|| | [} /)
Microbial Cell Factories Blemend i

Review

Protein folding and conformational stress in microbial cells
producing recombinant proteins: a host comparative overview
Brigitte Gasser!, Markku Saloheimo?, Ursula Rinas3, Martin Dragosits!,
Escarlata Rodriguez-Carmona?, Kristin Baumann?>, Maria Giuliani®,
Ermenegilda Parrilli®, Paola Branduardi’, Christine Lang8, Danilo Porro?,
Pau Ferrer>, Maria Luisa Tutino®, Diethard Mattanovich*! and

Antonio Villaverde4

Address: 'University of Natural Resources and Applied Life Sciences Vienna, Department of Biotechnology, Vienna, Austria, 2VIT Technical
Research Centre, Espoo, Finland, 3Helmholtz Center for Infection Research, Braunschweig, Germany, Autonomous University of Barcelona,
Institute for Biotechnology and Biomedicine, Department of Genetics and Microbiology, and CIBER-BBN Network in Bioengineering,
Biomaterials and Nanomedicine, Barcelona, Spain, SAutonomous University of Barcelona, Department of Chemical Engineering, Barcelona,
Spain, ®University of Naples Federico II, School of Biotechnological Sciences, Naples, Italy, 7University of Milano-Bicocca, Department of
Biotechnology and Bioscience, Milan, Italy and 8Technical University Berlin, Faculty III, Institute for Microbiology and Genetics, Berlin, Germany

Email: Brigitte Gasser - brigitte.gasser@boku.ac.at; Markku Saloheimo - markku.saloheimo@vtt.fi; Ursula Rinas - ursula.rinas@helmholtz-
hzi.de; Martin Dragosits - martin.dragosits@boku.ac.at; Escarlata Rodriguez-Carmona - escarlata.rodriguez@uab.cat;

Kristin Baumann - kristin.baumann@uab.es; Maria Giuliani - maria.giuliani@unina.it; Ermenegilda Parrilli - erparril@unina.it;

Paola Branduardi - paola.branduardi@unimib.it; Christine Lang - christine.lang@tu-berlin.de; Danilo Porro - danilo.porro@unimib.it;
Pau Ferrer - pau.ferrer@uab.cat; Maria Luisa Tutino - tutino@unina.it; Diethard Mattanovich* - diethard.mattanovich@boku.ac.at;
Antonio Villaverde - avillaverde@servet.uab.es

* Corresponding author

Published: 4 April 2008 Received: 18 December 2007
Microbial Cell Factories 2008, 7:11  doi:10.1186/1475-2859-7-11 Accepted: 4 April 2008
This article is available from: http://www.microbialcellfactories.com/content/7/1/1 1

© 2008 Gasser et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Different species of microorganisms including yeasts, filamentous fungi and bacteria have been used
in the past 25 years for the controlled production of foreign proteins of scientific, pharmacological
or industrial interest. A major obstacle for protein production processes and a limit to overall
success has been the abundance of misfolded polypeptides, which fail to reach their native
conformation. The presence of misfolded or folding-reluctant protein species causes considerable
stress in host cells. The characterization of such adverse conditions and the elicited cell responses
have permitted to better understand the physiology and molecular biology of conformational
stress. Therefore, microbial cell factories for recombinant protein production are depicted here as
a source of knowledge that has considerably helped to picture the extremely rich landscape of in
vivo protein folding, and the main cellular players of this complex process are described for the
most important cell factories used for biotechnological purposes.

Review reach their native conformation in heterologous host
One of the main bottlenecks in recombinant protein pro-  cells, which usually results into their prevalence in the
duction is the inability of the foreign polypeptides to  insoluble cell fraction. The unusually high and non-phys-
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iological rates of recombinant protein production and the
occurrence of significant amounts of misfolded protein
species drive the cells to a global conformational stress
condition. This situation is characterized by a series of
individual physiological responses provoked in order to
minimize any toxicity of misfolded protein species and to
restore cellular folding homeostasis. The generalized use
of microbial cell factories for biological synthesis of pro-
teins and the growing interest in the physiological aspects
of conformational stress have converted recombinant
cells into schools of protein folding, from which scientists
are learning about the cell-protein relationships during
the complex process of in vivo protein folding.

The purpose of this review is to summarize the major con-
cepts of the cell biology of protein folding. For that,
eukaryotic cells, illustrated by yeasts and filamentous
fungi are dissected regarding the mechanics and composi-
tion of their folding machinery, misfolding stress
responses and strategies to cope with conformational
stress. The complexity of the folding, trafficking and secre-
tion machineries of these cell factories is presented versus
the relatively simple folding scheme in bacterial cells such
as Escherichia coli that are also common hosts for recom-
binant protein production. Despite the existing obvious
differences, evolutionary conserved physiological traits
regarding folding stress can be identified when comparing
eukaryotic and prokaryotic hosts. Furthermore, practical
implications of all these findings to improve protein pro-
duction processes are discussed in their biotechnological
context.

Protein folding and conformational stress in
eukaryotic cells

Yeasts and filamentous fungi are among the most fre-
quently used eukaryotic cell systems for recombinant pro-
tein production, in part due to the performance of post-
translational modifications that bacteria cannot perform,
that are, in most cases, required for proper protein activ-
ity. In eukaryotic cells, endoplasmatic reticullum (ER) res-
ident proteins are responsible for correct protein folding.
The list of such folding-assistant proteins includes cal-
nexin, chaperones of the hsp70 and hsp90 families (e.g.
BiP/Grp78, Grp94), the protein disulfide isomerases (Pdi)
which catalyze the formation of disulfide bonds and the
peptidyl-prolyl-isomerases. Some of the post-transla-
tional modifications such as N-glycosylation are initiated
in the ER lumen. Both natural and recombinant proteins
are only exported to the Golgi by vesicular transport when
their correct conformation has been assured by a glucose-
dependent surveillance mechanism of the ER. Unless
there is a differing signal, proteins intended for secretion
are directed from the Golgi to the outside of the plasma
membrane by specific transport vesicles [1,2]. A schematic
overview of the protein folding processes is presented in
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Figure 1, while the responses to secretion stress are sum-
marized in Figure 2.

The protein folding process and subsequent secretion is a
rather complex process involving many interacting partic-
ipants. Due to this interdependence, genetically increas-
ing the rate of one step can lead to rate-limitation of
another one, which can then become the bottleneck of the
expression system. Moreover, in most cases the rate limit-
ing step in the eukaryotic secretion pathway has been
identified to be the exit of proteins from the ER [3].
Linked to this control point is a mechanism called ER-
associated protein degradation (ERAD), which is respon-
sible for the retention of misfolded or unmodified non-
functional proteins in the ER and their subsequent
removal. Protein degradation is executed by linking the
misfolded protein to ubiquitin after it has been re-translo-
cated into the cytosol through the same ER translocon
pore where it had been imported. The ubiquitin-marked
protein is then recognized and degraded by the 26S pro-
teasome in the cytosol (recently reviewed by [4,5].

