
BioMed CentralBMC Bioinformatics

ss
Open AcceSoftware
R/parallel – speeding up bioinformatics analysis with R
Gonzalo Vera1,2, Ritsert C Jansen1 and Remo L Suppi*2

Address: 1Groningen Bioinformatics Centre (GBiC), Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen,
Haren, The Netherlands and 2Computer Architecture and Operating Systems Department (CAOS), Universitat Autònoma de Barcelona, Bellaterra,
Spain

Email: Gonzalo Vera - gonzalo.vera@rparallel.org; Ritsert C Jansen - r.c.jansen@rug.nl; Remo L Suppi* - remo.suppi@uab.cat

* Corresponding author

Abstract
Background: R is the preferred tool for statistical analysis of many bioinformaticians due in part
to the increasing number of freely available analytical methods. Such methods can be quickly reused
and adapted to each particular experiment. However, in experiments where large amounts of data
are generated, for example using high-throughput screening devices, the processing time required
to analyze data is often quite long. A solution to reduce the processing time is the use of parallel
computing technologies. Because R does not support parallel computations, several tools have
been developed to enable such technologies. However, these tools require multiple modications
to the way R programs are usually written or run. Although these tools can finally speed up the
calculations, the time, skills and additional resources required to use them are an obstacle for most
bioinformaticians.

Results: We have designed and implemented an R add-on package, R/parallel, that extends R by
adding user-friendly parallel computing capabilities. With R/parallel any bioinformatician can now
easily automate the parallel execution of loops and benefit from the multicore processor power of
today's desktop computers. Using a single and simple function, R/parallel can be integrated directly
with other existing R packages. With no need to change the implemented algorithms, the
processing time can be approximately reduced N-fold, N being the number of available processor
cores.

Conclusion: R/parallel saves bioinformaticians time in their daily tasks of analyzing experimental
data. It achieves this objective on two fronts: first, by reducing development time of parallel
programs by avoiding reimplementation of existing methods and second, by reducing processing
time by speeding up computations on current desktop computers. Future work is focused on
extending the envelope of R/parallel by interconnecting and aggregating the power of several
computers, both existing office computers and computing clusters.

Background
In recent years, R [1] has gained a large user community in
bioinformatics thanks to its simple but powerful data
analysis language. Growing repositories like Bioconductor

[2] and CRAN [3] assist bioinformaticians with hundreds
of free analytical methods and tools. These user-contrib-
uted methods are easily reused and adapted to each par-
ticular experiment for analysis of biological data.

Published: 22 September 2008

BMC Bioinformatics 2008, 9:390 doi:10.1186/1471-2105-9-390

Received: 16 June 2008
Accepted: 22 September 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/390

© 2008 Vera et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 6
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18808714
http://www.biomedcentral.com/1471-2105/9/390
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2008, 9:390 http://www.biomedcentral.com/1471-2105/9/390
Examples of often reused and adapted methods are,
respectively, the packages tilingArray [4] and affyGG [5].
However, while data generated in experiments previously
fitted on a CD-ROM, nowadays, using new equipments,
hardly fit on a single DVD-ROM. As a consequence of the
post-genomic explosion of data, the demand of computa-
tional power is increasing continuously and solutions to
keep the processing pace of high-throughput devices are
required. A common approach in many bioinformatics
fields like genomics, transcriptomics and metabolomics,
where large sequential data sets are analyzed, is the use of
parallel computing technologies [6].

Using R together with parallel computing is not a trivial
task as the language does not provide mechanisms to sup-
port it natively. To compensate for this lack, several tools
have been developed with different degrees of success.
Early contributions to parallel computing in R were based
on available general purpose parallel computing frame-
works like MPI [7] and PVM [8]. Examples of these R
libraries are rmpi [9] and rpvm [10]. These libraries pro-
vide low level programming interfaces, the complexity of
which hinders a wider use of them. In order to hide such
complexity, packages like NetWorkSpaces [11], snow [12]
or taskPR [13] were created. They provide a higher level of
abstraction, encapsulating the previous libraries (i.e.
rmpi, rpvm) in simpler libraries and providing sufficient
flexibility for the average type of programs coded in R.
Additional development has been carried out with the
framework pR [14]. It adds several modules to automate
the parallelization of any R program. This feature is very
important since programmers do not need to think "in
parallel" when coding their R scripts, and anyone without
previous knowledge of parallel computing can benefit
from its advantages. However, while the programming
model has been simplified during the last years, the
dependency on external frameworks and dedicated
resources is still a major obstacle for many bioinformati-
cians (e.g. pR depends on a complex installation to access
a cluster of MPI enabled servers). These solutions are well
suited for research groups with access to dedicated infra-
structures (e.g. computing clusters managed by skilled
technicians) and/or enough time to invest in the develop-
ment of ad hoc parallel programs. However, when these
requirements are not met, solutions based on self-con-
tained tools (e.g. squid for Perl [15]), capable of running
in common desktop computers, are the preferred choice.

