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The best way to prevent diseases caused by pathogens is by the use of vaccines. The advent of genomics enables genome-
wide searches of new vaccine candidates, called reverse vaccinology. The most common strategy to apply reverse vaccinology
is by designing subunit recombinant vaccines, which usually generate an humoral immune response due to B-cell epitopes in
proteins. A major problem for this strategy is the identification of protective immunogenic proteins from the surfome of the
pathogen. Epitope mimicry may lead to auto-immune phenomena related to several human diseases. A sequence-based
computational analysis has been carried out applying the BLASTP algorithm. Therefore, two huge databases have been
created, one with the most complete and current linear B-cell epitopes, and the other one with the surface-protein sequences
of the main human respiratory bacterial pathogens. We found that none of the 7353 linear B-cell epitopes analysed shares any
sequence identity region with human proteins capable of generating antibodies, and that only 1% of the 2175 exposed
proteins analysed contain a stretch of shared sequence with the human proteome. These findings suggest the existence of
a mechanism to avoid autoimmunity. We also propose a strategy for corroborating or warning about the viability of a protein
linear B-cell epitope as a putative vaccine candidate in a reverse vaccinology study; so, epitopes without any sequence identity
with human proteins should be very good vaccine candidates, and the other way around.
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INTRODUCTION
Vaccination is the preventive method of choice to fight against

microbial pathogens and presents the best cost/benefit ratio

among current clinical and pharmaceutical practices. There are

many reasons and serious threats which make the development of

new advanced vaccines necessary, for example, avian flu the

spread of antibiotic-resistant strains of pathogens [1].

The advent of genomics and high-throughput cloning/expres-

sion of large sets of genomic ORFs from pathogens makes

genome-wide searches of new vaccine candidates possible. This

systematic identification of potential antigens and virulence factors

of a pathogen without the need for its cultivation has been termed

‘‘reverse vaccinology’’ [2,3]. The objective is to find proteins

eliciting antibodies capable of binding to the bacterial surface, and

through interaction with the complement system kill certain

pathogen microorganisms. However, current studies show that

only a small fraction of the pathogen proteins, most surface-

exposed or secreted, appears to elicit antibodies with bactericidal

activity [2,3]. It is generally considered that a bactericidal assay,

that is, an antigen that elicits murine antibodies capable of

triggering bacterial-cell death in vitro in a complement-dependent

manner, is a good candidate for human vaccine development [4–

7]. However, a major obstacle to reverse vaccinology, besides

sequence and antigenic variability, is the difficulty to identify, from

the pathogen proteome, those proteins that will generate a pro-

tective response. Typically, only a very small fraction of the

antibodies raised in large-scale antigen-screening studies are

bactericidal [3,8,9].

Epitope mimicry appears when a stretch of shared sequence,

called ‘‘mimetope’’, exists between a protein of a certain pathogen

and a protein of its host. In some cases this may lead to auto-

immune phenomena most of them related to several diseases.

Different pathogens presenting epitope mimicry could cause auto-

immune diseases like, for instance, Borrelia burgdorferi, leading to

Lyme disease or neuroborreliosis; several Streptococci related to

Rheumatic Fever, Tripanosoma cruzi, causing Chaga’s Disease:

Campylobacter jejuni, causing Guillain- Barré Syndrome; a group of

viruses and also Chlamydia pneumoniae, related to Multiple Sclerosis,

B3 coxsakieviruses, leading to myocarditis; B4 coxsakieviruses or

cytomegaloviruses, leading to Type I Diabetes; HSV-1, causing

herpetic stromal kerartitis or some kind of auto-immunity caused

by mimicry of Chlamydia pneumoniae outer-membrane proteins

and myosin [10]. For several of these kinds of auto-immune

diseases, we do not yet know what the possible causal agent is like,

for example, with Primary Biliary Cirrhosis, Psoriasis, Scleroder-

ma, Sjögren’s Syndrome or Lupus.