Two quality control systems in the ER ensure that only
correctly folded, modified and assembled proteins travel
further along the secretory pathway. The UDP-glu-
cose:glycoprotein glucosyltransferase (UGT) is a central
player of glycoprotein quality control in the ER (reviewed
among others by [6]). After addition of the core glycan
(GlcNac2-Man9-Glc3) to specific asparagine residues of
the nascent polypeptide, the three terminal glucose resi-
dues have to be clipped off before the protein can exit the
ER. Non-native polypeptides are tagged for reassociation
with the ER-lectin calnexin by readdition of the terminal
glucose onto the N-glycan mediated by UGT. This enzyme
specifically recognizes and binds to molten globule-like
folding intermediates, thereby acting as sensor of the pro-
tein folding status. Re-glucosylation of erroneous glyco-
proteins prevents their release from the calnexin cycle and
subsequent secretion. Upon persistent misfolding, N-gly-
cosylated polypeptides are slowly released from calnexin
and enter a second level of retention-based ER quality
control by aggregating with the BiP chaperone complex
[7]. This correlates with the loss in the ability to emend
misfolding. The BiP complex is involved in co-transla-
tional translocation of the nascent polypeptide into the
ER lumen and preferentially binds to hydrophobic
patches. Prolonged binding to either calnexin or the BiP
complex targets the polypeptides to the ERAD, however,
the exact mechanisms remain elusive (reviewed by [6]).
The fact that accumulation of proteins in the ER is able to
influence the synthesis of foldases and chaperones such as
BiP and Pdi by transcriptional activation in the nucleus
lead to the conclusion early on that there must be an intra-
cellular signalling pathway from the ER to the nucleus,
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Schematic representation of protein folding, quality control, degradation and secretion in yeast (as an exam-
ple for lower eukaryotic cells). Secretory proteins are transported into the ER through the Secé1 translocon complex of
the ER membrane either co-translationally or post-translationally. In the latter case, cytosolic chaperones (Ssal-4, Ssb, Ssel/2)
support solubility and prevent aggregation of the polypeptide chains. After translocation to the ER, nascent polypeptides are
bound by BiP and mediated to mature folding in an ATP-dependent cyclic process of release of and binding to BiP. The forma-
tion of correct disulfide bonds is mediated in a cycle of Pdi and Ero activity, which may lead to the formation of reactive oxygen
species (ROS). Correctly folded protein is released to transport vesicles, while prolonged BiP binding, indicating misfolding,
leads to retrograde translocation to the cytosol and proteasomal degradation (ERAD). Nascent glycoproteins are bound by
calnexin and mediated to correct folding and processing of the N-glycans. Failed folding leads to binding by the BiP complex
and targeting to ERAD, while correctly folded and processed glycoproteins are released to transport vesicles. Prolonged bind-
ing of BiP to partially misfolded proteins leads to the induction of the unfolded protein response (UPR), mediated by Irel (see

also figure 2).

called the unfolded protein response (UPR) (for reviews
see [8,9]).

After having passed ER quality control successfully, pro-
teins intended for secretion have to be transported to the
Golgi network. Specialized cargo vesicles that selectively
incorporate these proteins bud from the ER and are tar-
geted to the Golgi membrane by the activity of the coat

protein complex I (COPII). In the Golgi network proteins
undergo additional post-translational modifications and
are subjected to sorting mechanisms that finally target
them to their final destination. Possible trafficking routes
include direction to the plasma membrane, to the endo-
somal compartments, to the vacuole, as well as retrograde
transport to the ER (review by [10]). Secretory proteins are
then delivered to the cell surface by specialized post-Golgi
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Schematic representation of secretion stress responses in eukaryotes Secretory proteins are translocated to the ER
either during their translation or post-translationally. Folding of these proteins in the ER can be disturbed by environmental
factors or it can be inhibited experimentally by agents inhibiting protein folding like dithiothreitol (DTT) and Ca-ionophores or
agents inhibiting glycosylation like tunicamycin. It has been observed that foreign proteins often do not fold well and cause con-
formational stress. Several responses of the cell to impaired protein folding in the ER have been discovered: |.) Unfolded pro-
tein response (UPR). Genes encoding folding helpers like the chaperone Bip and the foldase protein disulfide isomerase Pdi,
and a large number of other genes involved in other functions of the secretory pathway are induced. The proteins Irel and
Hacl involved in this signal transduction pathway are shown in the figure. 2.) Translation attenuation. The translation initiation
factor elF2 alpha is phosphorylated, and subsequently translation initiation is inhibited. This reduces the influx of proteins into
the ER. This response is only known from mammalian cells. 3.) Repression under secretion stress (RESS). The mRNA levels of
genes encoding secreted proteins are down-regulated during ER stress. This response has been discovered in filamentous fungi,
but there is evidence for its occurrence in plants.
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secretory vesicles that dock to and fuse with the plasma
membrane. The process called exocytosis includes target-
ing of the secretory vesicles to the appropriate membrane
mediated by the Exocyst, a multiprotein complex, and by
interaction of the v-SNAREs (vesicle, in yeast: Snc1/2 pro-
teins) and t-SNAREs (target membrane; Ssol/2p and
Sec9p) and release of the cargo proteins outside the cell
after fusion of the secretory vesicle with the plasma mem-
brane.

Impact of the environment on folding and folding stress
During the recent years, it has become evident that a vari-
ety of metabolic and environmental stresses may have a
strong impact on recombinant protein production. Both
types of stress factors occurring during industrial produc-
tion processes in yeasts, along with potential metabolic
and cell engineering approaches to overcome production
constraints, were reviewed in Mattanovich et al. [11].
Among environmental factors that affect protein folding
and secretion, especially temperature, low pH, high osmo-
larity and oxidative stress may play an important role.

While many studies have been performed on optimizing
fermentation conditions for maximum specific productiv-
ity in yeasts, data correlating increased product yields to
improved protein folding and secretion mechanisms are
still missing. Similar reports regarding the impact of culti-
vation conditions on protein production in filamentous
fungi remain scarce and usually limited to case studies
[12-14]. Wang et al. [15] reviewed the impacts of bioproc-
ess strategies on recombinant protein production in fila-
mentous fungi, and concluded that the major effect of the
environmental changes correlates to varying morphologi-
cal forms, which exhibit different secretory capacities.

