Pre-print of: Ponsá, S., et al. "Optimization of the hydrolytic-acidogenic anaerobic digestion stage (55°C) of sewage sludge : influence of pH and solid content" in Water research, vol. 42, issue 14 (Aug. 2008), p. 3972-3980. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in DOI 10.1016/j.waters.2008.07.002

1 Optimization of the hydrolytic-acidogenic anaerobic digestion stage (55

2 °C) of sewage sludge: influence of pH and solid content

3

4

- Sergio Ponsá¹, Ivet Ferrer², Felícitas Vázquez³ and Xavier Font¹*
- ¹Composting Research Group
- 6 Department of Chemical Engineering
- 7 Escola Tècnica Superior d'Enginyeria
- 8 Universitat Autònoma de Barcelona
- 9 Bellaterra (Cerdanyola del Vallès, 08193-Barcelona, Spain)3
- 10 ²Environmental Engineering Division
- 11 Department of Hydraulic, Maritime and Environmental Engineering
- 12 Technical University of Catalonia
- 13 C/ Jordi Girona 1-3 (08034-Barcelona, Spain)
- 14 ³,Institute of Biotechnology and Biomedicine Universitat Autònoma de Barcelona, Bellaterra
- 15 (Cerdanyola del Vallès, 08193-Barcelona, Spain)
- 16 *Corresponding author:
- 17 Xavier Font
- 18 Tel.: (34) 93 5814480; Fax: (34) 93 5812013; E-mail: xavier.font@uab.cat

19 Abstract:

20 In conventional single-stage anaerobic digestion processes, hydrolysis is regarded as the

21 rate limiting step in the degradation of complex organic compounds, such as sewage

1	sludge. Two-stage systems have been proposed to enhance this process. However, so far
2	it is not clear which are the best conditions for a two-stage anaerobic digestion process
3	of sewage sludge, in terms of temperature and hydraulic retention time of each stage.
4	The aim of this work was to determine the optimal conditions for the hydrolytic-
5	acidogenic stage treating real sludge with a high concentration of total solids (40-50 g
6	L^{-1}) and volatile solids (25-30 g L^{-1}), named high concentration sludge. The variables
7	considered for this first stage were: hydraulic retention time, (1 to 4 days) and
8	temperature (55 and 65°C). Maximum volatile fatty acids generation was obtained at 4
9	days and 3 days hydraulic retention time for 55°C and 65°C, respectively.
10	Consequently, 4 days hydraulic retention time and temperature of 55°C were set as the
11	working conditions for the hydrolytic-acidogenic stage treating high concentration
12	sludge . The results obtained when operating with high concentration sludge were
13	compared with a low concentration sludge low concentration sludge consisting of 17-28
14	g L ⁻¹ Total Solids and 13-21 g L ⁻¹ Volatile Solids. The effect of decreasing the influent
15	sludge pH, when working at the optimal conditions established, was also evaluated.
16	
17	Keywords: Anaerobic digestion; hydrolysis-acidogenesis; thermophilic; two-stage
18	process, volatile fatty acids; waste sludge.

Abbreviations HRT: Hydraulic Retention Time (d⁻¹) TS: Total Solids $(g \cdot L^{-1})$ VS: Volatile Solids $(g \cdot L^{-1})$ HCS: High Concentration Sludge LCS: Low Concentration Sludge VFA: Volatile Fatty Acids H-A: Hydrolytic-Acidogenic WWTP: Wastewater Treatment Plants CSTR: Continuously Stirred Tank Reactor COD: Chemical Oxygen Demand (g kg⁻¹) OLR: Organic Loading Rate (g VS_{fed} \cdot (L_{reactor} · day)⁻¹) SBP: Specific Biogas Production (L biogas (g VS_{fed})⁻¹) VSR: Volatile Solide Port VSR: Volatile Solids Removal (%) VFAP: Volatile Fatty Acid Production (g VFA produced $(g VS_{fed})^{-1}$)

1 **1. Introduction**

The residue generated during the primary, secondary and tertiary wastewater treatment is often called "sludge". Anaerobic digestion is an appropriate technique for the treatment of sludge before its final disposal and it is employed worldwide as the oldest and most important process for sludge stabilization (Metcalf and Eddy, 1991; Mata-Alvarez *et al.*, 2000).