In this context, a method to quickly identify potential protective

antigens from the pathogen proteome would be very helpful. Our

initial hypothesis is that, given that one of the most important tasks

of the immune system is the differentiation between self and non-

self proteins, this system will discard eliciting antibodies against

pathogen proteins sharing epitopes with host proteins. On the

other hand, epitope mimicry could cause several auto-immune

diseases as stated above [10]. Moreover, nowadays it is thought

that humoral response against foreign proteins can distinguish

between dangerous proteins and nondangerous ones [11]. For this

reason we have focused our study only on pathogen proteins,
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probably dangerous, and not on human self-microbiota proteins,

most of them nondangerous.

A sequence-based computational analysis has been carried out

to exemplify what has been said above. We studied the complete

set of exposed surface proteins –the surfome- of most of the

sequenced respiratory human-pathogen microorganisms with the

aim of elucidating the presence of stretches of a shared sequence,

which have characteristics of putative T-dependent B-cell

epitopes, between human and pathogen proteins. This group of

bacterial proteins, recently labelled the surfome [7], is susceptible

to generating antibody immune response via B-cell epitopes, and it

has been reported that some of them effectively deal with this type

of response. The paradigm analysed here could be used to describe

how the bacterial proteins sharing linear B-cell epitopes with

human proteins avoid immunoreactivity against the host if these

sequence stretches tend to produce antibodies. Many questions like

the following ones were formulated: Are these produced antibodies

non-protective ones? Or are these proteins not producing antibody

responses even though they were able to do it? Auto-immune

diseases should appear if the exposed proteins of the bacterial

pathogens share linear B-cell epitopes with any human protein, so

this study may be useful to identify them [2,3]. These findings

may also help us to identify proteins which should not be used

as putative vaccine candidates in a reverse vaccinology study.

Moreover, the existence of a mechanism to avoid auto-immunity

could be proposed. On the other hand, we therefore studied the

current, already-known linear B-cell epitopes to elucidate if these

sequence stretches either share or do not share common regions

with human proteins. This study may help us to say that novel

epitope mimicries could generate new auto-immune diseases and

could reinforce the hypothesis of the existence of the mechanism to

avoid auto-immunity proposed above.

A linear or continuous B-cell epitope is a specific region of an

antigen to which an antibody binds and its constitutive residues are

sequential in the primary sequence of the protein. In contrast,

conformational or discontinuous B-cell epitopes are highly

conformational-dependant and its constitutive residues are non-

sequential in the primary sequence. That is why conformational B-

cell epitopes were not included in our field of study, thus we

restricted our study to the group of linear B-cell epitopes. The lack

of many databases for conformational B-cell epitopes and the

poorly developed method for predicting it from structure, enforced

this decision. We have to take into account that only the protein

sequences sharing certain sequence identity regions were consid-

ered if these two proteins are different and do not have anything in

common in their annotation. This decision was assumed due to the

fact that there exist many proteins of completely different

organisms grouped in the same family or being considered as

protein-like ones and obviously these proteins are condemned to

share common regions, so they were not included in our field of

study. The antibodies, in fact, recognise a small part of a big

molecule. In this sense, two quite different proteins could be

considered that would be recognised by the same antibody if both

shared a small epitope of five to six amino acids, more or less,

which is the usually accepted minimal length for a linear B-cell

epitope.

As a brief comment of our results, we found that none of the

well-known protective antigens under our study present putative,

common linear B-cell epitopes with the host proteins, which

demonstrates the existence of a system that tries to avoid

autoimmunity that select linear B-cell epitopes not sharing

sequence stretches with human proteins. On the other hand, we

found several pathogen proteins which share sequence stretches

with the host ones, so we recommend not to using these proteins as

putative vaccine candidates in a reverse vaccinology study. These

proteins are a small group of the total surfome studied and they

also elicit antibodies with great difficulty, suggesting the same

immunotolerance effect that tries to avoid autoimmunity men-

tioned here [12].

