1	Castells E, Berenbaum MR (2008) Resistance of the generalist moth Trichoplusia ni
2	(Noctuidae) to a novel chemical defense in the invasive plant Conium maculatum.
3	Chemoecology , 18 (1): 11-18
4	
5	
6	Resistance of the generalist moth Trichoplusia ni (Noctuidae) to a novel chemical
7	defense in the invasive plant Conium maculatum
8	Eva Castells ^{1,2} and May R. Berenbaum ¹
9	
10	¹ Department of Entomology, University of Illinois at Urbana-Champaign, 320 Morrill
11	Hall, 505 S Goodwin Ave., 61801 IL, USA
12	² Present address: Department of Natural Products, Plant Biology and Edaphology,
13	Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, S/N, 08028 Barcelona
14	Catalonia, Spain
15	
16	Corresponding author: Eva Castells, Universitat de Barcelona, Email: <u>e.castells@ub.edu</u>
17	Fax: +34 93 402 9043, Phone: +34 93 4024493
18	
19	
20	Key words: Conium maculatum, piperidine alkaloids, coniine, γ-coniceine, Trichoplusia
21	ni, detoxification, cytochromes P450, chemical defense, resistance
22	
23	Running head: Resistance of generalist moth to an invasive plant
24	

Summary

Conium maculatum is an apiaceous species native to Eurasia that is highly toxic to
vertebrates due to the presence of piperidine alkaloids, including coniine and γ -coniceine.
More than 200 years after invading the United States this species remains mostly free
from generalist insect herbivores. The presence of novel chemical defenses in the
introduced range could provide invasive species with a competitive advantage relative to
native plants. The cabbage looper (Trichoplusia ni) is a generalist lepidopteran found
throughout the US that occasionally feeds on C. maculatum. We evaluated the toxicity of
piperidine alkaloids to T. ni and determined putative resistance mechanisms, both
behavioral and physiological, that allows this insect to develop successfully on C .
maculatum foliage. T. ni larvae raised on diets enriched with coniine and γ-coniceine
showed a decrease in consumption and longer development time, but no effects on
growth were found at any alkaloid concentration. In a diet choice experiment T. ni larvae
showed no avoidance of alkaloid-enriched diets, suggesting that the deterrence produced
by alkaloids was related to a post-ingestive metabolic response. The ability of <i>T. ni</i> to
consume diets high in alkaloid content could be due to at least three different mechanisms:
1) a decreased consumption rate, 2) efficient excretion of at least 1/3 of ingested alkaloids
unmetabolized in frass, and 3) partial detoxification of alkaloids by cytochrome P450s, as
shown by the decreased larval growth in the presence of piperonyl butoxide, a P450
inhibitor. Even though T. ni tolerates C. maculatum alkaloids, the use of this species as a
host plant could be ecologically disadvantageous due to prolonged larval growth and thus
increased exposure to predators. Novel plant secondary compounds do not guarantee
increased resistance to generalist herbivores.

Introduction

The invasion of exotic species is an important factor affecting biodivers	ity at a
global scale, causing extinction of native species and changes in community str	ucture
(Pimentel et al 2000). A relevant aspect of the impact of exotic plants is the cha	nge in the
interactions between plants and herbivores in the novel environment (Hierro et	al 2005,
Colautti et al 2004). Even though invasive plants, once in the introduced range,	may
experience a release of herbivory from their coevolved enemies, they can be co	lonized by
local generalist herbivores (Keane and Crawley 2002). Because in these newly	
established interactions plants and herbivores have not coevolved, the presence	of plant
chemical defenses not previously encountered by native herbivores constitute a	"novel
weapon" that provides the plant with a greater competitive advantage in the intr	oduced
range thus facilitating the invasion (Callaway and Ridenour 2004). The ability of	of an
herbivore to switch from a native to an invasive host plant depends on the geog	raphic and
temporal range of the plant, as well as the physical and chemical similarities be	tween the
invader and its native host plants (Janzen 1968). Thus, chemically unique plants	S
introduced into a novel environment are less likely to be colonized by local her	bivores if
their chemical distinctiveness confers upon them resistance to natural enemies i	n the
nonindigenous area.	
One example of an invasive species with distinctive chemistry that expe	riences
little herbivory after invading a new habitat is Conium maculatum (poison hem	lock), a
species of Apiaceae originally from Eurasia that has invaded many parts of the	world,
including North and South America, New Zealand and Australia (Parsons 1976	, Holm et
al 1979). The first records of <i>C. maculatum</i> in North America date from the ear	ly 1800s

1	in the eastern US (Nuttall 1818, Pursh 1979). At present, C. maculatum is widespread
2	across the US, forming in many locations dense patches in disturbed areas such as roads
3	sides, ditches, or abandoned fields. They also occasionally invade riparian forests and
4	flood plains (Goeden and Ricker 1982). Even though C. maculatum has a record of 200
5	years of potential interaction with the local fauna, only a small number of herbivores have
6	been reported to be consistent consumers (Goeden and Ricker 1982, Berenbaum 1981).
7	Goeden and Ricker (1982) found "amazingly few insect species or individuals thereof"
8	feeding on C. maculatum in an extensive survey of C. maculatum in California. For a
9	total of 20 phytophagous found in C. maculatum populations, only 1 species was
10	common (the aphid Hyadaphis foeniculi), 4 were found occasionally (including the
11	generalist caterpillar <i>Trichoplusia ni</i> and the Apiaceae specialist <i>Papilio zelicaon</i>) and 16
12	(70%) were very rare. The presence of generalist insects on <i>C. maculatum</i> is extremely
13	low compared to other Apiaceae species in the same habitats (Berenbaum 1981). At
14	present, only one insect species is consistently found on C. maculatum, the European
15	monophagous specialist Agonopterix alstroemeriana (oecophoridae) first reported in the
16	eastern US in 1973 (Berenbaum 1981). Since its appearance A. alstroemeriana has
17	extended across the US range causing in some occasions complete defoliation of <i>C</i> .
18	maculatum stands (Western Society of Weed Science 1995).
19	The low variety of consumers on C. maculatum has been attributed to the
20	presence of piperidine alkaloids, such as coniine, γ -coniceine or conhydrinone (Fairbairn
21	1971). C. maculatum is one of few apiaceous species that produce alkaloids (Fairbairn
22	1971). Indeed, piperidine alkaloids are reported only in two families of plants; γ -
23	coniceine and its relatives are known from C. maculatum and 6 Aloe species (Dring et al