The microbiology of anaerobic digestion is complicated, involving several bacterial groups forming a complex interdependent food web. However, four major steps can be distinguished. In the first hydrolysis step, both solubilisation of insoluble particulate matter and biological decomposition of organic polymers to monomers or dimmers take place. Acidogenesis and acetogenesis follow in the second and third step while in the fourth and final step, methane is produced by methanogenic population (Pavlostathis and Giraldo-Gomez, 1991).

14 In a conventional single-stage anaerobic digestion process, hydrolysis, 15 acidogenesis, acetogenesis and methanogenesis all take place in the same reactor. To 16 maintain a favourable environment for the mixed culture of microorganisms in such a 17 reactor, volatile fatty acids (VFA) production and utilization must be balanced. At short 18 retentions times, VFA production could exceed the utilization, leading to reactor failure 19 (Harper and Pohland, 1986; Siegert and Banks, 2005). Because the metabolic 20 characteristics and growth rates of the methanogenic and acetogenic bacteria are different, two-stage anaerobic processes to separate VFA and methane forming stages 21 22 have been proposed to optimize each stage (Pohland and Ghosh 1971; Elefsiniotis and 23 Oldham, 1994; Bhattacharya et al., 1996; Veeken and Hamelers, 1999; Shana et al., 24 2002; Oktem et al., 2006)

1 Hydrolysis is reported as the rate limiting step of anaerobic digestion of semi-2 solid wastes as sewage sludge, whereas methanogenesis is considered rate-limiting for 3 fermentation of soluble substrates (Eliosov and Argaman, 1995; Gavala et al., 2003). 4 Although, the specific operational conditions for acetogenic-methanogenic stages have 5 been extensively studied, relevant literature on the acidogenic stage is still scarce. Few 6 studies report optimal conditions for the hydrolytic stage, besides in all of them very low TS (5-10 g L^{-1}) and sometimes synthetic substrates are used (Shana *et al.*, 2002; Yu 7 8 et al., 2003). There is a lack of knowledge about operation conditions of acidogenic 9 reactors fed with a real mixture of primary and secondary sludge with high TS and high 10 VS concentrations. However, it is known that for a good performance of such reactors, 11 methanogenic activity must be low. For this reason, short retention times are generally used in hydrolytic-acidogenic (H-A) reactors, since they favour the washing out of 12 methanogenic microorganisms. Besides, neither high VFA concentrations nor high 13 14 temperatures favour the growth of these microorganisms (Bhattacharya et al., 1996). Moreover both, temperature and HRT are important control parameters which can be 15 16 manipulated causing considerable effects on the hydrolytic products (Elefsiniotis and 17 Oldham, 1994, Metcalf and Eddy, 1995; Veeken and Hamelers, 1999; Ahn and Foster, 18 2000; Zábranská, 2000; Ahring et al., 2001). Additionally, a thermophilic range of 19 temperatures is generally used in the acidogenic reactor operation since it results in a 20 biochemical reactions rate acceleration and higher growth rate of microorganisms that 21 means a higher hydrolytic rate (Pavlostathis and Giraldo-Gómez, 1991; Veeken and 22 Hamelers, 1999; Lu, et al., 2007).

Many authors have also reported the influence of pH on the hydrolyticacidogenic stage (Zoetemeyer *et al.*, 1982; Joubert and Britz, 1986; Henry *et al.*, 1987;
Kisaalita *et al.*, 1987; Yu *et al.*, 2003; Massanet-Nicolau, J. *et al.*, 2007), concluding

1 that a slightly acid pH, close to 6, improves the working conditions for hydrolytic-2 acidogenic bacteria.

3 Sludge production in wastewater treatment plants is not constant, and neither are 4 its characteristics, since daily precipitation, amongst others, directly affects the sludge 5 solids content (De la Rubia, 2003). Moreover, in some cities, population varies in 6 thousands of people depending on the season and the amount of wastewater treated in 7 wastewater treatment plants (WWTP) fluctuates accordingly, which directly affects 8 sludge characteristics in terms of solids content (De la Rubia, 2003).

9 The aim of this work is to investigate the thermophilic anaerobic hydrolysis of 10 waste sludge of different solid content by providing optimal growth conditions to 11 different anaerobic populations in a H-A reactor.

