens [1].

The advent of genomics and high-throughput cloning/expres-
sion of large sets of genomic ORFs from pathogens makes
genome-wide searches of new vaccine candidates possible. This
systematic identification of potential antigens and virulence factors
of a pathogen without the need for its cultivation has been termed
“reverse vaccinology” [2,3]. The objective is to find proteins
eliciting antibodies capable of binding to the bacterial surface, and
through interaction with the complement system kill certain
pathogen microorganisms. However, current studies show that
only a small fraction of the pathogen proteins, most surface-
exposed or secreted, appears to elicit antibodies with bactericidal
activity [2,3]. It is generally considered that a bactericidal assay,
that is, an antigen that elicits murine antibodies capable of
triggering bacterial-cell death  vitro in a complement-dependent
manner, is a good candidate for human vaccine development [4—
7]. However, a major obstacle to reverse vaccinology, besides
sequence and antigenic variability, is the difficulty to identify, from
the pathogen proteome, those proteins that will generate a pro-
tective response. Typically, only a very small fraction of the
antibodies raised in large-scale antigen-screening studies are
bactericidal [3,8,9].

Epitope mimicry appears when a stretch of shared sequence,
called “mimetope”, exists between a protein of a certain pathogen
and a protein of its host. In some cases this may lead to auto-
immune phenomena most of them related to several diseases.
Different pathogens presenting epitope mimicry could cause auto-
mmmune diseases like, for instance, Borrelia burgdorferi, leading to
Lyme disease or neuroborreliosis; several Streptococci related to
Rheumatic Fever, Tripanosoma cruzi, causing Chaga’s Disecase:
Campylobacter jguni, causing Guillain- Barré Syndrome; a group of
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viruses and also Chlamydia pneumoniae, related to Multiple Sclerosis,
B3 coxsakieviruses, leading to myocarditis; B4 coxsakieviruses or
cytomegaloviruses, leading to Type I Diabetes; HSV-1, causing
herpetic stromal kerartitis or some kind of auto-immunity caused
by mimicry of Chlamydia pneumoniae outer-membrane proteins
and myosin [10]. For several of these kinds of auto-immune
diseases, we do not yet know what the possible causal agent is like,
for example, with Primary Biliary Cirrhosis, Psoriasis, Scleroder-
ma, Sjogren’s Syndrome or Lupus.

In this context, a method to quickly identify potential protective
antigens from the pathogen proteome would be very helpful. Our
initial hypothesis is that, given that one of the most important tasks
of the immune system is the differentiation between self and non-
self proteins, this system will discard eliciting antibodies against
pathogen proteins sharing epitopes with host proteins. On the
other hand, epitope mimicry could cause several auto-immune
diseases as stated above [10]. Moreover, nowadays it is thought
that humoral response against foreign proteins can distinguish
between dangerous proteins and nondangerous ones [11]. For this
reason we have focused our study only on pathogen proteins,
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probably dangerous, and not on human self-microbiota proteins,
most of them nondangerous.

A sequence-based computational analysis has been carried out
to exemplify what has been said above. We studied the complete
set of exposed surface proteins —the surfome- of most of the
sequenced respiratory human-pathogen microorganisms with the
aim of elucidating the presence of stretches of a shared sequence,
which have characteristics of putative T-dependent B-cell
epitopes, between human and pathogen proteins. This group of
bacterial proteins, recently labelled the surfome [7], is susceptible
to generating antibody immune response via B-cell epitopes, and it
has been reported that some of them effectively deal with this type
of response. The paradigm analysed here could be used to describe
how the bacterial proteins sharing linear B-cell epitopes with
human proteins avoid immunoreactivity against the host if these
sequence stretches tend to produce antibodies. Many questions like
the following ones were formulated: Are these produced antibodies
non-protective ones? Or are these proteins not producing antibody
responses even though they were able to do it? Auto-immune
diseases should appear if the exposed proteins of the bacterial
pathogens share linear B-cell epitopes with any human protein, so
this study may be useful to identify them [2,3]. These findings
may also help us to identify proteins which should not be used
as putative vaccine candidates in a reverse vaccinology study.
Moreover, the existence of a mechanism to avoid auto-immunity
could be proposed. On the other hand, we therefore studied the
current, already-known linear B-cell epitopes to elucidate if these
sequence stretches either share or do not share common regions
with human proteins. This study may help us to say that novel
epitope mimicries could generate new auto-immune diseases and
could reinforce the hypothesis of the existence of the mechanism to
avoid auto-immunity proposed above.