1	1984). These piperidine alkaloids thus constitute a "novel weapon" in virtually any plant
2	community. Piperidine alkaloids of C. maculatum are poisonous to livestock and to
3	humans (Sperry et al. 1964, Panter et al. 1988, Panter and Keeler 1989). The major
4	alkaloids, coniine and γ -coniceine, have long been known to be neurotoxic, interacting
5	with the acetyl choline receptors of the nervous system (Wink et al. 1998) and are
6	implicated in livestock poisonings (Bowman and Sanghvi 1963, Sperry et al. 1964, Panter
7	and Keeler 1989). The toxicity of these compounds to vertebrates suggests a role in
8	chemical defense against herbivores but this hypothesis has been rarely tested. Among
9	the few examples of the toxicity of C. maculatum alkaloids are reports of mortality of
10	Tubifex worms at 0.002% coniine (Wink et al. 1998), significant antifeedant activity for
11	γ-coniceine in the slug <i>Deroceras reticulatum</i> (Birkett et al 2004), and higher mortality
12	and lower pupal weigh of Papilio zelicaon raised on C. maculatum compared to the
13	alternative host plant Foeniculum vulgare (Sims 1980). There is also indirect evidence of
14	the toxicity of C. maculatum alkaloids to its monophagous specialist Agonopterix
15	alstroemeriana; a negative correlation between the number of leaf rolls and alkaloid
16	concentrations in C. maculatum individuals has been found (Castells et al. 2005). In other
17	studies C. maculatum alkaloids were innocuous; no effects of coniine on food preference
18	or growth were shown when Helicoverpa zea larvae were raised on an alkaloid-enriched
19	diet (Nitao 1987).
20	T. ni (the cabbage looper) is one of the few generalist herbivores that occasionally
21	consumes C. maculatum (Goeden and Ricker 1982, Berenbaum and Harrison 1994), and
22	laboratory trials have shown the ability of T. ni to complete its development when raised
23	on C. maculatum foliage (EC unpublished data). This tolerance to piperidine alkaloids is

1	unexpected in a generalist herbivore that has not been historically exposed to these
2	compounds. We aimed to ascertain whether piperidine alkaloids of C. maculatum
3	constitute a novel weapon in an invaded habitat. We determined 1) the effects of
4	increasing concentrations of coniine and γ -coniceine on T . ni performance during larval
5	stage, and 2) the ability of <i>T. ni</i> larvae to recognize and respond to these alkaloids when
6	presented with a diet choice, and 3) the potential mechanisms involved in the ability of T .
7	ni to tolerate piperidine alkaloids. In case a decreased performance is shown for insects
8	raised on alkaloid-containing diet, piperidine alkaloids would constitute an efficient
9	defense mechanism for C. maculatum during invasion.
10	
11	Materials and Methods
12	
13	Chemicals
14	
15	Coniine hydrochloride was purchased from City Chemical (West Haven, CT, USA). γ -
16	Coniceine was purified from Conium maculatum seeds collected in Champaign County,
17	IL, USA. Seeds were ground in a blender and extracted three times with 70% methanol
18	30% 0.1 N HCl and then filtered through diatomaceous earth (Celite®; Fisher). The
19	extractions were bulked together and filtered through C18 (40 μm particle diameter;
20	Baker) to remove the non-polar compounds. The resulting solution was concentrated by
21	rotary evaporation at low temperature (max 40 °C) and partitioned with CHCl ₃ in a
22	separation funnel to further remove non-polar compounds. The alkaloids were extracted
23	with CHCl ₃ (x 5) after basifying with 10 M NaOH. The bulked chloroform fractions were

1	mixed with 20% HCl in MeOH and concentrated in a rotary evaporator to obtain a
2	mixture of alkaloids in hydrochloride form. Alkaloids were resuspended in ethanol: 0.1
3	N HCl (1:1), basified with 10 M NaOH and extracted three times with a small volume of
4	chloroform.
5	In order to separate individual compounds the solution containing bulk alkaloids
6	was poured through a gravity column (25 x 2.5 cm silica gel 32-63 μm, Merck) eluted
7	with chloroform : ethanol : NH_3OH (70:30:1) (Leete and Olson 1972) at ca 1 ml min ⁻¹ .
8	The fractions (2 ml each) were monitored by spotting 5 μ l on a TLC silica gel plate
9	(Baker; 250 $\mu m)$ and sprayed with Dragendorff reagent (Jungreis 1985) or 0.2%
10	ninhydrin reagents (Sigma). Fractions containing γ -coniceine were bulked together,
11	transformed to the hydrochloride form by adding 20% HCl in MeOH, dried down under a
12	flow of N_2 and stored in a desiccator. Because γ -coniceine in hydrochloride form has
13	deliquescent and hygroscopic properties (Cromwell 1956, Fairbairn and Challen 1959),
14	the compound could not be completely dried. Although a purity of γ -coniceine higher
15	than 95% was detected by gas chromatography the compound retained unknown amounts
16	of water.
17	Piperonyl butoxide (PBO) and diethyl maleate (DM) were purchased from TCI
18	America and Sigma, respectively.
19	
20	Insects and diet
21	
22	T. ni were obtained from a colony maintained in our laboratory at UIUC. Larvae were
23	reared on a standard artificial diet as described in Nitao and Berenbaum (1988). Briefly,