12

13 2. Materials and Methods

14 2.1 Acidogenic reactor

ried or 15 Experiments were carried out in a stainless steel continuously stirred tank 16 reactor (CSTR) with a working volume of 4 L. The reactor was provided with a gas 17 collection unit, an influent and effluent line and was operated continuously over a 18 period of approximately 360 days. The reactor was mechanically mixed by stainless 19 steel paddles on a central shaft operated at constant speed by an electric motor with a 20 speed controller. The temperature was maintained constant at 55 ± 1 or $65\pm1^{\circ}C$, 21 depending on the experiment, by using a heating tape (Entesis, 200 W, Spain) wrapped 22 around the vessel and, a temperature digital controller (Osaka OR-31, Japan).

The reactor was kept under the same working conditions for a period 23 24 corresponding to at least 3 HRT, ensuring steady-state conditions, and maintained for at 25 least 3 more HRT for data collection. The reactor was operated in a semi-continuous

1 way- A mixture of 25% primary and 75% secondary real sludges was fed to the reactor 2 3 times per day.

3

4

2.2 Sewage sludge and inoculum characteristics

5 Low Concentration Sludge (LCS) and High Concentration Sludge (HCS) were 6 obtained from two different municipal wastewater treatment plants near Barcelona 7 (Spain) and stored at 4°C. Working ranges for TS and VS content in LCS were 17-28 g L^{-1} and 13-21 g L^{-1} respectively, whereas for HCS, TS content was 40-50 g L^{-1} and VS 8 content was 25-30 g L⁻¹. A mixture 1:3 primary to secondary sludge was used in all 9 10 experiments. Inoculum was obtained from a single-stage laboratory anaerobic digester 11 which had been working for over 1 year with LCS. Main characteristics of inoculum are the H 12 shown in Table 1.

13

2.3 Efficiency parameters 14

15 Optimal conditions for the H-A process were determined by comparing process 16 performance at 4 different HRT (1, 2, 3 and 4 days) and 2 temperatures within the 17 thermophilic rante (55 and 65 °C). Influent acidification was also considered as an 18 improving option for the H-A reactor performance.

19 Efficiency parameters considered were CO₂ content in biogas, specific biogas 20 production (SBP), VS removal and VFAproduction (VFAP). The latter was considered 21 as the key parameter since it is the main acid-stage product reflecting the organic matter that has been hydrolyzed. VFA generation was expressed as $g VFA_{produced}(g VS_{fed})^{-1}$ 22 23

24 2.4 Analytical methods

1 TS and VS content, total COD, total alkalinity, were determined according to 2 Standard Methods (APHA, 1999). VFA were determined by gas chromatography 3 (Perkin Elmer Autosystem XL Gas Cromatograph) with a flame ionization detector and a capillary column (J&W Scientific High Resolutions Gas Cromatography Column, 30 4 5 m, inner diameter 025 mm, film 0.25µm) and oven, injector and detector temperatures 6 of 130°C, 250°C and 260°C respectively. Biogas composition was also determined by 7 gas chromatography (Perkin Elmer Autosystem XL Gas Cromatograph) with a stainless 8 silica column (HAYESEP D 3m, 1/8" inner diameter and oven, injector and detector 9 temperatures of 70°C, 150°C and 180°C respectively.

10 Statistical significance of values of different parameters obtained during each 11 experimental condition was carried out by means of F-test (variance analysis) and Student's t-test (mean analysis) using a 5% of significance level. 12 st-

13

3. Results and discussion 14

15 3.1 Hydrolytic specialization stage

16 Since the inoculum used for these experiments came from a single stage 17 digester, the transition from a methanogenic to a hydrolytic reactor (specialization 18 stage) was considered of particular importance for the development of the hydrolytic 19 process.

20 Initially a 10 days HRT was used since it was the operating HRT of the 21 inoculum source reactor. In order to wash out the methanogens, consequently obtaining 22 a specialized acidogenic bacteria population, HRT was progressively reduced until a 23 sharp decrease in SBP and a rise in VFA generation were reached (Figure 1, HRT 5-4 24 days).

During the acid-stage bacteria specialization, HRT was reduced progressively from 10 to 4 days using LCS as feeding material. The main feeding characteristics during this experimental length are presented in Table 1. When reducing the HRT a drop in the biogas production and VS removal would be expected provided that hydrolysis is enhanced because the methanogenic population became growth limited. On the other hand, an increase in the PCO₂ in biogas and VFA accumulation would also be expected since they are the main acid-stage products.

8 Evolution of specialisation parameters in the H-A reactor during bacteria 9 specialization is shown in Figure 1. From this Figure it can be observed that VS 10 removal followed a decreasing pattern when reducing the HRT with values from 30% 11 and 38%, as expected.