MATERIALS AND METHODS

Generation of the Datasets
With the aim of proposing a method applicable in a previous

reverse vaccinology study, databases were made of the exposed

proteins from the up-to-date, sequenced main human bacterial

respiratory pathogens, which are: Neisseria meningitidis serogroup B,

Legionella pneumophila (Lens strain), Streptococcus pneumoniae, Haemo-

philus influenzae, Pseudomonas aeruginosa, Streptococcus pyogenes serotype

M1, Yersinia pestis, Bordetella bronchiseptica, Staphylococcus aureus (COL

strain), Pasteurella multocida, Bordetella parapertussis, Bordetella pertussis,

Chlamydia pneumoniae (Chlamydophila pneumoniae) and Mycoplasma

pneumoniae. Besides, to attempt to demonstrate our previous

proposal that some selectivity exists to try to avoid the auto-

immune response, we obtained a complete set of linear B-cell

epitopes from the three most complete and current epitope

databases.

On one hand, a surface-protein sequence database for each

pathogen was created downloading the protein sequences from the

HAMAP tool under the ExPASy web server [13,14]. Furthermore,

exhaustive searches in the NCBI [www.ncbi.nlm.nih.gov/entrez],

SCIRUS for scientific information [www.scirus.com] and in

specialised journals helped us to find proteins with certain interest

for our study because of their reported capacity to generate

antibody immune response via B-cell epitope activation. These

protein sequences were added to each pathogen database. A total

of 2175 proteins sequences from the surfome [7] of the studied

pathogens was analysed.

On the other hand, we developed different computational

programmes to obtain the human pathogen section of the Bcipep

database [15], the most complete and specific B-cell epitope

database now available from which 2275 pathogen linear B-cell

epitopes were obtained. In addition, we performed a similar

procedure to collect the B-cell epitope portion of the IEDB

database [16], an extensive immune epitope database appeared in

early-2006 with a total of 2154 linear B-cell epitopes. Finally, we

could computationally retrieve all the linear B-cell epitopes from

the AntiJen database [17], an important immunological database

that contains quantitative binding data for epitope peptides from

which we could obtain 2924 entries. Thus a total of 7353 linear B-

cell epitopes has been studied and most of them were formed by at

least six or more amino acids.

Procedure
These database files, 14 consisting of the different pathogen-

exposed proteins and 3 of the most powerful recent databases,

including linear B-cell epitopes, were generated to analyse if there

exist sequence identities between human proteins and the collected

surface microorganism proteins or between the same human

proteins and the complete set of linear B-cell epitopes obtained.

This study may lead us to request a method based on sequence

similarity, like the one obtained here, that ought to be applied in

a previous step of a reverse vaccinology study. Furthermore, this

should help us to discover putative pathogens enhancing auto-

immunity after their infection or demonstrating that some

selectivity exists to avoid the auto-immune response.

For each of the pathogens analysed, downloading was started

from the HAMAP tool under the ExPASy web server of all protein

Pathogen-Host Epitope Mimicry
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sequences whose annotation included the following keywords:

Outer, membrane, lipoprotein, adhesin, surface, secreted or

exposed. Then, as said above, extensive searches were carried

out through the NCBI web server, the SCIRUS web site and

several specialised journals, with the aim of finding scientific

articles talking about proteins that generate antibody immune

response via B-cell epitope activation or could produce auto-

immunity and probably act as putative vaccine candidates. An

initial sequence database (ID) was made as explained before.

Additionally, this initial database file for each pathogen was used

to run a BLASTP algorithm analysis [18] against the protein non-

redundant database at the NCBI ftp site [www.ncbi.nlm.nih.gov/

Ftp]. If we found that some of these proteins had stretches of

shared sequence with human proteins, thanks to this preliminary

BLASTP analysis, we constructed a more extensive sequence

database (ED) for each pathogen using, once again, the HAMAP

tool under the ExPASy web server, now including all protein

sequences that contain, in their annotation, the hypothetical,

probable, conserved or putative protein annotation statements also

considering the above-described keywords. This ED file of protein

sequences for each pathogen served as input for a more accurate

BLASTP analysis.