1	13 g agar (Sigma) dissolved in 770 mL distilled water was heated until boiling and mixed
2	in a blender with 31.5 g of vitamin-free casein (Sigma), 24 g of sucrose, 27 g of
3	wheatgerm (Kretschmer), 9 g of Wesson's salt mix, 10 g of alphacel and 5 mL of 4 M
4	KOH. When agar cooled down to 60 °C the following ingredients were added: 18 g
5	Vanderzant vitamins (Bioserv), 1.6 g of sorbic acid (Sigma), 1.6 g of methylparaben
6	(Sigma), 3.2 g of ascorbic acid (Sigma), 0.12 g of streptomycin sulfate (Sigma), 4 mL of
7	wheat germ oil (Viobin) and 2 mL of 10% formaldehyde. Diet was poured into 30 mL
8	individual cups and allowed to set. To prepare alkaloid-enriched diet, either coniine or γ -
9	coniceine in the hydrochloride form was dissolved in methanol (with a maximum of
10	0.75% methanol per FW of diet) and added as the last ingredient just before the diet
11	reached the gelling temperature. The control diet was prepared as described for the
12	standard diet but the same amount of methanol used to dissolve the alkaloids was added
13	to the diet.
14	
15	Experiment 1: Effects of 1% DW coniine and 1% DW γ-coniceine on T. ni performance
16	on larval development
17	
18	Newly hatched <i>T. ni</i> neonates (n=150) were transferred individually to 30 mL cups
19	provided with a snap lid and filled with ca 4 mL of control diet, 1% DW coniine enriched
20	diet, or 1% DW γ -coniceine enriched diet (50 neonates per treatment). For each cup, diet
21	was weighed to determine the initial fresh weight. Diet from five additional cups of
22	control diet were weighed, oven-dried at 65 °C for 48 h and weighed again to estimate
23	water content at the beginning of the experiment. Larvae were kept at room temperature

1	(ca 25 C) until pupation. Pupation date was recorded. The remaining diet and the frass
2	produced were also oven-dried to determine dry weight. Diet consumption was calculated
3	by subtracting the final diet DW to the estimated initial diet DW. Three days after
4	pupation pupae were sexed and oven-dried. Gravimetric performance indices (Scriber and
5	Slansky, 1981) were calculated following the Raubenheimer and Simpson (1994) analysis
6	of covariance:
7	Relative growth rate; RGR = final pupal weigh / time to pupation
8	Relative consumption rate; RCR = consumption / time to pupation
9	Efficiency of conversion of ingested food; ECI = pupal weigh / consumption x 100
10	Efficiency of conversion of digested food; ECD = pupal weigh / (consumption -
11	frass) x 100
12	Approximate digestibility; AD = (consumption – frass) / consumption x 100
13	
14	Experiment 2: Short-term effects of increasing coniine concentrations on T. ni
15	performance
16	
17	We determined the effects of coniine-enriched diets at concentrations ranging from 0.05
18	to 5% DW on T. ni performance. These concentrations were chosen because they
19	comprise the range of alkaloid concentrations found in C. maculatum growing in natural
20	conditions (Castells et al. 2005). Neonates of T. ni were reared on standard artificial diet
21	until they reached the 5 th (ultimate) instar. Larvae were then transferred individually to 30
22	mL cups with a pre-weighed cube of ca 1 g FW of control diet or coniine diets at 0.05,
23	0.5, 1, 2 or 5% DW coniine. Twenty pre-weighed larvae were used for each treatment.

1	Seven additional fifth-instars were dried at 65 °C for 48 h to estimate initial water content
2	Larvae were kept at room temperature and allowed to feed for 30 h to optimize diet
3	consumption. Each larva, the remaining diet, and the frass produced were individually
4	oven-dried. Larval growth was calculated as the difference between the final dry weight
5	and the estimated initial dry weight. Consumption was calculated by subtracting the diet
6	DW at the end of the experiment from the estimated initial diet dry weight. Assimilation
7	was calculated as the difference between the diet consumed and the frass produced. The
8	gravimetric performance indices ECI, ECD and AD were calculated as described.
9	
10	Experiment 3: Extraction of coniine from frass
11	
12	Ten newly molted fifth instars of T. ni were individually placed in 30 mL plastic cups
13	filled with a pre-weighed cube of ca 1 g FW of 1% DW coniine-enriched diet. A
14	subsample of initial diet was oven-dried to estimate water content. Larvae were kept at
15	room temperature for 48 h. The diet remaining after consumption was oven-dried at 65 °C
16	and weighed. Diet consumption was calculated as the difference between the final and the
17	initial diet. A subsample of the frass produced (ca. 150 mg FW) was used to estimate the
18	coniine content. The remaining frass was weighed, oven-dried at 60 °C and weighed
19	again to determine water content. Coniine was extracted by homogenizing the frass with
20	1.5 mL 70% MeOH 30% 0.1 N HCl for 2 min. using a Wig-L-Bug grinding mill
21	(Crescent Dental, Chicago, IL) modified to accommodate 2 mL Eppendorf tubes.
22	Samples were extracted for 1 h on a shaker and concentrated to approximately 200 uL on
23	a centrifugal evaporator (Jouan RC 10.10). The solution was then partitioned with hexane

1	and basified with 100 u.L of 10 M NaOH to transform comme to a non-protonated free
2	base form. Coniine was extracted in 200 μL hexane with 0.01 % hexadecane and
3	analyzed by flame ionization detection on a gas chromatograph equipped with capillary
4	column (Alltech EC-1, 30 m, 0.23 mm) and an autosampler (HP 5890). Hexadecane was
5	used as internal standard. The samples were run with the following temperature program:
6	initial temperature 50 °C, ramp 5 °C min ⁻¹ up to 105 °C, ramp 35 °C min ⁻¹ up to 290 °C, 5
7	min at 290 °C. (±)-coniine (Sigma) was used as a standard. The total coniine consumed
8	was estimated by multiplying the diet consumption by the coniine concentration added in
9	the diet, and the total coniine in the frass by multiplying the coniine concentration in the
10	frass by the total amount of frass produced. We calculated the total amount of coniine
11	excreted in the frass as a percentage of the total coniine ingested.
12	
13	Experiment 4: Diet choice assay
14	
15	The ability of T. ni to distinguish between control diet vs. coniine-enriched diet was
16	studied by a choice experiment. Two diet cubes (ca 1 g FW), one of control diet and one
17	enriched with coniine at 1, 2 or 5% DW, were placed at opposite sides of a 9-cm diameter
18	plastic Petri dish. Separate experiments were conducted for each coniine concentration,
19	with 36 replicates for the 1% coniine experiment and 30 replicates for the 2% and 5%. A
20	single larva was placed at the middle of the Petri dish, dishes were wrapped with Parafilm
21	to avoid diet desiccation and kept at room temperature (25 C). After 24 h diet was
22	removed and dried at 65 °C. Because the larvae tended to consume either the control or