As shown in Figure 1, SBP followed an increasing tendency with decreasing 12 HRT from 10 to 5 days. However, when HRT was reduced from 5 to 4 days, a 13 significant drop in the SBPfrom 0.140 to 0.059 L_{biogas}(g VS_{fed})⁻¹ was registered. The 14 reason for this profile may be explained as follows. Assuming that, at 10 days HRT 15 16 (OLR of 2.1 g VS_{fed} ($L_{reactor}d$)⁻¹), anaerobic bacteria were able to rapidly degrade easily 17 biodegradable organic matter, obtaining the corresponding biogas. In a similar manner, at 7 and 5 days HRT (OLR of 3.0 and 4.2 g VS_{fed} (L_{reactor}·d)⁻¹, respectively) anaerobic 18 19 microorganisms were still able to degrade the easily biodegradable organic matter that 20 was fed to the system, and consequently when more VS were fed, more biogas was 21 produced. Since VSR rate at 10, 7 and 5 days HRT were 0.81, 0.92 and 1.2 g $VS_{removed} \cdot (L_{reactor} \cdot d)^{-1}$ respectively, SBP increased accordingly. The critical step was the 22 23 HRT reduction from 5 to 4 days, when a considerable drop in the SBP was observed. As 24 a portion of the VS fed may be readily degradable organic matter, when reducing HRT 25 (increasing OLR) the VFAP coming from this readily degradable organic matter may

increase accordingly. At these working conditions, methanogenesis should become the
 limiting stage (Zahller *et al.* 2007). Therefore, it could mean that at these conditions,
 methanogenic population became growth limited and were being washed-out of the
 system.

5 PCO₂ increased when reducing the HRT because methanogenic microorganisms 6 which are methane producers were being washed-out of the digester. Nevertheless a 7 certain percentage of methane was always detected in the biogas, due to the continuous 8 re-inoculation with methanogenic microoganisms contained in the raw sludge fed.

9 VFA generation followed an increasing tendency with decreasing the HRT.
10 Variation was from 0.004 g VFA_{produced}(g VS_{fed})⁻¹ at 10 days HRT to 0.017-0.019 g
11 VFA_{produced}(g VS_{fed})⁻¹ at 5 and 4 days HRT respectively. This may indicate that
12 biochemical equilibrium between anaerobic populations was disrupted and became
13 unbalanced as HRT decreased.

The main goal of the specialization stage was to verify the biological reactions 14 15 imbalance that suggested that methanogens were limited (inhibited or washed-out of the 16 system). To our knowledge no references on methanogens inhibition by VFA in sewage 17 sludge anaerobic digestion processes have been reported. However, some authors have 18 reported data to recognize anaerobic digester destabilization and methanogen's growth 19 limitation using VFA as indicators treating different wastes such as synthetic media 20 (Marchaim and Krause, 1993; Hanaki, 1994; Wu et al., 1995) (Kugelman and Chin, 21 1971; wastewaters (Boardman et al., 1995); swine wastes (Hill and Holmbert, 1998). 22 VFA are easily lab measurable parameters which can give essential process information. 23 Comparing limit VFA concentrations reported in the literature (taking into account that 24 they were not obtained for sludge anaerobic digestion) with those obtained in the 25 present work, it can be observed that acetic acid concentration (maximum value of 0.5 g 1 L^{-1}) was always below the failure concentration limit of 0.8 g L^{-1} (Hill and Holmbert, 2 1998). However, the propionic to acetic acid ratio (maximum value of 4.5 at 4 days 3 HRT) was always above the limit of 1.4, indicative of the one-stage anaerobic digester 4 destabilization (Hill and Holmbert, 1998). Effluent concentration of iso-butiric and iso-5 valeric acids were always above the limits proposed by Wu (1995) and Boardman 6 (1995) (0.005 g L^{-1} and 0.015 g L^{-1} , respectively), and reached maximum values of 0.6 7 g L^{-1} , also indicating one-stage anaerobic digester destabilization.

8 Hill and Holmert (1988) established that methane yields below 0.25 g $CH_4(g$ 9 $VS_{fed})^{-1}$ were indicative of anaerobic digester instability. In this work, during the 10 specialization period, methane yield never exceeded 0.14 g $CH_4(g VS_{fed})^{-1}$, thus 11 indicating that methanogenic population were limited at all HRT.