The BLASTP output file for each pathogen analysed had been

carefully scrutinised to obtain a last file (LF) including the

alignments that comprise local, significant sequence similarity

between the pathogen query protein and a subject human one if

one exists. A stretch of shared sequence was considered as

a putative mimetope if there were at least 5 sequential, equal

amino acids or if it is a region to take into account because of its

amino acid physico-chemical properties similarity. For the LF file

of exposed protein databases of the 14 pathogens analysed, we

checked to see if these similar stretches correspond to trans-

membrane regions because a B-cell epitope cannot exist in

a transmembrane region. This was done by applying TransMem,

a programme for predicting transmembrane domains in proteins

[19]. We also checked to see if these stretches of shared sequence

coincide with the signal peptide section of the protein, when these

are close to the N-terminal extreme, using the SignalP 3.0 Server

[20]. Lastly, it was checked to determine if these stretches are

predicted as putative linear B-cell epitopes using prediction servers

like ANTIGENIC [21], ABCpred [22], and BcePred [23].

B-Cell Epitope Database
Thanks to the Bcipep, IEDB and AntiJen databases, we could

group together a total of 7353 linear B-cell epitopes, preparing

them for the subsequent BLASTP analysis against the human

protein, non-redundant database at the NCBI ftp site.

Exposed Protein Databases
Regarding Neisseria meningitidis serogroup B, the ID contained 62

protein sequences [5,9,24–28] and the ED was made up of 263

protein sequences. In the case of Legionella pneumophila (Lens strain),

the ID had 17 protein sequences [29–31] and the ED consisted of

352 protein sequences. The Streptococcus pneumoniae study allowed us

to obtain an ID that comprised 27 protein sequences [7,32–36]

and an ED of 338 protein sequences. Regarding Haemophilus

influenzae, we were able to generate an ID of 25 protein sequences

[37–41]. In this case, we did not search for more protein sequences

because we did not find any previous sequence-identity region

between the proteins from the ID and human ones, so the

database remained consisting of a total of 25 protein sequences.

Concerning Pseudomonas aeruginosa, we were able to assemble an ID

of 34 protein sequences [42–49] and a huge ED that contained

569 protein sequences. The Streptococcus pyogenes serotype M1 study

allowed us to obtain an ID of 30 protein sequences [7,50–58] and

an ED of 278 protein sequences. Regarding Yersinia pestis, we only

created an ID of 32 protein sequences [59–61]. We did not

increase this ID because we did not find any region with a sequence

identity between the proteins from this database and human

proteins in the preliminary BLASTP analysis. Concerning

Bordetella bronchiseptica, we could group together 46 protein

sequences in its ID [62–64]. Nothing else was added to this ID

because we did not find stretches of shared sequence between the

proteins from this database and human ones. In the case of

Staphylococcus aureus (strain COL), we were able to generate an ID of

43 protein sequences [65–67] and we could extend it to 490

protein sequences, producing a large ED. Regarding Pasteurella

multocida assembled an ID of 20 protein sequences [68]. Nothing

else was added to this ID because we did not find any local

sequence-identity regions between the sequences from this

database and human proteins. We made the same analysis for

the rest of the pathogens in our study, which are Bordetella

parapertussis, Bordetella pertussis, Chlamydia pneumoniae (Chlamydophila

pneumoniae) and Mycoplasma pneumoniae. In the cases of Bordetella

parapertussis and Bordetella pertussis, we were able to generate an ID

of 28 and 37 sequences respectively [69–73]. For Chlamydia

pneumoniae (Chlamydophila pneumoniae), the ID was made up of 68

protein sequences [74–77]. Regarding Mycoplasma pneumoniae, the

ID contained 198 protein sequences. These last four pathogens

have not got any sequence-identity region between the proteins

from the IDs and human ones, so the databases were not enlarged.

Taking into account all of the pathogens analysed, we were able to

study the sequence of a total of 2175 proteins.

RESULTS AND DISCUSSION

B-Cell Epitope Analysis
In terms of our study, after analysing the three database files of

linear B-cell epitopes obtained via BLASTP [18], an exhaustive

review of the output files obtained led us to the proposal that some

selectivity really does exist to try to avoid auto-immunity. We

concluded this because we could see that none of those 7353 linear

B-cell epitopes shared any sequence identity region with human

proteins capable of generating antibodies despite the already

known epitopes that generate auto-antibodies and cause auto-

immune diseases, the allergies caused by some epitopes, or certain

sequence identities found between some artificial peptides and

human proteins after their administration. We found that well-

known protective antigens do not present putative common linear

B-cell epitopes with the host proteins, so this fact reinforces what

we have postulated before that some selectivity may exist to try to

avoid auto-immunity. Moreover, pathogen proteins which share

sequence stretches with the host ones elicit antibodies with great

difficulty, demonstrating the immunotolerance effect [12].