1	the coniine diet cubes, we did not calculate the antifeedant indeces but rather recorded the
2	choice of diet consumed.
3	
4	Experiment 5: Effects of enzyme inhibitors PBO or DM with coniine on T. ni growth
5	
6	We assessed the contributions of detoxification enzymes to coniine metabolism by adding
7	to the artificial diet specific inhibitors for cytochrome P450s (piperonyl butoxide; PBO),
8	and gluthatione transferases (diethyl maleate; DM). A preliminary assay was performed
9	to determine the highest concentrations of PBO and DM that did not affect larval growth,
10	testing a range of concentrations from 0.01% to 0.5% FW on 10 larvae per concentration.
11	The absence of toxicity, with no statistically detectable differences in larval growth
12	compared with the control, was achieved with 0.1% FW PBO and 0.05% FW DM.
13	Artificial diets were prepared as described, with the addition of 1% DW coniine and/or
14	either of the inhibitors at the concentrations determined previously as nontoxic. One-
15	hundred twenty newly molted fifth instars raised on standard artificial diet were assigned
16	at random to one of these diet treatments (20 larvae per treatment): 1) control, 2) PBO, 3)
17	DM, 4) coniine, 5) PBO + coniine, and 6) DM + coniine. Larvae were allowed to feed for
18	24 h at room temperature (25 C). Larval weigh gain was recorded at the end of the
19	experiment.
20	
21	Statistics
22	

1	A two-way analysis of variance (ANOVA) with diet treatment (control, coniine or γ -
2	coniceine) and sex as independent variables was conducted to determine the effects of
3	alkaloids on larval performance in Experiment 1. The effects of increasing coniine
4	concentrations in Experiment 2 were assessed by a one-way analysis of covariance
5	(ANCOVA) with initial larval weight as a covariate and coniine concentration as the
6	independent variable (Raubenheimer and Simpson 1994). Post-hoc comparisons were
7	conducted by a Tukey's LSD test. Diet preference (Experiment 4) was analyzed by the
8	non-parametric 2 x 2 table with Fisher's tests. The effects of PBO and DM (Experiment 5)
9	were assessed by a two-way ANCOVA conducted with initial larval weight as a covariate
10	and coniine + inhibitor (PBO or DM) as independent variables. All statistical analyses
11	were performed using Statistica 6.0 (StatSoft, Tulsa, OK).
12	
13	Results
14	
15	Relative growth rate (RGR) of T. ni larvae raised on alkaloid-enriched diet throughout
16	development was not affected by the consumption (RCR) of 1% coniine or 1% γ -
17	coniceine (Fig. 1). These alkaloids, however, decreased consumption rate and increased
18	the efficiency of conversion of ingested food (ECI) and the efficiency of conversion of
19	digested food (ECD) (Fig 1). Time to pupation was significantly increased in larvae
20	raised on γ -coniceine-enriched diet (Fig 1). Approximate digestibility (AD) was, on
21	average, lower when T. ni were raised on alkaloid diet but this effect was only marginally

significant (ANOVA, p<0.074). Different responses between sexes were found only for

relative growth rate and relative consumption rate, with higher rates in males compared to

22

1	females (Fig. 1). No significant differences were found between coniine and γ -coniceine.
2	Fifth instars of <i>T. ni</i> raised for 30 h on diet enriched with a range of coniine
3	concentrations (from 0.05% to 5%) showed similar responses to the long-term
4	performance experiment. Thus, no effects on larval growth were found at any
5	concentration, while coniine treatment decreased consumption, assimilation efficiency,
6	and AD, and increased ECI and ECD, mainly due to the strong effects of the 5% conline-
7	enriched diet (Table 2, Fig. 2).
8	In the diet choice experiment where T. ni larvae were presented with a control diet
9	vs. coniine-enriched diet (either 1, 2 or 5% coniine DW), no preference was detected for
10	any of the diets (Table 1). The lack of differentiation between control and coniine diets
11	was also suggested by the fact that T. ni larvae fed exclusively on a single diet cube,
12	never switching between cubes.
12 13	never switching between cubes. Frass of T . ni larvae which fed on coniine-enriched diet contained unmetabolized
13	Frass of <i>T. ni</i> larvae which fed on coniine-enriched diet contained unmetabolized
13 14	Frass of <i>T. ni</i> larvae which fed on coniine-enriched diet contained unmetabolized coniine. The amount of coniine ingested that was excreted in the frass ranged from 21.3%
13 14 15 16	Frass of <i>T. ni</i> larvae which fed on coniine-enriched diet contained unmetabolized coniine. The amount of coniine ingested that was excreted in the frass ranged from 21.3% to 33.2%, with an average of $26.8 \pm 1.8\%$ (mean \pm SE, n = 10). Because the procedure for
13 14 15 16	Frass of <i>T. ni</i> larvae which fed on coniine-enriched diet contained unmetabolized coniine. The amount of coniine ingested that was excreted in the frass ranged from 21.3% to 33.2%, with an average of $26.8 \pm 1.8\%$ (mean \pm SE, n = 10). Because the procedure for coniine extraction may not be completely efficient it is likely that this percentage could
13 14 15 16 17	Frass of T . ni larvae which fed on coniine-enriched diet contained unmetabolized coniine. The amount of coniine ingested that was excreted in the frass ranged from 21.3% to 33.2%, with an average of $26.8 \pm 1.8\%$ (mean \pm SE, n = 10). Because the procedure for coniine extraction may not be completely efficient it is likely that this percentage could be even higher. Coniine is also metabolized by T . ni . When PBO, an inhibitor of the
13 14 15 16 17	Frass of T . ni larvae which fed on coniine-enriched diet contained unmetabolized coniine. The amount of coniine ingested that was excreted in the frass ranged from 21.3% to 33.2%, with an average of $26.8 \pm 1.8\%$ (mean \pm SE, n = 10). Because the procedure for coniine extraction may not be completely efficient it is likely that this percentage could be even higher. Coniine is also metabolized by T . ni . When PBO, an inhibitor of the cytochrome P450s, was added to the diet together with coniine, larval growth showed a
13 14 15 16 17 18	Frass of T . ni larvae which fed on coniine-enriched diet contained unmetabolized coniine. The amount of coniine ingested that was excreted in the frass ranged from 21.3% to 33.2%, with an average of $26.8 \pm 1.8\%$ (mean \pm SE, n = 10). Because the procedure for coniine extraction may not be completely efficient it is likely that this percentage could be even higher. Coniine is also metabolized by T . ni . When PBO, an inhibitor of the cytochrome P450s, was added to the diet together with coniine, larval growth showed a significant decrease, even though PBO or coniine alone did not have any effect (Fig. 3).