A linear or continuous B-cell epitope is a specific region of an
antigen to which an antibody binds and its constitutive residues are
sequential in the primary sequence of the protein. In contrast,
conformational or discontinuous B-cell epitopes are highly
conformational-dependant and its constitutive residues are non-
sequential in the primary sequence. That is why conformational B-
cell epitopes were not included in our field of study, thus we
restricted our study to the group of linear B-cell epitopes. The lack
of many databases for conformational B-cell epitopes and the
poorly developed method for predicting it from structure, enforced
this decision. We have to take into account that only the protein
sequences sharing certain sequence identity regions were consid-
ered if these two proteins are different and do not have anything in
common in their annotation. This decision was assumed due to the
fact that there exist many proteins of completely different
organisms grouped in the same family or being considered as
protein-like ones and obviously these proteins are condemned to
share common regions, so they were not included in our field of
study. The antibodies, in fact, recognise a small part of a big
molecule. In this sense, two quite different proteins could be
considered that would be recognised by the same antibody if both
shared a small epitope of five to six amino acids, more or less,
which is the usually accepted minimal length for a linear B-cell
epitope.

As a brief comment of our results, we found that none of the
well-known protective antigens under our study present putative,
common linear B-cell epitopes with the host proteins, which
demonstrates the existence of a system that tries to avoid
autoimmunity that select linear B-cell epitopes not sharing
sequence stretches with human proteins. On the other hand, we
found several pathogen proteins which share sequence stretches
with the host ones, so we recommend not to using these proteins as
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putative vaccine candidates in a reverse vaccinology study. These
proteins are a small group of the total surfome studied and they
also elicit antibodies with great difficulty, suggesting the same
immunotolerance effect that tries to avoid autoimmunity men-

tioned here [12].

MATERIALS AND METHODS

Generation of the Datasets

With the aim of proposing a method applicable in a previous
reverse vaccinology study, databases were made of the exposed
proteins from the up-to-date, sequenced main human bacterial
respiratory pathogens, which are: Neisseria meningitidis serogroup B,
Legionella pneumophila (Lens strain), Streptococcus pneumoniae, Haemo-
plalus influenzae, Pseudomonas aeruginosa, Streptococcus pyogenes serotype
M1, Yersima pestis, Bordetella bronchiseptica, Staphylococcus aureus (COL
strain), Pasteurella multocida, Bordetella parapertussis, Bordetella pertussis,
Chlamydia  pneumoniae (Chlamydophila pnewmoniae) and  Mpycoplasma
pneumoniae. Besides, to attempt to demonstrate our previous
proposal that some selectivity exists to try to avoid the auto-
immune response, we obtained a complete set of linear B-cell
epitopes from the three most complete and current epitope
databases.

On one hand, a surface-protein sequence database for each
pathogen was created downloading the protein sequences from the
HAMAP tool under the ExPASy web server [13,14]. Furthermore,
exhaustive searches in the NCBI [www.ncbi.nlm.nih.gov/entrez],
SCIRUS for scientific information [www.scirus.com]| and in
specialised journals helped us to find proteins with certain interest
for our study because of their reported capacity to generate
antibody immune response via B-cell epitope activation. These
protein sequences were added to each pathogen database. A total
of 2175 proteins sequences from the surfome [7] of the studied
pathogens was analysed.