In this paper we present an R add-on package for parallel
computing: R/parallel. To use it, the programmer does not
need to change his algorithm nor install and maintain any
additional software as the R/parallel package is self-con-
tained and capable of using current multicore processor
desktop computers. It easily and effectively enables the
automatic parallelization of loops without data depend-

encies [16], thus bringing the benefits of parallel comput-
ing within the reach of any bioinformatician using R. Its
design allows its direct use with current bioinformatics
analysis tools such as R/qtl [17], MetaNetwork [18] or
affyGG [5] for analysis of genome-wide gene expression
data.

Implementation
The implementation of R/parallel has been carried out
with the objective of increasing the performance of R by
means of parallel computing while minimizing the
requirements to use it. This section explains the design
decisions made to speed up R programs while overcoming
the common problems experienced by bioinformaticians
with previous parallel computing solutions.

The first aspect taken into account is the desire to mini-
mize user intervention when parallelizing new or existing
R programs. The perfect solution should not require any
further modification from the programmer. This is
achieved with fully automatic parallelizers, which parse
the program code, check it for data dependencies and gen-
erate a set of independent tasks that can be safely evalu-
ated in separate processors. However, the drawback of this
approach is that the parallelizer, a priori, does not know
the execution time of each independent task. When a set
of tasks are running concurrently, additional overhead
and delays are introduced due to additional processing
steps (e.g. code replication or task coordination). It is
quite likely that a sequence of small fast tasks is paral-
lelized and, despite parallel execution, as a result of the
transformation process and additional synchronization,
the overall processing time can be increased. To avoid this
situation, the design decision made is to let the users indi-
cate which code regions (i.e. loops) they need to speed up.
With this information, R/parallel will automatically paral-
lelize its execution to increase the performance.

Another aspect to consider when developing parallel pro-
grams is the difficult task of debugging when coding errors
arise. When multiple processing units are running concur-
rently at different steps of a program, the identification of
the conditions that triggers a bug and the retrieval of the
state of each execution thread is a cumbersome task that
should be avoided. To minimize this risk, an objective of
the design of this package is the ability to run the sequen-
tial (and parallel) version of the R programs without
changing any further line of code. By running a program
sequentially it is possible to test the correctness of the
implemented algorithm and debug using traditional
tools. The user can activate the parallel execution just by
loading the R/parallel package before performing a calcu-
lation. This design decision is also supported by the fact
that, as the user program is not functionally dependent on
R/parallel, it can always be shared with other bioinforma-
Page 2 of 6
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:390 http://www.biomedcentral.com/1471-2105/9/390
ticians without requiring them to install the package or
modify a single line of code.

Internally, R/parallel is designed using a master-worker
architecture. The master component runs within the main
R instance and distributes the work. The workers run in
new processes with new R instances and perform the cal-
culations retrieved from the master. The implementation
of the package uses R scripts and C++ objects, taking
advantage of both programming worlds. Combining low
level operating system calls in C++ to manage processes,
threads and inter-process communications (IPC) with the

intrinsic features of R, like the capability of retrieving or
creating functions at runtime (a feature known as "com-
puting on the language" [19]), it has been possible to
build a generic solution able to automatically transform a
sequential loop and parallelize its execution.

Results
Using the tool
Figure 1 shows with an example how easy it is to paral-
lelize a loop in R with R/parallel. In this example, a long
vector of gene expression data (i.e. traits) is analyzed
through a loop to find quantitative trait loci (QTL) under-

Example using R/parallelFigure 1
Example using R/parallel. To parallelize a loop it is only needed to add an if-else structure. The loop to be parallelized is
placed inside the else body and the parallelizer function runParallel inside the if body. The last step is to indicate in runParallel
the variable names used to accumulate the partial results and the operations to apply after each iteration. Other arguments like
the number of parallel processes (workers) are optional. Detailed documentation and examples can be found on the project
web page as well as within the package as R help pages.