Temperature

Temperature has a profound impact on cell metabolism
and abundance/regulation of folding-related genes/pro-
teins (hsp70 family, ER-membrane proteins, etc.). Lower-
ing the cultivation temperature from 30 to 20-25°C has
been reported to increase product titers in yeasts in several
cases [16-19]. While it may be speculated that a lower
growth temperature is leading to lower specific growth
rates, thus enabling folding of the recombinant proteins
at a lower rate, it was shown recently in chemostat cultures
that actually gene regulatory events take place. In contin-
uous cultures of Pichia pastoris expressing a human anti-
body Fab fragment specific productivity of the
heterologous protein was significantly increased during
the chemostat process at lower temperature (1.4-fold on
average). Several genes related to protein targeting to the
ER and folding (SSA4, SEC53, KAR2, ERO1) and core
metabolism genes were found among the genes down-reg-
ulated at 20°C, as were the product genes [20]. Transcrip-
tion of genes involved in the regulation of vesicular
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transport, exocytosis, ER-associated protein degradation
as well as markers for response to oxidative and hyperos-
motic stress was enhanced in comparison to 25°C steady
state. The reduction in transcriptional activity of the core
metabolism is a likely explanation for the reduced mRNA
levels of the product genes (LC and HC), which were
under control of the glycolytic GAP (glyceraldehyde 3-
phosphate dehydrogenase) promoter. The authors
hypothesized that at lower temperature a reduced amount
of folding stress is imposed on the cells, consequently
leading to a higher rate of correctly folded product.
Although lower temperature has been shown to improve
protein secretion rates, this still depends on the nature of
the heterologous protein. Production of a hyperther-
mophilic enzyme was improved by cultivation at higher
temperature (40°C) in Saccharomyces cerevisiae, thereby
reducing ER folding stress [21].

Additionally to regulatory events, many positive effects of
temperature shifts on protein production might be linked
to cell wall composition (porosity) and cell cycle. Indeed,
increased levels of chitin and cell wall linking beta-glu-
cans have been determined in yeast cells grown at 37°C
compared to 22°C in batch cultures [22].

Generally, it turns out that cultivation at an optimized
temperature is one of the crucial parameters for improved
specific productivity, as it is likely to direct carbon fluxes
towards heterologous protein production, and maintains
the cells in the more secretion competent phases of the
cell cycle.

Oxygenation

Redox processes play a major role in heterologous protein
production, both related to the oxidation of the product
to form disulfide bonds, and to oxidative stress of the host
cell during cultivation. Cultivation of methylotrophic
yeasts like P. pastoris on methanol leads to significant oxi-
dative stress, which may be relieved by the addition of
antioxidants like ascorbic acid [23]. Similarly, the expres-
sion of antioxidant enzymes like superoxide dismutase
was reported to relieve oxidative stress [24].

Apart from environmental stressors, oxidative stress can
be imposed on the host cells by intrinsic factors such as
leakage in the respiratory pathway, beta-oxidation of lip-
ids, or accumulation of misfolded protein in the ER. There
is strong evidence that oxidative stress is connected to
growth temperature. While in most cases lower growth
temperature results in lower oxidative stress, Gasser et al.
[20] showed that the genes coding for the key regulatory
enzymes of both the cell redox homeostasis (thioredoxin
reductase TRR1, thioredoxin peroxidase TSA1, glutath-
ione oxidoreductase GLRI1) and osmoregulation
(mitogen-activated protein (MAP) kinase HOG1) were
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induced at the lower temperature where higher secretion
rates occur. Generally, the secretory pathway compart-
ments maintain a higher oxidized status compared to the
cytosol in order to enable disulfide-bond formation.
Finally the electrons generated during the oxidative fold-
ing cycles are transferred to molecular oxygen and may
lead to the formation of reactive oxygen species [25].

Interestingly, it was shown recently that very low oxygen
supply enhances the secretion rate of heterologous pro-
teins in P. pastoris significantly, which led to the develop-
ment of a hypoxic fed batch strategy with over 2-fold
increased productivity [26].

Osmolarity

So far no clear connection between medium osmolarity
and protein folding has been established. Previous data
indicate that the response is extremely transient [27]; and
even less is known of the effect of osmolarity on heterolo-
gous protein production. Mager and Siderius [28]
describe temporary cell growth arrest (either at G1 or G2/
M) upon hyperosmotic stress conditions accompanied by
the induction of the high osmolarity glycerol (HOG)
kinase pathway in S. cerevisiae. Intracellular glycerol levels
are increased in order to adjust osmo-balance through the
modification of cell wall integrity. Unlike in animal cells
where an osmotic shock leads to increased exocytosis
[29], and hyperosmotic GS-NSO mammalian cells that
exhibit an increased specific production rate (albeit
decreased growth rate) as compared with iso-osmotic cul-
tures [30], osmo-regulated secretion behaviour in fungi
remains unproven. In methanol grown P. pastoris cells,
salt stress prior to induction was shown to have a positive
effect on single chain antibody scFv titers [19], while Lin
et al. [18] reported a negative effect of salt supplementa-
tion on the secretion of an Fc fusion protein.

pH

Osmolarity and pH seem to trigger highly interrelated
responses. From an industrial point of view the main
desired effect of low pH is to reduce the activity of host
proteases which can lead to severe protein degradation
(reviewed among others by [31]), but no uniform picture
has been assigned to the correlation of pH and protease
activity in the culture broth. Both in yeasts and filamen-
tous fungi changing the pH of the culture medium can sig-
nificantly improve protein yields, however, this effect is
most probably not directly associated with improved pro-
tein folding mechanisms. On the other hand, lower extra-
cellular pH requires higher energy to maintain
intracellular pH values constant/physiological, thereby
delaying cell growth and enforcing the cell wall barrier
[22,32,33]. Subsequently this more rigid cell wall may
diminish secretion efficiency of the pH stressed cells. Lin
at al. [18] tested different pH values (ranging from 3.0 to
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7.2) during fed batch production of a Fc fusion protein in
P. pastoris and reported detection of the heterologous pro-
tein only at the highest pH of 7.2, however, the authors
conclude that the pH optimum is strongly protein and
strain dependent.