On the other hand, we developed different computational
programmes to obtain the human pathogen section of the Bcipep
database [15], the most complete and specific B-cell epitope
database now available from which 2275 pathogen linear B-cell
epitopes were obtained. In addition, we performed a similar
procedure to collect the B-cell epitope portion of the IEDB
database [16], an extensive immune epitope database appeared in
early-2006 with a total of 2154 linear B-cell epitopes. Finally, we
could computationally retrieve all the linear B-cell epitopes from
the AntiJen database [17], an important immunological database
that contains quantitative binding data for epitope peptides from
which we could obtain 2924 entries. Thus a total of 7353 linear B-
cell epitopes has been studied and most of them were formed by at
least six or more amino acids.

Procedure
These database files, 14 consisting of the different pathogen-
exposed proteins and 3 of the most powerful recent databases,
including linear B-cell epitopes, were generated to analyse if there
exist sequence identities between human proteins and the collected
surface microorganism proteins or between the same human
proteins and the complete set of linear B-cell epitopes obtained.
This study may lead us to request a method based on sequence
similarity, like the one obtained here, that ought to be applied in
a previous step of a reverse vaccinology study. Furthermore, this
should help us to discover putative pathogens enhancing auto-
immunity after their infection or demonstrating that some
selectivity exists to avoid the auto-immune response.

For each of the pathogens analysed, downloading was started
from the HAMAP tool under the ExPASy web server of all protein
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sequences whose annotation included the following keywords:
Outer, membrane, lipoprotein, adhesin, surface, secreted or
exposed. Then, as said above, extensive searches were carried
out through the NCBI web server, the SCIRUS web site and
several specialised journals, with the aim of finding scientific
articles talking about proteins that generate antibody immune
response via B-cell epitope activation or could produce auto-
immunity and probably act as putative vaccine candidates. An
initial sequence database (ID) was made as explained before.
Additionally, this initial database file for each pathogen was used
to run a BLASTP algorithm analysis [18] against the protein non-
redundant database at the NCBI ftp site [www.ncbi.nlm.nih.gov/
Ftp]. If we found that some of these proteins had stretches of
shared sequence with human proteins, thanks to this preliminary
BLASTP analysis, we constructed a more extensive sequence
database (ED) for each pathogen using, once again, the HAMAP
tool under the ExPASy web server, now including all protein
sequences that contain, in their annotation, the hypothetical,
probable, conserved or putative protein annotation statements also
considering the above-described keywords. This ED file of protein
sequences for each pathogen served as input for a more accurate
BLASTP analysis.

The BLASTP output file for each pathogen analysed had been
carefully scrutinised to obtain a last file (LF) including the
alignments that comprise local, significant sequence similarity
between the pathogen query protein and a subject human one if
one exists. A stretch of shared sequence was considered as
a putative mimetope if there were at least 5 sequential, equal
amino acids or if it is a region to take into account because of its
amino acid physico-chemical properties similarity. For the LF file
of exposed protein databases of the 14 pathogens analysed, we
checked to see if these similar stretches correspond to trans-
membrane regions because a B-cell epitope cannot exist in
a transmembrane region. This was done by applying TransMem,
a programme for predicting transmembrane domains in proteins
[19]. We also checked to see if these stretches of shared sequence
coincide with the signal peptide section of the protein, when these
are close to the N-terminal extreme, using the SignalP 3.0 Server
[20]. Lastly, it was checked to determine if these stretches are
predicted as putative linear B-cell epitopes using prediction servers

like ANTIGENIC [21], ABCpred [22], and BeePred [23].

B-Cell Epitope Database

Thanks to the Bcipep, IEDB and AntiJen databases, we could
group together a total of 7353 linear B-cell epitopes, preparing
them for the subsequent BLASTP analysis against the human
protein, non-redundant database at the NCBI ftp site.