Discussion

1	Colonization of an invasive plant by native herbivores is expected to be facilitated
2	when there are physical and chemical similarities between its native host plants and the
3	invasive species (Janzen 1968). According to this hypothesis, the distinctiveness of the
4	secondary chemistry of C. maculatum, the only Apiaceae species containing piperidine
5	alkaloids, should protect this invasive species against local herbivores in the non-
6	indigenous community. Indeed, C. maculatum supports relatively few herbivores even
7	after more than 200-years in the US (Goeden and Ricker 1982). Thus, the ability of the
8	generalist T . ni to utilize this plant is surprising. Larvae raised on coniine and γ -
9	coniceine-enriched diets did not show any effects on growth at the concentrations tested
10	(from 0.05 to 5% DW). Only a slight reduction in the development time was detected
11	when larvae were raised at 1% DW coniine, but this did not result in reduced pupal size.
12	The concentrations used for these experiments are representative of the levels of
13	piperidine alkaloids found in C. maculatum growing in natural conditions, which may
14	vary as much as 100-fold among individuals from different populations across the US
15	(Castells et al. 2005). Thus, no differences in larval growth should be expected in T. ni
16	consuming C. maculatum in the field as far as alkaloid concentrations are concerned. The
17	absence of negative effects of coniine and γ-coniceine on T. ni performance contrasts
18	with the toxicity caused by the alkaloid nicotine. Although in our experiment no mortality
19	was detected when larvae were raised on diets containing up to 5% DW coniine, T. ni
20	larvae died on diet containing nicotine concentrations above 0.064% FW (Krischik et al
21	1991). Indeed, toxicity of alkaloids against insect herbivores may not be a general pattern
22	Quinolizidine alkaloids have also found to be innocuous for generalist and specialist
23	Lepidoptera (Stermitz et al 1989).

The ability of <i>T. ni</i> to tolerate <i>C. maculatum</i> alkaloids can be explained by the
presence of both behavioral and physiological resistance mechanisms. Insects use these
two broad categories of resistance strategies to cope with noxious secondary metabolites.
During behavioral resistance insects avoid exposure of plant allelochemicals by selective
feeding, or decrease consumption when ingesting a plant containing toxic allelochemicals
(Tallamy 1986), while physiological resistance involves activity of detoxification
enzymes (e.g. cytochromes P450s, glutathione transferases or esterases) which modifies
the chemical structure of the allelochemical to reduce or eliminate its toxicity, thus
allowing excretion of the resulting metabolites (Brattsten 1992). Excretion of
unmetabolized allelochemicals may also be a prominent mechanism to eliminate toxic
compounds from the body. T. ni larvae decreased consumption rates when raised from
neonate to pupae on 1% DW coniine or γ -coniceine enriched-diets, thus reducing their
daily exposure to alkaloids. A short-term decrease in consumption (48 h trial) was also
detected at higher alkaloid concentrations (5% DW). Because no preference for control
diet versus alkaloid-enriched diet was found in the diet-choice experiment, the decrease
in consumption could be more related to metabolic disruptor and not by stimuli of the
peripheral sensilla. Indeed, generalists might have neural limitations that restrict their
ability to choose a suitable plant host, even if consumption of a particular plant is not
favorable in terms of growth and development (Bernays 2001). An unexpected effect of
high-alkaloid diet on T. ni performance was the higher efficiencies of ingestion and
digestion (ECI and ECD) associated with a decrease in consumption rates. No direct
evidence suggests that coniine and γ -coniceine enhance food processing; thus, increased

1	ECI and ECD were most likely caused indirectly by the longer food retention in the gut
2	facilitating increased absorption.
3	Another mechanism that allows T. ni to cope with piperidine alkaloid toxicity is
4	cytochrome P450-mediated metabolism. Cytochrome P450s are involved in the
5	detoxification of a wide array of allelochemicals, including alkaloids (Li et al 2007).
6	Ingestion of coniine-enriched diet resulted in a significant decrease of <i>T. ni</i> larval growth
7	when a specific inhibitor of cytochrome P450s, piperonyl butoxide, was added to the diet
8	while no effects were found for coniine alone. The significant interaction between PBO
9	and coniine demonstrates that P450s prevents the post-ingestive toxic effects of coniine.
10	In contrast to P450s, glutathione transferases do not appear to be involved in the
11	detoxification of coniine. P450s activity is apparently necessary to avoid toxic effects of
12	piperidine alkaloid ingestion. Even though T. ni has not coevolved with C. maculatum
13	and does not consistently encounter piperidine alkaloids in its diet, P450s from
14	generalists are structurally more flexible and able to accept a wider array of substrates
15	compared to specialists (Li et al 2004). A third mechanism of resistance toward C .
16	maculatum alkaloids is an efficient excretion of unmetabolized alkaloids, with more than
17	27% of the ingested coniine readily excreted into the frass. This value is low compared to
18	excretion of secondary chemicals by the specialists caterpillars Manduca sexta and
19	Papilio polyxenes, which have been found to eliminate more than 90% and 50% of
20	ingested allelochemicals, respectively, but it is a high value compared to the 1% of the
21	generalist Spodoptera frugiperda (fall armyworm) (reviewed in Brattsten 1992)
22	In general, generalist insects may have a greater capacity to deal with novel plant
23	secondary chemicals than do specialists. Agonopterix clemensella, a caterpillar reported