Folding stress and heterologous protein production

The ER-resident chaperone BiP (binding protein, in yeast
encoded by KAR2) belongs to Hsp70 family of heat shock
proteins and it is present in the lumen of the endoplas-
matic reticulum of all eukaryotes. The yeast homologue is
sometimes referred to as Grp78. Binding to BiP prevents
the nascent part of secretory or transmembrane proteins
from misfolding, until synthesis of the protein is finished.
It has been suggested that BiP is not only involved in the
translocation of the nascent polypeptides across the ER
membrane into the ER lumen, but that it is a key element
of an ER-resident quality control mechanism that prevents
unfolded proteins from leaving the ER [34]. Other func-
tions associated to BiP are the solubilisation of folding
precursors, stabilization of unassembled protein subunits
and redirecting misfolded polypeptide chains to the
cytosol for ubiquitin-labeling and subsequent degrada-
tion by the proteasome (ERAD, ER-associated protein deg-
radation, [35]). Besides a basal constitutive expression
level, BiP transcription is induced by the presence of
mutant and misfolded proteins in the ER lumen and by
stress effects that result in the accumulation of unfolded
proteins [36], presumably including the high level expres-
sion of heterologous proteins. A saturation of the secre-
tory pathway seems possible, as extractable levels of free
folding assistants BiP and Pdil decrease when heterolo-
gous proteins are overexpressed in S. cerevisiae [37]. Kauft-
man et al. [38] observed an induction of BiP during the
expression of a scFv fragment in this yeast species, and
Hohenblum et al. [39] have reported increased levels of
BiP upon expression of recombinant human trypsinogen
in P. pastoris. Likewise, biPA and pdiA transcript levels
were increased due to heterologous protein overexpres-
sion, as well as upon high level secretion of homologous
enzymes in filamentous fungi [40-42].

ER-associated protein degradation is a complex process in
which misfolded proteins in the ER are redirected to the
translocon for retranslocation to the cytosol, where they
are subjected to proteasomal degradation. Additionally,
excess subunits of multimeric proteins that are unable to
assemble are degraded through the ERAD mechanism.
According to Plemper et al. [43], the malfolded proteins
are retro-translocated through the Sec61-complex translo-
con pore, through which they had entered the lumen of
the ER before, accompanied by ubiquitination at the
cytosolic side of the ER membrane. The labeling of sub-
strates destined for degradation by the cytosolic 26S pro-
teasome requires an Ub (ubiquitin) activating enzyme, an
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Ub conjugating enzyme and an Ub ligase besides ubiqui-
tin itself. In P. pastoris three essential components of the
ERAD pathway have been shown to be up-regulated upon
production of an antibody Fab fragment in correlation to
higher protein secretion rates: HRD1, coding for an Ub
protein ligase, that is able to recruit Ub conjugating
enzymes (such as the gene product of UBC1) next to the
Sec61 translocon pore complex [20].

Prolonged ER retention of misfolded proteins entails
repetitive rounds of oxidative protein folding attempts by
foldases such as Pdi and consequently results in the gen-
eration of reactive oxygen species (ROS). Alleviation of
the ER stress is accomplished by the upregulation of the
UPR and subsequent induction of the ERAD, however,
prolonged UPR induction can also contribute to the stress
situation by the accumulation of ROS. In this context,
both oxidative stress and ERAD occur in addition to UPR
induction when hydrophobic cutinase accumulates in the
ER of S. cerevisiae [44], while hirudin production in P. pas-
toris lead to increased levels of ROS [23]. Recently it has
been shown that overstraining or failure of the ERAD
components leads to persistent ER stress conditions and
subsequent cell death in both yeasts and higher eukaryotic
cells [45,46].

The unfolded protein response pathway is activated by a
unique mechanism not known in any other signal trans-
duction pathway (for a recent review see [47]). The sensor
protein Irelp [48] resides in the ER membrane and pos-
sesses both kinase and endonuclease activities. When
unfolded proteins accumulate in the ER, Ire1p undergoes
autophosphorylation and oligomerisation, and catalyses
the cleavage of the mRNA encoding the UPR transcription
factor, called Hacl/hacA in yeasts and filamentous fungi
[49,50] or Xbpl in mammalian cells [51]. In this way
Irelp initiates an unconventional intron splicing event
that has been shown in S. cerevisiae to be completed by
tRNA ligase [52]. Splicing of yeast HAC1 mRNA removes
a translation block mediated by the intron [53] and ena-
bles formation of the activator protein. For mammalian
Xbp1 it has been shown that the unspliced mRNA pro-
duces an unstable protein that represses the UPR target
genes, whereas the spliced mRNA is translated to a potent,
stable activator protein [51]. In the filamentous fungi Tri-
choderma reesei, Aspergillus nidulans [50] and Aspergillus
niger [54], the hacl/hacA mRNA is truncated at the 5'
flanking region during UPR induction, in addition to the
unconventional intron splicing. This truncation removes
upstream open reading frames from the mRNAs, most
probably increasing translation initiation at the start
codon of the HAC1/HACA open reading frame. Kincaid
and Cooper [46] identified a novel function of Irelp in
the degradation of mRNAs encoding selected secretory
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proteins thus avoiding potential overload of the ER and
the translocon complex a priori.

ER-associated stress responses such as UPR and ERAD
were reported to be induced upon overexpression of sev-
eral heterologous proteins, e.g., human tissue plasmino-
gen activator (t-PA) in T. reesei [55] and A. niger [56], and
bovine chymosin in A. nidulans [57]. Similarily, overex-
pression of Fab fragments [20] and Rhizopus oryzae lipase
[58] revealed UPR induction in P. pastoris.

In another layer of ER stress regulation, mammalian cells
can attenuate translation initiation during unfolded pro-
tein accumulation into the ER, in order to reduce the
influx of proteins to the ER. This regulation pathway is ini-
tiated by the ER membrane kinase PERK that has some
similarity with Irel [59]. PERK phosphorylates the trans-
lation initiation factor elF2alpha, resulting in drastic
reduction in translation. This mechanism is not known in
yeasts or filamentous fungi, and PERK orthologues can
not be found in the genomes of the lower eukaryotes.
Interestingly, the filamentous fungi T. reesei [60] and A.
niger [61] have an alternative mechanism for controlling
the protein influx to the ER. In conditions of ER stress the
mRNAs encoding secreted proteins are rapidly down-reg-
ulated. This mechanism called RESS (repression under
secretion stress) was shown to be dependent on the pro-
moters of the genes encoding secreted proteins, and thus
it probably functions at the level of transcription [60]. It
has been observed that in Arabidopsis thaliana a large
number of genes encoding secreted proteins are down-
regulated when cells are exposed to ER stress [62], imply-
ing the possibility that RESS might also exist in plants.