Exposed Protein Databases

Regarding Newsseria meningitidis serogroup B, the 1D contained 62
protein sequences [5,9,24-28] and the ED was made up of 263
protein sequences. In the case of Legionella pneumophila (Lens strain),
the ID had 17 protein sequences [29-31] and the ED consisted of
352 protein sequences. The Streptococcus pneumoniae study allowed us
to obtain an ID that comprised 27 protein sequences [7,32-36]
and an ED of 338 protein sequences. Regarding Haemophilus
influenzae, we were able to generate an ID of 25 protein sequences
[37—41]. In this case, we did not search for more protein sequences
because we did not find any previous sequence-identity region
between the proteins from the ID and human ones, so the
database remained consisting of a total of 25 protein sequences.
Concerning Pseudomonas aeruginosa, we were able to assemble an ID
of 34 protein sequences [42—49] and a huge ED that contained
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569 protein sequences. The Streptococcus pyogenes serotype M1 study
allowed us to obtain an ID of 30 protein sequences [7,50-58] and
an ED of 278 protein sequences. Regarding Yersinia pestis, we only
created an ID of 32 protein sequences [59-61]. We did not
increase this ID because we did not find any region with a sequence
identity between the proteins from this database and human
proteins in the preliminary BLASTP analysis. Concerning
Bordetella  bronchiseptica, we could group together 46 protein
sequences in its ID [62-64]. Nothing else was added to this ID
because we did not find stretches of shared sequence between the
proteins from this database and human ones. In the case of
Staphylococcus aureus (strain COL), we were able to generate an ID of
43 protein sequences [65-67] and we could extend it to 490
protein sequences, producing a large ED. Regarding Pasteurella
multocida assembled an ID of 20 protein sequences [68]. Nothing
else was added to this ID because we did not find any local
sequence-identity regions between the sequences from this
database and human proteins. We made the same analysis for
the rest of the pathogens in our study, which are Bordetella
parapertussis, Bordetella pertussis, Chlamydia pneumoniae (Chlamydophila
preumoniae) and Mycoplasma pneumoniae. In the cases of Bordelella
parapertussis and Bordetella pertussis, we were able to generate an ID
of 28 and 37 sequences respectively [69-73]. For Chlamydia
pneumoniae (Chlamydophila pneumoniae), the ID was made up of 68
protein sequences [74—77]. Regarding Mycoplasma pneumoniae, the
ID contained 198 protein sequences. These last four pathogens
have not got any sequence-identity region between the proteins
from the IDs and human ones, so the databases were not enlarged.
Taking into account all of the pathogens analysed, we were able to
study the sequence of a total of 2175 proteins.

RESULTS AND DISCUSSION
B-Cell Epitope Analysis

In terms of our study, after analysing the three database files of
linear B-cell epitopes obtained via BLASTP [18], an exhaustive
review of the output files obtained led us to the proposal that some
selectivity really does exist to try to avoid auto-immunity. We
concluded this because we could see that none of those 7353 linear
B-cell epitopes shared any sequence identity region with human
proteins capable of generating antibodies despite the already
known epitopes that generate auto-antibodies and cause auto-
immune diseases, the allergies caused by some epitopes, or certain
sequence identities found between some artificial peptides and
human proteins after their administration. We found that well-
known protective antigens do not present putative common linear
B-cell epitopes with the host proteins, so this fact reinforces what
we have postulated before that some selectivity may exist to try to
avoid auto-immunity. Moreover, pathogen proteins which share
sequence stretches with the host ones elicit antibodies with great
difficulty, demonstrating the immunotolerance effect [12].