Parallelize
Page 3 of 6
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:390 http://www.biomedcentral.com/1471-2105/9/390
lying variation in gene expression using a multiple QTL
model (MQM) approach [20]. Once a programmer has
finished coding and testing his function as usual, he only
needs to add the lines shown (i.e. the runParallel function
and the if-else conditional structure) to run it faster in par-
allel. Adding the lines explained, the execution time when
processing 37685 traits from 73 individuals is reduced,
using a quad-core processor, from approximate 4 hours to
1 hour. Another advantage of R/parallel is that it can be
used in batch mode as well as in interactive mode. Moreover,
to preserve functionality and allow code sharing, if R/par-
allel has not been installed and loaded, the if-else instruc-
tions added prevent parallelization from taking place and
the loop will run sequentially.

Use cases
Practical applications of parallel computing are to
increase the number of finished tasks given a fixed time or
to decrease the time needed to perform a long task. To
achieve this, a divide and conquer approach is used. The
initial problem is partitioned into independent tasks
which are computed simultaneously using several
processing units. With R/parallel, partitioning is applied
to loops and data, and multi-processing is used to get
access to all the available processing units (i.e. cores in cur-
rent desktop processors). The benefits of partitioning and
multi-processing are shown in Figure 2 with three real
cases. The observed speedups demonstrate that loops
without data dependencies can be executed more effi-
ciently using R/parallel. Obviously, with short calcula-
tions the speedup is minimal because of the additional
overhead raised by the parallelization.

Typical bioinformatics cases where parallel computations
are more often used are permutation tests or heuristic
searches of multivariate spaces where, due to time con-
straints, the best result has to be computed before a dead-
line. The case 2A illustrates the increase of completed
analyses (i.e permutation tests) by using all the available
processing units. The function qtlThreshold.sma from the
package affyGG is used with a quad-core processor to ana-
lyze a large number of permuted data sets using the same
statistical analysis to compute (approximate) significance
thresholds. Incrementing the number of parallel processes
(i.e. workers) the usage of more cores has been enabled
and therefore the overall performance has increased. The
case 2B illustrates the decrease of the total execution time
after parallelizing a problem. The function qtlMap.xProbe
from the package affyGG is used with a single-core proc-
essor to compute the same statistical analysis over large
data sets. In this case, due to the way memory is managed
in R with linked lists and as a result of partitioning, small
and faster tasks (with faster data indexing) are created.
Therefore, in cases like this, even with a single processing
unit, the total execution time is reduced.

The case 2C, where the function qtlMap.xProbe is used
this time with a dual-core processor, illustrates the prob-
lem of processor overloading and how to address it. An
inconvenience when the processor load is 100% (i.e. the
computer is overloaded) is that ready-to-run processes
have to wait for the processor(s) to be run. This delay
leads to downgraded response times in interactive pro-
grams that makes it hard, if not impossible, to keep work-
ing with the computer when simultaneously running
intensive calculations. Fortunately, common office appli-
cations on today's desktop computers rarely claim more
than 1% of the processor [21]. Therefore, by giving up a
small percentage of the processor, it is possible to keep
using the computer for other tasks, while the ongoing cal-
culation only takes slightly more time.

Conclusion
R/parallel, as shown, saves time to bioinformaticians in
their daily tasks of analyzing experimental data. It effec-
tively removes the most common obstacles encountered
by bioinformaticians approaching parallel computing in
R, like complex programming models or external depend-
encies on hard-to-maintain software frameworks. R/paral-
lel is an easy-to-use R package which allows any
programmer to parallelize their loops in a matter of min-
utes. The results demonstrate that R/parallel efficiently
increases the performance of R when running parallel
computations in current multicore processor desktop
computer. As a consequence, bioinformaticians are able
to approach reducing the processing time of a growing
number of analytical methods by N-fold, N being the
number of present cores in their computers.

Future work is focused on extending the functional and
performance capabilities of R/parallel.