1	to feed on more than fifteen native species of Apiaceae (Berenbaum 1982),
2	overwhelmingly discriminated against a high coniine diet in a choice test (Castells and
3	Berenbaum 2006) whereas no avoidance or preference was displayed by T. ni in response
4	to any of the alkaloid concentrations tested.
5	Since its introduction, C. maculatum has spread conspicuously across US,
6	forming extensive stands that invade cultivated and natural areas. Whether C. maculatum
7	remains free from most native herbivores due to the presence of piperidine alkaloids is
8	unclear. From this study we find no evidence that the low presence of T . ni on C .
9	maculatum in the field can be explained by the toxicity of piperidine alkaloids.
10	Behavioral and physiological resistance mechanisms displayed by the insect seem
11	sufficient to avoid large negative effects on performance. However, consuming C .
12	maculatum could also determine some disadvantages. Insects could be more vulnerable to
13	predators because the time spent to complete development is increased. Moreover,
14	detoxification by P450s and alkaloid excretion could determine a metabolic cost that
15	might influence T. ni host plant choice. Other toxic secondary compounds in C.
16	maculatum, such as furanocoumarins, could be also involved in the low frequency of
17	herbivores in the field.
18	
19	Final remarks
20	When a plant species invades a new habitat it re-establishes interactions with the
21	biotic environment in the novel community, which, in most cases, differs from the
22	interactions from the plant's native range. The presence of unique secondary compounds
23	in the invaded community may provide the plant with a "novel weapon" to which

1	herbivores have not coevolved any resistance, thus increasing the plant's competitive
2	ability (Callaway and Ridenour 2004). This case scenario was tested here for the invasive
3	C. maculatum. Even piperidine alkaloids were neverencountered by herbivores in the US
4	prior to C. maculatum introduction, the resistance of the native generalist caterpillar T. ni
5	was efficient enough to cope with the new secondary metabolites. Novel plant
6	compounds do not guarantee increased resistance to generalist herbivores.
7	
8	Acknowledgments
9	This work was supported by a Fulbright-MECD fellowship (Spain) awarded to E.C.
10	
11	References
12	Berenbaum MR (1981) Patterns of furanocoumarin distribution and insect herbivory in
13	the Umbelliferae: plant chemistry and community structure. Ecology 62: 1254-1266
14 15	Berenbaum M (1982) New hostplant records for <i>Agonopterix clemensella</i> (Lepidoptera: Oecophoridae). J. Lep. Soc. 36: 160
13	Oecophoridae). J. Lep. Soc. 50. 100
16	Berenbaum MR, Harrison TL (1994) Agonopterix alstroemeriana (Oecophoridae) and
17	other lepidopteran associates of poison hemlock (Conium maculatum) in East Central
18	Illinois. Great Lakes Entomol. 27: 1-5
19	Bernays EA (2001) Neural limitations in phytophagous insects: implications for diet
20	breadth and evolution of host affiliation. Ann. Rev. Entom. 46: 703-723

- 1 Birkett MA, Dodds CJ, Henderson IF, Leake LD, Pickett JA, Selby MJ, Watson P (2004)
- 2 Antifeedant compounds from three species of Apiaceae active against the field slug,
- 3 Deroceras reticulatum (Muller). J. Chem. Ecol. 30: 563-576
- 4 Bowman BC, Sanghvi IS (1963) Pharmacological actions of hemlock (Conium
- 5 *maculatum*) alkaloids. J. Pharm. Pharmacol. 15: 1-25
- 6 Brattsten LB (1992) Metabolic defenses against plant allelochemicals. Pp 175-242 in:
- 7 Rosenthal GA, Berenbaum MR (eds) Herbivores: Their Interactions with Secondary Plant
- 8 Metabolites, vol. 2. Academic Press, Inc., San Diego
- 9 Callaway RM, Ridenour WM (2004) Novel weapons: invasive success and the evolution
- of competitive ability. Front. Ecol. Environ. 2: 436-443
- 11 Castells E, Berhow MA, Vaughn SF, Berenbaum MR (2005) Geographic variation in
- 12 alkaloid production in Conium maculatum populations experiencing differential
- herbivory by Agonopterix alstroemeriana. J. Chem. Ecol. 31: 1693-1709
- 14 Castells E, Berenbaum MR (2006) Laboratory rearing of Agonopterix alstroemeriana, the
- defoliating poison hemlock (*Conium maculatum* L.) moth, and effects of piperidine
- alkaloids on preference and performance. Environ. Entom. 35: 607-615
- 17 Colautti RI, Ricciardi A, Grigorovich IA, MacIsaac HJ (2004) Is invasion success
- explained by the enemy release hypothesis? Ecol. Lett. 7: 721-733
- 19 Cromwell BT (1956) The separation, micro-estimation and distribution of the alkaloids of
- 20 hemlock (Conium maculatum L.). Biochem. J. 64: 259-266