Exposed Protein Analysis

The LF for each pathogen analysed, coming from the output file
after the BLASTP analysis [18], which contains the alignments
comprising local, significant sequence similarity between the
pathogen query protein and a subject human one, have been
carefully scrutinised. Despite the huge amount of exposed proteins
and pathogens analysed, around 2000, we could only consider
approximately 20 protein alignments, representing only 1% of the
total of proteins analysed. Consequently, we can say that, due to
the probable existing selectivity mechanism to avoid auto-
immunity already mentioned, the finding of pathogen-exposed
proteins that have a stretch of shared sequence, considered as
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a putative linear B-cell epitope, with human proteins is very
difficult. As said before, epitope mimicry between proteins may
lead to auto-immune phenomena most of them related to several
diseases, but also pathogen proteins which share sequence
stretches with the host ones elicit antibodies with great difficulty
demonstrating the immunotolerance effect. The way of trying to
avoid this mimicry and the presence, in some cases, of this
immunotolerance effect, is to reinforce the difficulty in finding

regions of sequence identity between pathogen and host
proteins.

a

Streptococcus pneumoniae:

##*+ BLASTP SUBJECT:

»gb |AAG49577.1] uveal autcantigen [Home sapiens]
Length = 1416

Score = 46.6 bits (109),

Expect = 0.008

Pathogen-Host Epitope Mimicry

Here we show an example of a procedure, applied in this case
only to the main human, bacterial respiratory pathogens, which
we think might be genuinely helpful for the development of new
vaccines when corroborating or advising the viability of a pathogen
surfome protein [7] as a putative vaccine candidate in a reverse
vaccinology study [2,3].

As stated above, only 20 proteins of a total of 2000 analysed
share a significant sequence-identity region with human proteins,
so we strongly advise against recommending these proteins as
putative vaccine candidates. On the contrary, the rest of the

Identities = 78/373 (20%), Positives = 148/373 (39%), Gaps = 37/373 (9%)
Query: 461 KQPBVNSETNKLKTRlDALNVDKTELNNTIADAKTKVKEHYSDRSW——QNLQTEVTKAEK 518
++N E K+K L E s Q-+
Sbjct: 889 KFEDINQE?VKIKDKNEILKRNLENTQNQIKAEYISLAEHEAKMSSLSQSMRKVQDSNAE 948
Query: 519 VAANTDAKQSEVN-————- EAVEKLTATIEKLVELSEKP ILTLTSTDKKILEREAVAKYT 572
+ AN ¢ E+ +A +K TI++ +++ PI++ ++K E
Sbjct: 949 ILANYREGQEEIVTLHAEIRKAQEKELDTIQECIKVEYAP IVSFEECERKFEATEKELKDD 1008
Query: 573 LENQNKTKIKSITAELKKGEEVINTVVLTDDKVTTETISAAFKNLEYYKEYTLSTTMIYD 632

L Q+K E+KK ++ +DK+ E + K+L K + + +
Sbjct: 1009 LEEQTQ-KYSVSEEEVEKNKQ-—---——-ENDKLKREIFTLQ-KDLRD-KTVLIEKSHEME 1038
Query: 633 RGNGEETETLBNQNIQLDLKKVELRHI]RTDLIKYENGKETNESLITTIPDDKSNY!LKI 692
R +T+ L Q L K EFEN¥E + + EN K+T+E L K + L+
Sbjct: 1059 RALSRKTDELNKQLKDLSQKYTEVENVK--EKLVEENAKQTSEILAVONLLOKQHVPLEQ 1116
Query: 693 TSNNQKTTLLAVENIEETTVNGTPVYKVTAIADNLVSRTADNK-———-———————-———F 736
+E+ ++H++E + I+ + +  +N+ F
Sbict: 1117 VEALKKSLNGTIENLKEELKSMQRCYEKEQQTVTEKLHQLLENQENSSVPLAEHLQIKEAF 1176
Query: 737 EEEYVHYIEKPKVHEDNVYYNFKELVEAIQNDPSKEYRLGQSMSﬁRNVVPNGKSYITKEF 796
E+E V I+ ++ N EV +Q++ + R W K TK
Sbjct: 1177 EKE~ VGI1KASLREKEEESONKMEEVSKLQSEVQNTKQALKKLETREVVDLSKYKATKSD 1235
Query: 797 TGKLLSSEGHQFA 809
+55  ++ A
Sbjct: 1236 LETQISSLMEKLA 1248