Additional functionalities like support for task parallelism
or delayed loading of input data will extend the usability
of the package. Additional performance, by expanding R/
parallel from a single desktop computer to an office with
several desktop computers or even a server farm, is our
next milestone to speed up bioinformatics analysis with
R.

We encourage any users to share their experiences with the
authors to contribute to the extension of R/parallel.

Availability and requirements
• Project home page: http://www.rparallel.org

• Operating system(s): Windows and Linux

• Programming language: R 2.6, C, C++

• Other requirements: none
Page 4 of 6
(page number not for citation purposes)

http://www.rparallel.org

BMC Bioinformatics 2008, 9:390 http://www.biomedcentral.com/1471-2105/9/390

Page 5 of 6
(page number not for citation purposes)

Performance resultsFigure 2
Performance results. A) The speedup increases linearly with the number of used cores. Setting more workers (5) than
existing cores (4) does not improve the results. B) The (super linear) speedup exceeds the theoretical maximum of number of
processing units due to faster tasks. C) With a conservative average load of 15% for other tasks, the computer is overloaded
when R/parallel claims 100%. By reducing the percentage for R/parallel (with an optional argument) we can recover responsive-
ness and keep working on other tasks while running our calculations.

Speedup

sequential
2

of workers
3 4 51

parallel

5

4

3

2

1

0

Speedup

sequential
2

of workers
3 4 51

parallel

5

4

3

2

1

0

Total Execution Time

sequential
2

of

 a
na

ly
si

s 43840
126400
323680
480000
604800
880000

4 hours

8 hours

12 hours

24 hours

1 hour
15 mins

of workers
3 4 51

parallel

Total Permutation Tests

sequential
2

of workers
3 4 51

parallel

500 tests

400 tests

300 tests

200 tests

100 tests

0

 R
un

ni
ng

 T
im

e

2 mins
5 mins
15mins
1 hour
4 hours

GO FASTER : Reduce total execution time with a single-core processor

DO MORE : Increase throughput using all the available processing units

Sequential

3908 s

100% 99% 95% 85% 50% 35%

1792 s 2096 s 2212 s 2260 s 3419 s 3534 s

N/A0% 1% 5% 15% 50% 65%% for other tasks

Total Exec. Time

% for R/parallel

B

A

C KEEP WORKING : Control overloading while running calculations

Speedup 2.18 1.86 1.77 1.73 1.14 1.11 1.00

BMC Bioinformatics 2008, 9:390 http://www.biomedcentral.com/1471-2105/9/390
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

• License: GPL for non-profit organizations

• Any restrictions to use by non-academics: licence
needed

Authors' contributions
GV conceived, designed and implemented the software.
He wrote an early draft of the manuscript. RCJ provided
end user requirements and practical examples to assess
the usability of this tool. RLS provided direction and tech-
nical advise on the design and implementation. All three
authors read, revised and approved the final manuscript.

Acknowledgements
We thank the members of the Groningen Bioinformatics Centre who have
helped us testing R/parallel with their own R tasks and providing valuable
comments and suggestions.

References
1. Ihaka R, Gentleman R: R: A Language for Data Analysis and

Graphics. Journal of Computational and Graphical Statistics 2005,
5(3299-314 [http://www.jstor.org/pss/1390807].

2. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S,
Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W,
Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G,
Smith C, Smyth G, Tierney L, Yang JY, Zhang J: Bioconductor: open
software development for computational biology and bioin-
formatics. Genome Biology 2004, 5:R80.

3. The Comprehensive R Archive Network [http://cran.r-
project.org]

4. tilingArray – Analysis of high-density oligonucleotide tiling
arrays [http://bioconductor.org/packages/2.2/bioc/html/tilingAr
ray.html]

5. Alberts R, Vera G, Jansen RC: affyGG: computational protocols
for genetical genomics with Affymetrix arrays. Bioinformatics
2008, 24(3433-434 [http://bioinformatics.oxfordjournals.org/cgi/con
tent/abstract/24/3/433].

6. Trelles O: On the parallelisation of bioinformatics applica-
tions. Briefings in Bioinformatics 2001, 2(2181-194 [http://bib.oxford
journals.org/cgi/content/abstract/2/2/181].