Exposed Protein Analysis
The LF for each pathogen analysed, coming from the output file

after the BLASTP analysis [18], which contains the alignments

comprising local, significant sequence similarity between the

pathogen query protein and a subject human one, have been

carefully scrutinised. Despite the huge amount of exposed proteins

and pathogens analysed, around 2000, we could only consider

approximately 20 protein alignments, representing only 1% of the

total of proteins analysed. Consequently, we can say that, due to

the probable existing selectivity mechanism to avoid auto-

immunity already mentioned, the finding of pathogen-exposed

proteins that have a stretch of shared sequence, considered as

Pathogen-Host Epitope Mimicry
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a putative linear B-cell epitope, with human proteins is very

difficult. As said before, epitope mimicry between proteins may

lead to auto-immune phenomena most of them related to several

diseases, but also pathogen proteins which share sequence

stretches with the host ones elicit antibodies with great difficulty

demonstrating the immunotolerance effect. The way of trying to

avoid this mimicry and the presence, in some cases, of this

immunotolerance effect, is to reinforce the difficulty in finding

regions of sequence identity between pathogen and host

proteins.

Here we show an example of a procedure, applied in this case

only to the main human, bacterial respiratory pathogens, which

we think might be genuinely helpful for the development of new

vaccines when corroborating or advising the viability of a pathogen

surfome protein [7] as a putative vaccine candidate in a reverse

vaccinology study [2,3].

As stated above, only 20 proteins of a total of 2000 analysed

share a significant sequence-identity region with human proteins,

so we strongly advise against recommending these proteins as

putative vaccine candidates. On the contrary, the rest of the

Figure 1. Example of mimetope identification. (a) Partial sequence alignment coming from the output file of the BLASTP algorithm analysis
between the exposed-protein database from Streptococcus pneumoniae and the non-redundant protein database. A putative linear B-cell epitope is
highlighted. (b) Partial sequence alignment coming from the output file of the BLASTP algorithm analysis between the exposed-protein database
from Chlamydia pneumoniae and the non-redundant protein database. A putative linear B-cell epitope is highlighted.
doi:10.1371/journal.pone.0000512.g001

Pathogen-Host Epitope Mimicry
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proteins should be good vaccine candidates. Although this situa-

tion has to be considered, we show below some of the alignments

between the exposed-pathogen proteins and several human

proteins that we think would be more significant to highlight as

an example of a previous massive analysis in a reverse vaccinology

study.

Streptococcus pneumoniae and Chlamydia pneumo-

niae: After the BLASTP output file analysis of these two patho-

gens, we could see that there exist several bacterial proteins

sharing a significant sequence-identity region with human

proteins, but we found a very interesting particular case on

which we focused in more detail (Figures 1a, 1b). Two proteins of

these pathogens have a stretch of shared sequence with a human

protein that is considered to have a uveal auto-antigen [78].

Futhermore, the region of each of the two proteins is not included

in the predicted transmembrane sections. These regions also are

not part of a signal peptide and there are also certain references

highlighting that these proteins may elicit antibody immune

response [32–36,74–77]. These two proteins are the Zinc

metalloprotease zmpB precursor in the case of Streptococcus

pneumoniae and the Cpn0042 protein for Chlamydia pneumoniae.

Additionally, the stretch of shared sequence for the Streptococcus

pneumoniae protein does not correspond to the signal peptide

because it is not close to the N-terminal extreme, and the stretch of

shared sequence for Chlamydia pneumoniae protein is not a predicted

signal peptide either. Even though the epitope prediction servers

already mentioned could not corroborate that these sequence

sections correspond to putative linear B-cell epitopes, we

considered this case to be an important one.