*+#*% BLASTP QUERY:

»UniProt/Swiss-Prot [Q9L702| ZMPB_STRPN Zinc metalloprotease zmpB precursor

b

Chlamydia pneumoniae:

*#*+ BLASTP SUBJECT:

>gb|AAG49577.1|
Length = 1416

Score = 40.4 bits

uveal autoantigen [Homo sapiens]

(93), Expect = 0.068

Identities = 44/182 (24%), Positives = 81/182 (44%), Gaps = 23/18B2 (l12%)
Query: 1 MEEVSEYLQQVENQLESCSKRLTKMETFALGVRLEAKEEIESII-——----LSDVVNRFEV 54
MEEVS+ +V+N  ++ K+L E L K ++B+ I L+++ ++E
Sbjct: 1198 MEEVSKLOSEVONTKQAL-KELETREVVDLSKYKATKSDLETQISSLMNEKLANLNRKYEE 1256
Query: 55 LCRDI-——-EDMLSRVEEIERMLRMAELPLLPIKEALTKAFVQ-——-HNSCKEKLTKVEP 106
+C ++ + +5 +E B + B+ KB K+ +E  ++E
Sbjct: 1257 VCEEVLHAKKKEISAKDEKELLHFSIEQEIKDOKERCDKSLTTITELQRRIQESAKQIEA 1316
Query: 107 YFKESPAYLTSEERL-QSLNQTLQRAY-------KESQKVSGLESEVRACREQLKDQVRQ 158
+ L ERL Q+LN Y ++50 + L+ +V++ +Q0L D RQ
Sbijct: 1317 KDNKITELLNDVERLKQALNGLSQLTYTSGNPTKRQSQLIDTLQHQVESLEQQLADADRQ 1376
Query: 159 FE 160
+
Sbject: 1377 HQ 1378

*#*# BLASTP QUERY:

>AAD18195.1 cpnel CPn0042

Figure 1. Example of mimetope identification. (a) Partial sequence alignment coming from the output file of the BLASTP algorithm analysis
between the exposed-protein database from Streptococcus pneumoniae and the non-redundant protein database. A putative linear B-cell epitope is
highlighted. (b) Partial sequence alignment coming from the output file of the BLASTP algorithm analysis between the exposed-protein database
from Chlamydia pneumoniae and the non-redundant protein database. A putative linear B-cell epitope is highlighted.

doi:10.1371/journal.pone.0000512.g001
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proteins should be good vaccine candidates. Although this situa-
tion has to be considered, we show below some of the alignments
between the exposed-pathogen proteins and several human
proteins that we think would be more significant to highlight as
an example of a previous massive analysis in a reverse vaccinology
study.

Streptococcus pneumoniae and Chlamydia pneumo-
niae: After the BLASTP output file analysis of these two patho-
gens, we could see that there exist several bacterial proteins
sharing a significant sequence-identity region with human
proteins, but we found a very interesting particular case on
which we focused in more detail (Figures la, 1b). Two proteins of
these pathogens have a stretch of shared sequence with a human
protein that is considered to have a uveal auto-antigen [78].
Futhermore, the region of each of the two proteins is not included
in the predicted transmembrane sections. These regions also are
not part of a signal peptide and there are also certain references
highlighting that these proteins may elicit antibody immune

a
Pseudomonas aeruginosa:

**+ BLASTP SUBJECT:

Pathogen-Host Epitope Mimicry

response [32-36,74-77]. These two proteins are the Zinc
metalloprotease zmpB precursor in the case of Steplococcus
pneumoniae and the Cpn0042 protein for Chlamydia pneumoniae.
Additionally, the stretch of shared sequence for the Streptococcus
pneumoniae protein does not correspond to the signal peptide
because it is not close to the N-terminal extreme, and the stretch of
shared sequence for Chlamydia pneumoniae protein is not a predicted
signal peptide either. Even though the epitope prediction servers
already mentioned could not corroborate that these sequence
sections correspond to putative linear B-cell epitopes, we
considered this case to be an important one.