Overcoming folding stress for improved protein production
Although promising expectations emerged that increased
BiP levels would result in increased folding capacity in the
ER, and thus improved secretion rates, the findings were
rather inconsistent and unpredictable. Some studies
emphasize that overproduction of BiP stimulates protein
secretion in S. cerevisiae (5-fold increase in secretion of
human erythropoietin [63], 26-fold increase in bovine
prochymosin [64], 2.5-fold increase in the titer of anti-
thrombotic hirudin due to 2.5 times higher biomass
yields [65]). While the secretion level of plant thaumatin
in Aspergillus awamori was increased up to 2.5-fold com-
pared to a wild type strain due to bipA overexpression
[66], the secretory behaviour of the same protein was not
affected by overexpression of KAR2 in S. cerevisiae [64].
According to Wittrup and coworkers, a reduction of BiP
levels leads to decreased secretion of foreign proteins,
however, no effect was observed upon a 5-fold overexpres-
sion of BiP on secretion levels of three different recom-
binant proteins in S. cerevisiae [67], and neither for
cutinase in A. awamori [68]. Other reports even suggest a
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negative impact of BiP overexpression, as extracellular lev-
els of A. niger glucose oxidase (GOX) decreased 10-fold
upon BiP overexpression in Hansenula polymorpha [69]. As
prolonged binding to BiP seems to direct proteins rather
to degradation than to the secretory pathway, it becomes
more obvious why the overexpression of this chaperone
alone does not result in higher levels of secreted foreign
proteins, but can negatively influence expression levels, as
reported by Kauffman et al. [38] and van der Heide et al.
[69]. Interestingly, Pyrococcus furiosus beta-glucosidase
secretion in S. cerevisiae is diminished with increased BiP
levels, but benefited from higher protein disulfide isomer-
ase (Pdi) levels, although the protein did not contain any
disulfide bonds [70], pointing at the chaperone activity of
Pdi, as discussed below.

Conesa et al. [71] examined the impact of overexpression
of two ER quality control factors, BiP and calnexin, on the
secretion of glycosylated Phanerochaete chrysosporium man-
ganese peroxidase (MnP) in A. niger, as the expression lev-
els of these genes were induced upon recombinant
protein production. While BiP overproduction dimin-
ished manganese peroxidase secretion levels severely,
overexpression of calnexin resulted in a four- to fivefold
increase in the extracellular MnP levels. Higher levels of
calnexin also showed beneficial effects in mammalian
and baculo virus expression systems [72,73]. Recently, the
co-overexpression of calnexin was shown to stimulate the
secretion of three glycoproteins and one unglycosylated
product (HSA) in H. polymorpha (2-3 fold on average;
[74]). On the other hand, secretion of human serum albu-
min (HSA) remained unaffected by raising calnexin levels
in Schizosaccharomyces pombe [75], while in S. cerevisiae
deletion of the calnexin gene CNE1 was reported to
enhance secretion of both antitrypsin [76] and unstable
lysozymes [77,78].

Protein disulfide isomerase (Pdi) is a multifunctional pro-
tein resident in the ER lumen that is responsible for the
correct formation of disulfide bonds during oxidative
folding and the isomerisation of uncorrectly folded
disulfides. Apart from this foldase activity, Pdi also acts as
a chaperone. An additional PDI gene copy in S. cerevisiae
successfully improved secretion of human growth factor
by 10-fold, of S. pombe acid phosphatase by 4-fold [63]
and of human lysozyme by around 30-60% [79]. Human
lysozyme as well as HSA production could also be
enhanced by the same strategy in Kluyveromyces lactis (1.8
fold and 15 fold, respectively; [80,81]). Both S. cerevisiae
PDI1 and the P. pastoris own homolog were proven to be
functional in P. pastoris by facilitating secretion of the
human parathyroid hormone (hPTH, [82]), human anti
HIV1 2F5 Fab [83], and Necator americanus secretory pro-
tein Na-ASP1 [84], the latter reporting a correlation
between the secretory enhancement and the PDI copy
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number. Generally, no clear picture emerged from the co-
overexpression of the two folding helpers, BiP and Pdi.
Whereas synergistic action of BiP and Pdi was suggested
regarding the improvement of the secretion of various sin-
gle chain fragments (scFv) in S. cerevisiae [85], a 2-fold
increase in secretion of the A33scFv in P. pastoris was only
achieved by additional copies of KAR2, but not PDI, and
not by the combination of both [86], in analogy to the
antagonistic effect observed in CHO cells [87]. Coexpres-
sion of KAR2, PDI1 or SSO2 exhibited no effect on secre-
tion of gamma-Interferon (IFNgamma) in H. polymorpha
[88]. Moreover, coexpression of cypB, which encodes a fol-
dase of the ER secretory pathway [89], did no increase pro-
duction of tissue plasminogen activator (t-PA) in A. niger,
although t-PA production elicited an UPR response
detectable through elevated transcript levels of bip, pdi and
cypB [90]. Thus, it seems that the effect of coexpression of
chaperone and foldase genes strongly depends on the
properties of the target protein and, moreover, it seems
that fine-tuned overexpression of these genes are required
to generate a functional secretory network to improve for-
eign protein overproduction. For example, in A. niger,
overexpression of bip to a certain threshold was beneficial
for plant sweet protein thaumatin production, but above
this threshold level thaumatin production decreased [66].
Similarly, defined levels of Pdi were required for optimum
thaumatin secretion in A. niger [91].

The flavoenzyme Ero1 is required for oxidation of protein
dithiols in the ER. It is oxidized by molecular oxygen and
acts as a specific oxidant of protein disulfide isomerase
(Pdi). Disulfides generated de novo within Ero1 are trans-
ferred to Pdi and then to substrate proteins by dithiol-
disulfide exchange reactions [92]. Duplication of either
KIPDI1 or KIERO1 genes led to a similar increase in HSA
yield in K. lactis, while duplication of both genes acceler-
ated the secretion of HSA and improved cell growth rate
and yield. Increasing the dosage of KIERO1 did not affect
the production of human interleukin 1beta, a protein that
has no disulfide bridges [93].

Finally, another approach to stimulate the secretory path-
way concertedly is to overexpress the unfolded protein
response (UPR) activating transcription factor Hacl. Tran-
scriptional analyses in S. cerevisiae revealed that up to 330
genes are regulated by Hac1, most of them belonging to
the functional groups of secretion or the biogenesis of
secretory organelles (e.g. ER-resident chaperones, fol-
dases, components of the translocon). Interestingly, genes
encoding proteins involved in protein degradation, vesic-
ular trafficking, lipid biogenesis and vacuolar sorting are
also induced by Hacl [94]. In this context, Higashio and
Kohno [95] describe the stimulation of ER-to-Golgi trans-
port through the UPR by inducing COPII vesicle forma-
tion. The homologs of S. cerevisiae HAC1 in T. reesei
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(hacl) and A. nidulans (hacA) have been identified [50]
and the effects of UPR induction by constitutive overex-
pression of these genes have been evaluated. The heterol-
ogous overexpression of T. reesei hacl in S. cerevisiae
yielded a 2.4-fold improvement in Bacillus o-amylase
secretion, and a slight increase in the yeast endogenous
invertase as well as in total protein secretion. S. cerevisiae
HACT1 overexpression was shown to enhance secretion of
the endogenous invertase (2-fold), and recombinant a-
amylase (70% increase), but did not effect secretion of T.
reesei EGI, a protein supposed to accumulate in the ER.
Disruption of HAC1 in S. cerevisiae led to a reduced secre-
tion of the two recombinant proteins (a-amylase -75%,
EGI -50%), but not of the endogenous invertase [96].
Similar results could also be seen in A. awamori, where
overproduction of A. awamori hacA ameliorated secretion
of Trametes versicolor laccase and bovine preprochymosin
7-fold and 2.8 fold, respectively [97], and in P. pastoris,
where heterologous expression of S. cerevisiae HACI
increased the secretion rate of a Fab antibody fragment
[83].