7. Message Passing Interface (MPI) Forum [http://www.mpi-
forum.org/]

8. PVM: Parallel Virtual Machines [http://www.csm.ornl.gov/pvm/]
9. Rmpi: Interface (Wrapper) to MPI (Message-Passing Inter-

face) [http://www.stats.uwo.ca/faculty/yu/Rmpi]
10. rpvm: R interface to PVM (Parallel Virtual Machine) [http://

cran.r-project.org/web/packages/rpvm/index.html]
11. NetWorkSpaces for R [http://nws-r.sourceforge.net]
12. Rossini A, Tierney L, Li N: Simple Parallel Statistical Computing

in R. UW Biostatistics Working Paper Series 2003, 193: [http://
www.bepress.com/uwbiostat/paper193].

13. taskPR: Task-Parallel R Package [http://cran.r-project.org/web/
packages/taskPR/index.html]

14. Ma X, Li J, Samatova N: Automatic Parallelization of Scripting
Languages: Toward Transparent Desktop Parallel Comput-
ing. Parallel and Distributed Processing Symposium, 2007. IPDPS 2007.
IEEE International 2007:1-6.

15. Carvalho PC, Glória RV, de Miranda AB, Degrave WM: Squid – a
simple bioinformatics grid. BMC Bioinformatics 2005, 6:197.

16. Briggs P: Automatic parallelization. SIGPLAN Not 1996,
31(4):11-15.

17. Broman KW, Wu H, Sen S, Churchill GA: R/qtl: QTL mapping in
experimental crosses. Bioinformatics 2003, 19(7889-890 [http://
bioinformatics.oxfordjournals.org/cgi/content/abstract/19/7/889].

18. Fu J, Swertz M, Keurentjes JJ, Jansen RC: MetaNetwork: a compu-
tational protocol for the genetic study of metabolic net-
works. Nature Protocols 2007, 2(3):685-694.

19. R Development Core Team: R Language Definition 2008 [http://cran.r-
project.org/doc/manuals/R-lang.pdf]. The R Foundation for Statistical
Computing, Vienna, Austria [ISBN 3-900051-13-5]

20. Jansen RC: Interval Mapping of Multiple Quantitative Trait
Loci. Genetics 1993, 135:205-211 [http://www.genetics.org/cgi/con
tent/abstract/135/1/205].

21. Gupta A, Lin B, Dinda PA: Measuring and Understanding User
Comfort With Resource Borrowing. 13th IEEE International Sym-
posium on High Performance Distributed Computing (HPDC-13 '04)
2004:214-224 [http://doi.ieeecomputersociety.org/10.1109/
HPDC.2004.21].
Page 6 of 6
(page number not for citation purposes)

http://www.jstor.org/pss/1390807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15461798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15461798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15461798
http://cran.r-project.org
http://cran.r-project.org
http://bioconductor.org/packages/2.2/bioc/html/tilingArray.html
http://bioconductor.org/packages/2.2/bioc/html/tilingArray.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18086686
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18086686
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/24/3/433
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/24/3/433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11465735
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11465735
http://bib.oxfordjournals.org/cgi/content/abstract/2/2/181
http://bib.oxfordjournals.org/cgi/content/abstract/2/2/181
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.csm.ornl.gov/pvm/
http://www.stats.uwo.ca/faculty/yu/Rmpi
http://cran.r-project.org/web/packages/rpvm/index.html
http://cran.r-project.org/web/packages/rpvm/index.html
http://nws-r.sourceforge.net
http://www.bepress.com/uwbiostat/paper193
http://www.bepress.com/uwbiostat/paper193
http://cran.r-project.org/web/packages/taskPR/index.html
http://cran.r-project.org/web/packages/taskPR/index.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16078998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16078998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12724300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12724300
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/19/7/889
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/19/7/889
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17406631
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17406631
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17406631
http://cran.r-project.org/doc/manuals/R-lang.pdf
http://cran.r-project.org/doc/manuals/R-lang.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8224820
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8224820
http://www.genetics.org/cgi/content/abstract/135/1/205
http://www.genetics.org/cgi/content/abstract/135/1/205
http://doi.ieeecomputersociety.org/10.1109/HPDC.2004.21
http://doi.ieeecomputersociety.org/10.1109/HPDC.2004.21
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Results
	Using the tool
	Use cases

	Conclusion
	Availability and requirements
	Authors' contributions
	Acknowledgements
	References