In our supposed preliminary analysis of a reverse vaccinology
study, we should recommend, although these two proteins
previously seem to be good putative vaccine candidates, not using
these proteins for the development of new vaccines as they
probably generate antibodies against the human protein with
which they share a stretch of sequence. Moreover, we have to
consider that the human protein has an auto-antigen, so we

>ref |NP_078789.1| FYVE and coiled-coil domain containing 1 [Homo sapiens]
emb |CAC33883.1| FYVE and coiled-coil domain containing 1 [Homo sapiens]

Length = 1478

Score = 36.6 bits (83), Expect = 1.2

Identities = 35/122 (28%), Positives = 57/122 (46%), Gaps = 19/122 (15%)

Query:

EK LQ N+ GRN+4L++ K+QAL + IG+++ Q5+ R G

152 EKTLOKNIDGRNELIDAKMQAL----GKTSDEDRKIVGKVWAADQVQDSVALRAAGRAFE 207

Sbict: 622 EKELO-NVVGRNQLLEGKLOALOADYQALQORESAIQGSLASLEAEQASI-—RHLGDQME 678

Query: 208 SRNGALQVANTVIQSEVQMANASVQURQGESQ----------—-ASAREGEVNATIGQSQ 255

+ A4+ A ++4 + A 40 +4GE E+ A

Q A AR QQ
Sbjct: 879 ASLLAVRHKAKEAMKAQMAEKEAILQSKEGECQQLREEVEQCQQLAEARHRELRALESQCQ 738

Query: 256 KQ 257
+Q
Shijct: 739 QQ 740

*#*+ BLASTP QUERY:

>UniProt/TrEMBL|09I323|091323 PSEAE Translocator outer membrane protein PopD

b
Chlamydia pneumoniae:

*** BLASTP SUBJECT:

>ref |NP_003557.2| early endosome (membrane-bound compartment inside cells) antigen 1,

162kD [Homo sapiens])

=p|Q15075|EEAL_HUMAN Early endosome antigen 1 (Endosome-associated protein plé2) (Zinc

finger FYVE ( = P.aeruginosa) domain-containing protein 2)

emb |CAAS5632.1| endosomal protein [Homo sapiens])
Length = 1411

Score = 44.3 bits (103), Expect = 0.009

Identities = 51/217 (23%), Positives = 97/217 (44%), Gaps = 23/217 (10%)

Query: 128 LKAAKDQLTLEIEAFRNENGNLKTTAED——-
E

LEEQVSKLSEQLE.
L+ ++ L +I+A E LAEQUA+L+E+L+ ++

sbjct: 542 LEKEREDLYAKIQAGEGETIAVLNQLOEKNHILQEQVTQLTEKLENOSESHKQAQENLHD-

Query: 185 QEISSELKKLISGWDSKVVEQINTSIQALKVLLGQEWVQEAQTHVKAMQEQIQALQAEIL

+4 4 L+ D Vv 4+ I5+ L L E++ V + QI+A
Sbjct: 601 -QVQEQKAHLRAAQDR--VLSLETSVNELNSQLN-----ESKEKVSQLDIQIKAKTIELLL
Query: 245 GMHNQSTALQKSVENLL---—---VQD--QALTRVVGELLESENKLS--—-QACSALRQEIE

TA + +4N L 4D QL ++ +L + KL +C5 L

Sbjct: 653 SAEAAKTAQRADLONHLDTAQNALQDKQQELMKITIQLDQVIAKLODKQEHCSQLESHLK

Query: 294 KLAQHETSLQQRIDAMLAQEQNLAEQUTALEKMKQER 330
+ 4+ SL+Q+ + + 0 + L 44 H4+A
Sbjct: 713 EYHEKYLSLEQKTEELEGQIKKLEADSLEVKASKEQA 749