In our supposed preliminary analysis of a reverse vaccinology

study, we should recommend, although these two proteins

previously seem to be good putative vaccine candidates, not using

these proteins for the development of new vaccines as they

probably generate antibodies against the human protein with

which they share a stretch of sequence. Moreover, we have to

consider that the human protein has an auto-antigen, so we

Figure 2. Example of mimetope identification. (a) Partial sequence alignment coming from the output file of the BLASTP algorithm analysis
between the exposed-protein database from Pseudomonas aeruginosa and the non-redundant protein database. A putative linear B-cell epitope is
highlighted. (b) Partial sequence alignment coming from the output file of the BLASTP algorithm analysis between the exposed-protein database
from Chlamydia pneumoniae and the non-redundant protein database. A putative linear B-cell epitope is highlighted.
doi:10.1371/journal.pone.0000512.g002

Pathogen-Host Epitope Mimicry
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propose that perhaps a previous infection with Sterptococcus

pneumoniae or Chlamydia pneumoniae could promote an auto-immune

reaction at the uveal tract apart from producing infection by

themselves.
Pseudomonas aeruginosa and Chlamydia pneumo-

niae: The precise analysis of the BLASTP output file for these

two pathogens allowed us to identify two proteins containing

a significant sequence-identity region with a human protein com-

pletely differently annotated from the pathogen one (Figures 2a,

2b). Additionally, these sections do not correspond to trans-

membrane regions and there are also certain references high-

lighting the antibody elicitation and therefore the consequential

immune response [45–49,74–77]. Futhermore, the epitope-

prediction servers already mentioned could corroborate that the

two identity regions correspond to putative linear B-cell epitopes.

These proteins are the Translocator outer membrane protein

PopD, a constituent of the Pseudomonas aeruginosa Type III

Apparatus, and the Inclusion membrane protein A in the case of

Chlamydia pneumoniae. Obviously, the stretches of shared sequence

do not correspond to the signal peptide because they are not close

to the N-terminal extreme of the protein.

We considered this example a truly important one for showing

why a protein should not be used as a vaccine candidate after

a preliminary analysis in a reverse vaccinology study. As is seen in

the above alignments, the two pathogen proteins share a significant

sequence-identity region with human proteins, so they are

candidates for generating an antibody response against the human

protein with which they share this stretch of sequence. Moreover,

these human proteins are part of the FYVE domain containing

proteins and are required for the formation of early-endosomal

membranes that are the main resource for phagocyte action [79–

83]. For this reason, the probable antibody elicitation against these

proteins could generate a serious auto-immune problem for the

endosome-mediated action in the human defence system.
Streptococcus pyogenes: The final BLASTP output file gave

us a remarkable result indicating that there exists only one

pathogen protein sharing a certain sequence identity-region with

a human protein differently annotated from the pathogen one

(Figure 3). In addition to this protein having all the characteristics

to be a putative vaccine candidate and to elicit antibody immune

response [55,56], the epitope-prediction servers already mentioned

could corroborate that the sequence-identity region corresponds to

a putative linear B-cell epitope and the transmembrane-prediction

server shows that this sequence identity region does not coincide

with the predicted transmembrane ones. Obviously, the stretches

of shared sequence do not correspond to the signal peptide

because they are not close to the N-terminal extreme of the

protein.

As can be seen here, this pathogen protein has a stretch of

shared sequence with a human protein called DOCK6. Conse-

quently, the putative antibodies generated against this exposed-

pathogen protein could attack DOCK6, leading to auto-immune

effects. DOCK6 promotes neurite outgrowth [84], so this protein

is necessary for neural development and we believe that a lack of

DOCK6 could be quite dangerous for human health. Therefore,

we also recommend not considering this outer-surface protein as

a putative vaccine candidate.

Final Considerations
We have proposed a protein sequence analysis that may be applied

before a reverse vaccinology study for which we have shown

several examples. Our proposal may be used in this kind of

massive analysis for the development of new vaccines when

corroborating or warning about the viability of a linear B-cell

epitope as a putative vaccine candidate. Therefore, epitopes

without any sequence identity with human proteins should be very

good vaccine candidates, and the other way round.
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