Novel strategies: genome wide-screening

All these approaches are limited to the existing knowledge
base. Novel processes might be identified and targeted to
improve secretion (including non-UPR regulated genes)
through different approaches. In this regard, high
throughput flow cytometry and cell sorting are valuable
tools to isolate overproducing clones [98]. One approach
is to screen overexpression libraries for improved secre-
tion of heterologous protein, which is anchored to the cell
surface via agglutinin (Aga2p) and detected by immun-
ofluorescent staining. Shusta et al. [99] showed that the
levels of surface-displayed single chain T-cell receptors
correlated strongly with the soluble expression of the
respective proteins. A 3-fold higher secreting clone could
be isolated out of a library potentially as large as 108in a
couple of weeks [100]. Screening of a yeast cDNA library
in S. cerevisiae surface display strains identified cell wall
proteins, translational components and the folding assist-
ant Ero1 as beneficial for the secretion of various antibody
fragments [101]. However, one potential drawback of this
high throughput method is that the display efficiency of
the protein of interest can be dominated by its fusion part-
ner Aga2p, as BiP and PDI overexpression had no effect on
surface display levels of the scFvs although they increased
soluble expression levels [85].

Furthermore, genome-wide analytical tools like DNA
microarrays are regarded as data mining source for physi-
ological effects, stress regulation and host engineering.
Sauer et al. [102] have analysed the differential transcrip-
tome of a P. pastoris strain overexpressing human
trypsinogen versus a non-expressing strain. 13 out of the
524 significantly regulated genes were selected, and their
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S. cerevisiae homologs were overexpressed in a P. pastoris
strain producing a human antibody Fab fragment [103].
Five previously characterized secretion helpers (PDII,
ERO1, SSO2, KAR2/BiP and HAC1), as well as 6 novel,
hitherto unidentified, factors, more precisely Bfr2 and
Bmh?2 involved in protein transport, the chaperones Ssa4
and Ssel, the vacuolar ATPase subunit Cup5 and Kin2, a
protein kinase connected to exocytosis, proved their ben-
efits for practical application in lab scale production proc-
esses by increasing both specific production rates as well
as volumetric productivity of an antibody fragment up to
2.5-fold in fed batch fermentations of P. pastoris [103].

Protein folding and conformational stress in
prokaryotic cells

Since early recombinant DNA times, bacteria (especially
E. coli) have been the most widely used microorganisms
for recombinant protein production due to genetic sim-
plicity, fast growth rate, high cell density production and
availability of a spectrum of genetic systems, among oth-
ers. For production processes being efficient, foreign genes
are expressed from plasmids and under the control of
inducible promoters, what results into non physiological
and unusually high transcription rates. Strong production
of recombinant proteins can lead to a stressful situation
for the host cell, with the extent of the bacterial stress
response being determined by the specific properties of
the recombinant protein, and by the rates of transcription
and translation [104]. This fact has a clear and profoundly
negative impact on productivity and probably protein
quality. In addition, recombinant proteins fail, very often,
to reach their native conformation when produced in bac-
teria [105]. This is caused by a coincidence of diverse
events impairing protein folding including bottlenecks in
transcription and translation, undertitration of chaper-
ones and proteases, improper codon usage and inability
of disulfide-bond formation [106,107]. Misfolded pro-
tein species usually deposit as amorphous masses of insol-
uble material called inclusion bodies [108], recorded as
by-products of bacterial protein production processes.
Inclusion bodies are mainly formed by the deposition of
unfolded or partially misfolded protein species that inter-
act through hydrophobic patches unusually exposed to
the solvent and with high amino acid sequence homology
[109,110]. The specificity in protein aggregation makes
inclusion bodies highly pure in composition and there-
fore enriched in the recombinant protein itself. However,
also truncated versions of the recombinant product, other
plasmid-encoded proteins, but also defined host cell pro-
teins can get entrapped within bacterial inclusion bodies
[111-116]. Moreover, the presence of folding assistant
proteins in inclusion bodies [117-119] confirm that spe-
cific interactions lead to entrappment of cellular proteins
in these aggregates. The high purity of inclusion bodies
makes them a convenient source of easily extractable pro-
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tein that must be refolded in vitro by denaturing proce-
dures, a fact that has been largely exploited for
biotechnology purposes [120]. The potential routes of a
newly synthesized protein in the bacterial cytosol are
illustrated in Figure 3.

Although inclusion bodies are mainly found in the cyto-
plasm, they occur also in the bacterial periplasm if pro-
teins have been engineered to present a leader peptide for
secretion [121]. In fact, a control quality system mostly
separated from that acting in the cytoplasm assist folding
of secreted proteins in the periplasmic space of gram neg-
ative bacteria. This is regulated through the combined
activity of two partially overlapping systems, regulated by
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the alternate o factor ot and by the Cpx envelope stress sig-
nalling system, that intricately combine the activity of
chaperones and proteases [122,123]. However, the simul-
taneous activation of stress signals in both bacterial com-
partments upon the production of misfolding prone
proteins strongly suggest a close physiological and genetic
connection between cytoplasmic and extracytoplasmic
systems [124]. The quality control and conformational
stress in the periplasmic space has been extensively
revised elsewhere [121,125].

Different to the unfolded protein response (UPR)
described in eukaryotic cells, the physiological reaction to
conformational stress in the bacterial cytoplasm has not