**+ BLASTP QUERY:

ALERINQLIQANAGDA
n

>Q9Z828 |Q928ZB_CHLPN Similarity te CT119 Inclusicn membrane protein A (Inch)

Figure 2. Example of mimetope identification. (a) Partial sequence alignment coming from the output file of the BLASTP algorithm analysis
between the exposed-protein database from Pseudomonas aeruginosa and the non-redundant protein database. A putative linear B-cell epitope is
highlighted. (b) Partial sequence alignment coming from the output file of the BLASTP algorithm analysis between the exposed-protein database
from Chlamydia pneumoniae and the non-redundant protein database. A putative linear B-cell epitope is highlighted.

doi:10.1371/journal.pone.0000512.9g002
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Streptococcus pyogenes:

*** BLASTP SUBJECT:

>gb |ARH51330.1| DOCK6 protein [Homo sapiens])
Length = 509

Score = 34.7 bits
Identities = 19/58

(78), Expect = 4.4
(32%), Positives = 29/58 (50%)

Pathogen-Host Epitope Mimicry

Query: 181 AQSASEGPWLLAEGLPTVEDHRHLPIGLQVELMFKAIGTIDNILISNQFISEEELAACT 238

AQ L+AE L +EDHRHLP+G + ++ 15+
Sbijct: 79

*** BLASTP QUERY:

>outer surface protein

+5 +E c+
AQCMVHAAALVAEYLALLEDHRHLPVGCVSFQNISSNVLEESAISDDILSPDEEGFCS 136

Figure 3. Example of mimetope identification. Partial sequence alignment coming from the output file of the BLASTP algorithm analysis between
the exposed-protein database from Streptococcus pyogenes and the non-redundant protein database. A putative linear B-cell epitope is highlighted.

doi:10.1371/journal.pone.0000512.g003

propose that perhaps a previous infection with Sterplococcus
pneumoniae or Chlamydia pneumoniae could promote an auto-immune
reaction at the uveal tract apart from producing infection by
themselves.

Pseudomonas aeruginosa and Chlamydia pneumo-
The precise analysis of the BLASTP output file for these
two pathogens allowed us to identify two proteins containing
a significant sequence-identity region with a human protein com-
pletely differently annotated from the pathogen one (Figures 2a,
2b). Additionally, these sections do not correspond to trans-
membrane regions and there are also certain references high-
lighting the antibody elicitation and therefore the consequential
immune response [45-49,74-77]. Futhermore, the epitope-
prediction servers already mentioned could corroborate that the
two 1dentity regions correspond to putative linear B-cell epitopes.
These proteins are the Translocator outer membrane protein
PopD, a constituent of the Pseudomonas aeruginosa Type 1II
Apparatus, and the Inclusion membrane protein A in the case of
Chlamydia pneumoniae. Obviously, the stretches of shared sequence
do not correspond to the signal peptide because they are not close
to the N-terminal extreme of the protein.

We considered this example a truly important one for showing
why a protein should not be used as a vaccine candidate after
a preliminary analysis in a reverse vaccinology study. As is seen in
the above alignments, the two pathogen proteins share a significant
sequence-identity region with human proteins, so they are
candidates for generating an antibody response against the human
protein with which they share this stretch of sequence. Moreover,
these human proteins are part of the FYVE domain containing
proteins and are required for the formation of early-endosomal
membranes that are the main resource for phagocyte action [79—
83]. For this reason, the probable antibody elicitation against these
proteins could generate a serious auto-immune problem for the
endosome-mediated action in the human defence system.

Streptococcus pyogenes: The final BLASTP output file gave
us a remarkable result indicating that there exists only one
pathogen protein sharing a certain sequence identity-region with
a human protein differently annotated from the pathogen one

niae:
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Final Considerations

We have proposed a protein sequence analysis that may be applied
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