- 1 Dring JV, Nash RJ, Roberts MF, Reynolds T (1984) Hemlock alkaloids in aloes.
- 2 Occurrence and distribution of gamma-coniceine. Planta Medica 50: 442–443
- 3 Fairbairn JW (1971) The alkaloids of hemlock (Conium maculatum L.) (or Conium
- 4 maculatum L.: the odd man out). Pp 361-368 in: Heywood VH (ed) The Biology and
- 5 Chemistry of the Umbellifeare Academic Press, New York
- 6 Fairbairn JW, Challen SB (1959) The alkaloids of hemlock (*Conium maculatum* L.).
- 7 Biochem. J. 72: 556-561
- 8 Goeden RD, Ricker DW (1982) Poison hemlock, Conium maculatum, in Southern
- 9 California-an alien weed attacked by few insects. Ann. Entomol. Soc. Am. 75: 173-176
- Hierro JL, Maron JL, Callaway RM (2005) A biogeographical approach to plant
- invasions: the importance of studying exotics in their introduced and native range. J. Ecol.
- 12 93: 5-15
- Holm L, Pancho JV, Herberger JP, Plucknett DL (1979) A Geographical Atlas of World
- Weeds. John Wiley & Sons, New York
- 15 Janzen DH (1968) Host plants as islands in evolutionary and contemporary time. Am. Nat.
- 16 102: 592-595
- 17 Jungreis E (1985) Spot Test Analisis. Wiley-Interscience, New York
- 18 Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis.
- 19 Trends in Ecology & Evolution 17: 164-170

- 1 Krischik VA, Goth RW, Barbosa P (1991) Generalized plant defense: effects in multiple
- 2 species. Oecologia 85: 562-571
- 3 Leete E, Olson JO (1972) Biosynthesis and metabolism of the hemlock alkaloids. J. Amer.
- 4 Chem. Soc. 94: 5472-5477
- 5 Li X, Baudry J, Schuler MA, Berenbaum MR (2004) Structural and functional evolution
- of insect CYP6B proteins: from specialist to generalist P450. Proc. Natl. Acad. Sci. USA.
- 7 101: 2939-2944
- 8 Li X, Schuler MA, Berenbaum MR (2007) Ann. Rev. Entomol. 52: 231-253
- 9 Nitao JK (1987) Test for toxicity of coniine to a polyphagous herbivore, *Heliothis zea*
- 10 (Lepidoptera, Noctuidae). Environmental Entomology 16: 656-659
- 11 Nitao JK, Berenbaum MR (1988) Laboratory rearing of the parsnip webworm,
- 12 Depressaria pastinacella (Lepidoptera: Oecophoridae). Ann. Entomol. Soc. Am. 81: 485-
- 13 487
- Nuttall T (1971) The Genera of North American Plants (Facsimile of the 1818 edition).
- 15 Hafner Publishing Company, New York
- Panter KE, Keeler RF (1989) Piperidine alkaloids from poison hemlock (Conium
- 17 maculatum). Pp 109-132 in: Toxicants of Plant Origin, vol. 1. Alkaloids. CRC Press,
- 18 Boca Raton
- 19 Panter KE, Keeler RF, Baker DC (1988) Toxicoses in livestock from the hemlocks
- 20 (*Conium* and *Cicuta* spp.). J. Anim. Sci. 66: 2407-2413

- 1 Parsons WT (1976) Noxious Weeds of Victoria. Inkata, Melbourne
- 2 Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of
- 3 nonindigenous species in United States. Bioscience 50: 53-65
- 4 Pursh F (1979) Historiae Naturalis Septentrionalis. Vaduz
- 5 Raubenheimer D, Simpson SJ (1994) The analysis of nutrient budgets. Funct. Ecol. 8:
- 6 783-791
- 7 Scriber JM, Slansky F (1981) The nutritional ecology of immature insects. Annu. Rev.
- 8 Entomol. 26: 183-211
- 9 Sims SR (1980) Diapause dynamics and host plant suitability of *Papilio zelicaon*
- 10 (Lepidoptera: Papilionidae). Am. Midl. Nat. 103: 375-384
- Sperry OE, Dollahite JW, Hoffman GO, Camp BJ (1964) Texas plants poisonous to
- 12 livestock. Texas A & M Agric. Expt. Stn. Publ. 19
- 13 Stermitz FR, Belofsky GN, Ng D, Singer MC (1989) Quinolizidine alkaloids obtained by
- 14 Pedicularis-semibarbata (Scrophulariaceae) from Lupinus fulcratus (Leguminosae) fail
- to influence the specialist herbivore *Euphydryas editha* (Lepidoptera). J. Chem. Ecol. 15:
- 16 2521-2530
- 17 Tallamy DW, Krischik VA (1986) Variation and function of cucurbitacins in *Cucurbita*:
- an examination of current hypotheses. Am. Nat. 133: 766-786
- 19 Western Societ of Weed Science (1995) Western Society of Weed Science. Biological
- 20 control of weeds in the West. Bozeman, Montana

- 1 Wink M, Schmeller T, Latz-Bruning B (1998) Modes of action of allelochemical
- 2 alkaloids: interaction with neuroreceptors, DNA, and other molecular targets. J. Chem.
- 3 Ecol. 24: 1881-1937

1	Figure Captions
2	
3	Figure 1. Long-term feeding of <i>T. ni</i> diet with standard diet (control) or diet enriched with
4	1% coniine or 1% coniceine from neonate to pupation. A two-way ANOVA analysis was
5	performed with treatment and sex as independent variables. A Tukey's post-hoc test is
6	shown for those dependent variables with a significant main effect. Means and SE are
7	shown $(n = 50)$.
8	
9	Figure 2. Performance of 5 th instar <i>T. ni</i> larvae feeding on coniine enriched diets at
10	increasing concentrations over a 30-h period. A one-way ANCOVA was performed with
11	larval initial weight as a covariate (Table 2). Different letters show significant differences
12	(p < 0.05) by pairwise comparisons from the least square means using a Tukey's LSD test.
13	The least square means and SE are shown $(n = 20)$.
14	
15	Figure 3. Effects of A) piperonyl butoxide (PBO, 0.1% DW) and B) dimethyl maleate
16	(DM, 0.05% DW) on larval growth for 5 th instar <i>T. ni</i> feeding with and without coniine
17	(1% DW). Two-way ANCOVA analyses were performed with the inhibitor presence and
18	coniine presence as independent variables and initial larval weight as a covariate. Results
19	are shown in Table 2. Different letters show significant differences by a Tukey's post-hoc
20	test. Means and SE are shown $(n = 20)$.
21	
22	
23	