Degradation II

Soluble aggregates

De novo
protein
synthesis

- = P

Polypeptides
deposited
as insoluble inclusion bodies

Folding intermediates

Native or quasi-native species

Misfolded species

| Degradation

Figure 3

Schematic representation of protein folding and aggregation in recombinant E. coli. After de novo synthesis, a
fraction of recombinant proteins (especially heterologous proteins with conformationally complex disulfide bridges) do not

reach their native conformation and aggregate as insoluble deposits named inclusion bodies. Protein aggregates already exist in
the soluble cell fraction, and can involve native or quasi-native protein species. The main cytoplasmic chaperones involved in
the protein folding process (red arrows) include the trigger factor, DnaK, DnaJ, GrpE, GroEL and GroES. Both soluble aggre-
gates and individual protein species can enter the virtual insoluble cell fraction (indicated by a dashed line) and deposit as inclu-
sion bodies, in a fully reversible process (green arrows). Protein release from inclusion bodies is mainly controlled by DnaK,
ClpB and IbpA,B. Proteases (lon, CIpP and others) attack both soluble and insoluble species with folding defects. In particular,
proteases degrade inclusion body proteins in situ, or through a more complex process intimately related to the protein release
process, and therefore, strongly dependent on DnaK.
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received any similar precise name. Transcriptome analysis
of recombinant E. coli has resulted in a catalogue of genes
up-regulated during protein production [126,127].
Among them several heat shock genes have been identi-
fied (including those encoding the proteases Lon, ClpP,
HslV and HslU, and the chaperones IbpA, IbpB, Dnak,
DnaJ, ClpB, HtpG, MopA and MopB among others) but
also other ones not directly involved in protein quality
(such as YagU, YojH, YbeD and others) and whose precise
role remains to be identified. This fact indicates that the
conformational stress imposed by protein production is
more complex and physiologically distinguishable from
that caused by thermal denaturation, namely the heat
shock response [128,129], and includes several overlap-
ping stress responses [104] Well characterized stress
events have been observed during recombinant protein
production such as SOS DNA repair [130] and stringent
responses [131], although it is still be solved whether such
reactions are directly associated to the prevalence of
unfolded or misfolded protein species and the eventual
connection with the o32-regulated heat shock response.
The expression of some of these stress genes is being used
as a convenient marker of conformational stress in recom-
binant cells [132].

The bacterial conformational stress itself has been poorly
characterized from its physiological side. Instead, many
efforts have been addressed to a rather practical issue such
as minimizing aggregation, what in turn has resulted in a
better comprehension of in vivo protein folding proc-
esses. Since solubility has been considered for a long time
being synonymous with protein quality, increasing the
relative yield of soluble protein has been targeted by phys-
icochemical approaches. From already classical studies, it
is well known that high temperatures impair protein fold-
ing and favour aggregation of the recombinant proteins as
inclusion bodies [133,134]. Therefore, reducing the
growth temperature has been a general strategy used to
minimize inclusion body formation [135-137] that, like
other strategies, has rendered moderately positive, but
unpredictable and product-dependent results [107].
Fusion of folding-reluctant species to highly soluble
homologous or thermostable proteins has in some cases,
resulted in moderate enhancement of the passenger pro-
tein solubility [106,138,139].

Chaperones and protein degradation

Folding failures of recombinant proteins produced in E.
coli is generally attributed to a limitation in the cell con-
centration of folding assistant elements, which cannot
process the newly synthesized aggregation prone polypep-
tides. This assumption is physiologically supported by the
overexpression of chaperone genes, in particular of chap-
erone genes from the heat-shock protein family, in
response to recombinant protein overproduction
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[126,127,133]. Thus, coproduction of the main heat
shock chaperones (specially GroEL and DnaK) together
with the target protein has been largely explored as a way
to minimize aggregation and to enhance the solubility of
the recombinant protein product (reviewed in [140-
143]). In many cases, solubility has been significantly
enhanced by coexpression of individual chaperone genes,
while in others an even negative effect on product stability
and host viability has been observed. Selection of the suit-
able chaperone(s) is still a trial-and-error process. How-
ever, more recent results indicate that complete
chaperones gene sets rather than individual chaperone
genes with synergistic and/or cooperative activities (such
as DnaK-DnaJ-GrpE and GroEL-GroES sets) will lead to a
more predictable improvement of target protein solubil-
ity. [144-147].

Interestingly, when producing enzymes or fluorescent
proteins in DnaK- cells, the biological activities and there-
fore the conformational quality of aggregated polypep-
tides is much more close to that of soluble versions,
compared to wild type cells [148-150]. Furthermore, the
overexpression of the dnaK gene along with a model GFP
recombinant protein dramatically reduces the specific flu-
orescence of a GFP fusion in both soluble and insoluble
versions [151]. This indicates that DnaK directly or indi-
rectly impairs the folding state of the aggregated proteins.
In this regard, the production of GFP variants in absence
of DnaK results in highly fluorescent inclusion bodies
[152]. In these cells, both the protein yield and quality
were dramatically enhanced although the solubility is
lower than in the wild type, as expected. This occurs by the
inhibition of GFP proteolysis mediated by the proteases
Lon and ClpP, which participate in the in vivo disintegra-
tion of inclusion bodies in absence of protein synthesis
[153,154]. Probably, such proteases act coordinately in a
disaggregation complex [155-157] in which DnaK, ClpB
and IbpAB remove aggregated polypeptides for proteo-
lytic digestion. Therefore, although solubility can be
indeed enhanced by high levels of DnaK, GroEL and other
chaperones it occurs at expenses of quality and yield,
probably by generally stimulating proteolysis [116]. In
fact, solubility and conformational quality are not only
non coincident parameters [158] but highly divergent
protein features [152].

Disulfide-bond formation in recombinant E. coli

Usually, the cytoplasmic space of E. coli is a reducing envi-
ronment. Therefore, disulfide-bonds within proteins are
not formed, a fact that represents an additional obstacle
for proper folding of many recombinant proteins. There
are two approaches to produce disulfide-bonded proteins
in E. coli expression, namely in vitro refolding of inclusion
body proteins under appropriate redox conditions [120]
or manipulating in vivo conditions by either converting
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the cytoplasm into an oxidizing environment or secreting
the protein into the periplasmic space or even further into
the culture medium (less reducing environments). Cor-
rect disulfide bond formation in the periplasm of E. coli is
a catalyzed process, where the oxidation of cysteine pairs
occurs through the transfer of disulfides from the highly
oxidizing DsbA/DsbB proteins to the proof-reading pro-
teins DsbC/DsbD which are able to rearrange non-native
disulfides to their native configuration [159]. In particu-
lar, overexpression of DsbC has been shown to increase
the yield of correctly disulfide-bonded proteins in the
periplasm of E. coli [160-162]. The co-expression of
eukaryotic protein disulfide isomerases in E. coli can also
favour the formation of disulfide bonds in the periplas-
mic space [163,164].

Disulfide bond formation in the cytoplasm of E. coli can
occur when the genes encoding thioredoxin reductase
(trxB) and glutathione oxido-reductase (gor) are inacti-
vated [165,166]. A double-mutant strain containing
appropriate mutations, known as Origami, has been used,
for example, to generate active variants of tissue-type plas-
minogen activator [165] and functional antibody frag-
ments in the E. coli cytoplasm [167,168]. In some cases,
recovery of functional cytoplasmic disulfide-bonded pro-
teins can be further enhanced by coexpressing signal
sequence deficient periplasmic chaperones and/or
disulfide-bond isomerases such as DsbC
[165,167,169,170]. Unfortunately, trxB gor mutants
exhibit impaired growth characteristics [112,165], but, at
least for antibody fragments it has been shown that
expression yields of correctly disulfide-bonded proteins in
the cytoplasm can be similar to those obtained by secre-
tion into the periplasmic space [171].