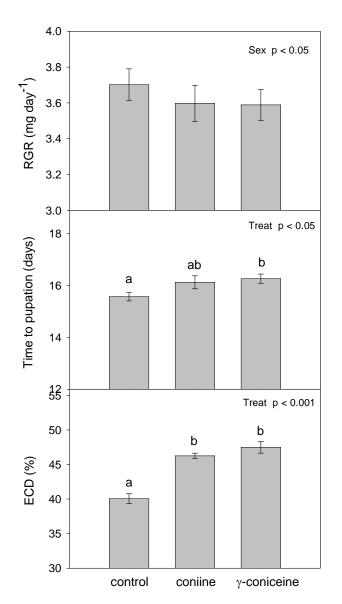
- 1 Table 1. Feeding preference of 5^{th} instar T. ni when presented with a choice between
- 2 standard diet (control) and a coniine-enriched diet at 1, 2 or 5% DW. A non-parametric
- 3 test (2 x 2 frequency table) was used to test whether the diet preference was significantly
- 4 different from a random distribution.

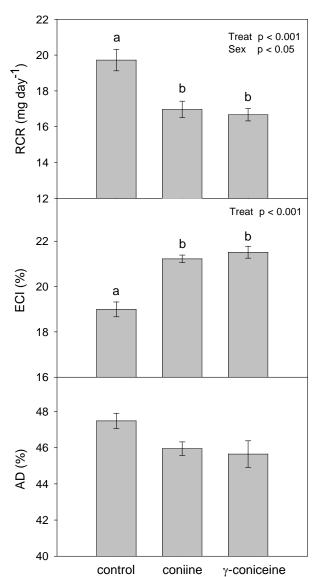
J

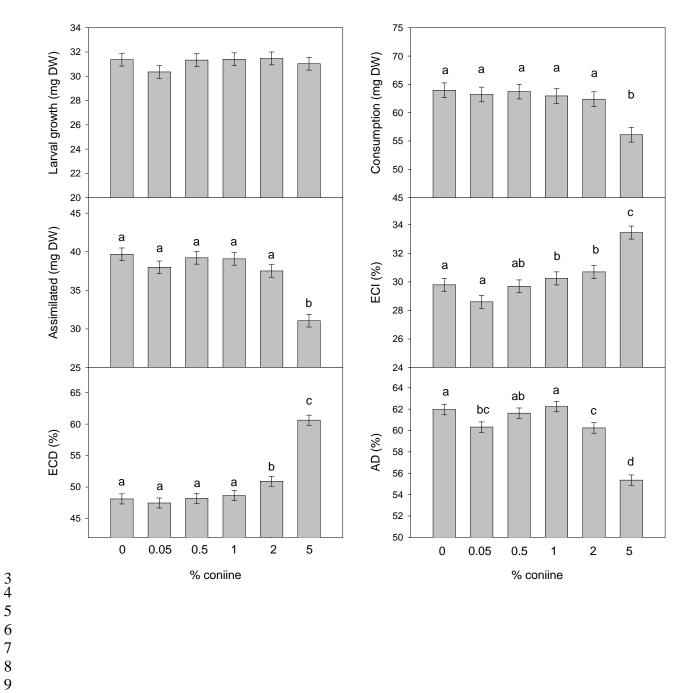
Coniine concentrations	n	Control	Coniine	p
1%	36	21	15	0.31
2%	30	14	16	0.50
5%	30	12	18	0.30

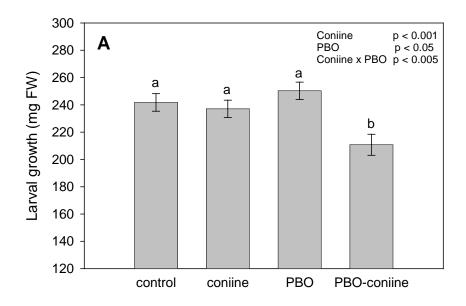
Table 2. Analysis of covariance for *T. ni* feeding diets enriched with coniine over a 30-h

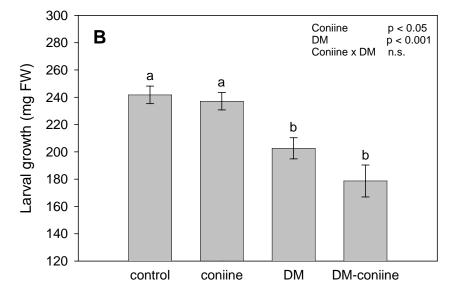
3 period. Larval initial weight was used as covariate following Raubenheimer and Simpson


4 (1994). P-values in bold indicate significant differences at p < 0.05.


	SS	Df	MS	F	P
LARVAL GROWTH					
Initial DW	3928.69	1	3928.69	709.664	0.000
Coniine	17.49	5	3.49	0.632	0.676
Error	625.56	113	5.53		
CONSUMPTION					
Initial DW	10972.44	1	10972.44	329.74	0.000
Coniine	879.59	5	175.91	5.28	0.000
Error	3760.13	113	33.27		
ASSIMILATED					
Initial DW	3623.37	1	3623.37	275.65	0.000
Coniine	1028.45	5	205.69	15.64	0.000
Error	1485.34	113	13.14		
ECI					
Initial DW	13.01	1	13.01	3.18	0.077
Coniine	270.47	5	54.09	13.21	0.000
Error	462.48	113	4.093		
ECD					
Initial DW	78.14	1	78.14	6.20	0.14
Coniine	2513.23	5	502.64	39.92	0.000
Error	1422.68	113	12.590		
AD					
Initial DW	18.13	1	18.13	3.86	0.052
Coniine	649.02	5	129.80	27.66	0.000
Error	530.28	113	4.69		


6


5


2 Figure 1