Protein folding and secretion in non-conventional
bacterial expression systems

Although E. coli is still the most commonly used prokary-
otic organism for heterologous protein production, other
bacterial hosts are becoming more and more attractive.

Gram-positive Bacilli strains are also frequently employed
at industrial level. In contrast to E. coli, their outer enve-
lope has no lipopolysaccharides, also called "endotoxins"
since they exert a pyrogenic activity in humans or other
mammals. Therefore, many pharmaceutically relevant
products have been obtained in several strains [172]. In
addition, the Bacilli strains are attractive hosts because
they have a naturally high secretion capacity, as they
export proteins directly into the extracellular medium.
Amongst Bacilli species, the protein secretion pathway in
B. subtilis have been deeply investigated at molecular level
and a comprehensive literature survey is reported in
[173]. Several bottlenecks in the expression and secretion
of heterologous proteins have been highlighted [174].

http://www.microbialcellfactories.com/content/7/1/11

The secretory pathway of proteins can be divided into
three functional stages: the early stage, involving the syn-
thesis of secretory pre-proteins, their interaction with
chaperones and binding to the secretory translocase com-
plex; the second stage, consisting in translocation across
the cytoplasmic membrane; and the last stage, including
removal of the N-terminal signal peptide, protein refold-
ing and passage through the cell wall. A pivotal role in the
whole secretion process is played by molecular chaper-
ones [175]. B. subtilis has two types of molecular chaper-
ones, intracellular and extra-cytoplasmic molecular
chaperones. GroES, GroEL, DnaK, DnaJ and GrpE are
intracellular molecular chaperones. Besides being
involved in and largely responsible for protein folding
and minimizing aggregation, these chaperones maintain
pre-proteins (the products to be secreted) in transloca-
tion-competent conformations [176]. PrsA is the only
known extracytoplasmic folding factor in B. subtilis. PrsA
is a lipoprotein that consists of a 33 kDa lysine-rich pro-
tein part and the N-terminal cysteine with a thiol-linked
diacylglycerol anchoring the protein to the outer leaflet of
the cytoplasmic membrane [177]. Subsequent folding of
a secreted mature protein into a stable and active confor-
mation usually requires PrsA protein. In prsA mutants, the
secretion and stability of some model proteins is
decreased, if not abolished, while overproduction of PrsA
enhances the secretion of exoproteins engineered to be
expressed at a high level [178].

There is, however, a physiologic limit to the overloading
of B. subtilis secretory pathway. The massive production of
homologous and heterologous exoproteins has been
reported to induce a phenomenon called "protein secre-
tion stress response" [179]. The CssRS two-component
regulatory system is able to detect the presence of partially
folded or unfolded exo-protein intermediates and acti-
vates the transcription of several genes, among which a
key role is played by htrAB. These genes encode two mem-
brane localised serine proteases involved in the proteoly-
sis of aberrant products [180].

Several gene expression systems using non-conventional
prokaryotic organisms as host cells have been developed
over the last decades. Each bacterial host was generally
implemented to overcome defined problems/bottlenecks
observed during the recombinant production of specific
protein classes in conventional systems, such as E. coli and
B. subtilis. The use of such non-conventional systems is
still very limited and largely suffers from the lack of
molecular details concerning host physiology and any
other phenomenon related to massive recombinant pro-
tein production. Notwithstanding, some of them may rep-
resent useful model systems to further investigate on the
optimization of recombinant protein folding and quality.
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In this context, some interest has been raised by the imple-
mentation of an Antarctic Gram negative bacterium as
production host. Pseudoalteromonas haloplanktis TAC125
was isolated from a sea water sample collected in the
vicinity of the Dumont d'Urville Antarctic station, in Terre
Adélie. It is characterised by fast growth rates, combined
with the ability to reach very high cell densities even in
uncontrolled laboratory growth conditions and to be eas-
ily transformed by intergeneric conjugation [181]. There
features made P. haloplanktis TAC125 an attracting host for
the development of an efficient gene-expression system
for the recombinant protein production at low tempera-
tures of thermal-labile and aggregation-prone proteins
[182]. Furthermore, it was the first Antarctic Gram-nega-
tive bacterium which genome was fully determined and
carefully annotated [183].

Since high temperatures have a general negative impact
on protein folding due to the strong temperature depend-
ence of hydrophobic interactions that mainly drive the
aggregation reaction [184], and favour conformational
stress, the production of recombinant proteins at low tem-
peratures represents an exciting model to study the
dynamics of protein folding and misfolding and to
improve the quality of the products. The growth of E. coli
below 37°C has been often explored to minimize aggre-
gation but without consistent, protein-irrespective results.
Also, the use of suboptimal growth temperatures might
negatively affect the biology of the host cell and the per-
formance of the process in undesirable and non predicta-
ble ways. Recombinant protein production in
psychrophilic bacteria, i.e. at temperature as low as 4°C,
may minimize undesired hydrophobic interactions dur-
ing protein folding, desirably resulting in enhancing the
yield of soluble and correctly folded products while oper-
ating close to the optimal growth range. Furthermore,
with respect to mesophilic cells growing at suboptimal
temperatures, psychrophiles contain a full set of folding
factors already adapted to assist optimally, when required,
protein folding at freezing temperatures.

The efficiency of the cold-adapted expression system was
tested by producing several aggregation-prone products in
P. haloplanktis TAC125, such as a yeast a-glucosidase
[182], the mature human nerve growth factor [182], and
a cold adapted lipase [185]. All the recombinant products
resulted to be fully soluble and biologically competent.

Concluding remarks

In vivo protein folding is a very complex issue that
involves many cellular proteins and physiological
responses. During recombinant protein production, con-
formational stress conditions elicited by the synthesis of
aggregation prone polypeptides profoundly alter the
physiology of the host cell, triggering mechanisms
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addressed to manage potentially toxic misfolding protein
species and to recover the cell folding homeostasis. The
use of different microorganims as factories for recom-
binant protein production, including yeast, filamentous
fungi and bacteria has resulted in dramatic gains of infor-
mation about the biology of such stress responses, and
has provided valuable information to better understand
the mechanics of in vivo protein folding and aggregation.

However, so far it has not been possible to create the "per-
fect folding environment". Especially with respect to
industrial protein production processes, the direct impact
of altered process conditions on recombinant protein
folding remains unclear. Ongoing research in the authors'
labs is targeted to elucidate the physiological responses of
different eukaryotic and prokaryotic microbial hosts on a
genome wide level in order to interrelate environmental
stresses to protein folding/aggregation mechanisms and
eliminate bottlenecks.
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