Methane production is affected by physic-chemical conditions in the digester. 12 Bacterial activity may be inhibited by either reaction substrates or products when they 13 are present in extreme concentrations. For example, high VFA concentrations in the 14 system cause the inhibition of methanogenesis. Under conditions of organic 15 16 overloading, and in presence of inhibitors, methanogenic activity cannot remove 17 hydrogen and volatile organic acids as quickly as they are produced. The result is the 18 accumulation of acids, the depletion of buffering capacity and the depression of pH to 19 levels that also inhibit the hydrolysis/acidogenesis stage. It has also been shown that 20 even when process pH is optimal, accumulation of VFAs may contribute to reduce the 21 rate of hydrolysis of organic solids, or even to inhibit it at extremely high levels (>10 g 22 L⁻¹) (Palmisano and Barlaz, 1971). In addition, Kugelman and Chin (1971) established that methanogens were inhibited at acetic acid concentrations of 6 g L^{-1} , whereas 23 Hanaki (1994) established 3.2 g L⁻¹ as the propionic acid concentration limit for 24 25 methanogenic inhibition. Siegert and Banks (2005) established that anaerobic digestion 1 was evidently inhibited when VFA concentration was over 6 g L⁻¹. However, theses 2 considerations have to be taken into account when operating in the same working 3 conditions (same substrate, alkalinity, pH and temperature) otherwise the limits 4 established can vary moderately. During the specialization stage, acetic acid, propionic 5 acid ant total VFA concentrations never exceeded 0.73 g L⁻¹, 1.25 g L⁻¹ and 2.41 g L⁻¹ 6 respectively. Therefore, it could be stated that the unique reason for methanogens 7 limitation was the wash-out of the system and not the VFA inhibition.

8

9

3.2 Experiments with low TS and VS concentration sludge (LCS).

10 Once the results indicated that the prevalent population in the reactor was 11 hydrolytic bacteria, optimal working conditions (in terms of HRT) for the H-A reactor 12 were sought.

VFA generation, SBP, PCO₂ and VSR for the operational conditions assayed 13 with LCS are shown in Figure 1. As it can be seen, VFAP further increased while 14 decreasing HRT, whereas VSR decreased as HRT decreased. Maximum VFAP of 0.059 15 g VFA_{produced} (g VS_{fed})⁻¹, was obtained at 1 day HRT. This value was statistically 16 17 different from the results corresponding to all the other HRT assayed. Once hydrolytic 18 conditions have been reached, HRT < 4 days, the maximum VSR of 36% was obtained 19 at 4 days HRT, being statistically equal to that obtained at 3 days HRT. PCO₂ was close 20 to 55% in all the experiments with a slight decreasing tendency when increasing HRT, 21 reaching a minimum value of 57% at 1 day HRT. SBP followed a decreasing tendency when decreasing HRT reaching the maximum, value of 0.140 l biogas \cdot (g VS_{fed})⁻¹ 22 23 working at 4 days of HRT.

Statistical analysis of obtained results is shown in Table 2. According to these
 analyses, best working conditions (those which allow maximum hydrolysis of organic
 matter, thus maximum VFA generation) correspond to 1 day HRT.

4 Furthermore, influent acidification in the H-A reactor was carried out to assess 5 its effect on organic matter solubilisation when working at 1 day HRT since it has been 6 shown (Yu et al., 2003; Massanet-Nicolau, J. et al., 2007) that low pH values in H-A 7 stage improve hydrolysis. The results for influent acidification operation are shown and 8 compared with normal influent operation in Table 3. Neither VFAP nor VSR were 9 improved with influent acidification. Therefore, this option was discarded for H-A 10 reactor operation. VFA concentration never exceeded inhibition levels during the length 11 of this experimental stage.

12

13 **3.3 Experiments with high TS and VS concentration sludge (HCS).**

In order to acclimatize anaerobic microorganisms to HCS, the HRT of the H-A reactor was set to 4 days and HCS was fed for more than 1 month, until control parameters were stabilized. The main feeding characteristics during this experimental length are presented in Table 4.

The results obtained when working with HCS at 4, 3, 2, and 1 day HRT are shown in Figure 2. A maximum value for VFA production of 0.108 g VFA_{produced}(g VS_{fed})⁻¹ is observed when working at 4 days HRT, being this value statistically different from all the others (Table 5). A significant decrease in VFAP is observed when HRT is reduced from 4 to 3 days, probably due to the wash-out of part of the hydrolytic consortium, and it remains almost constant in subsequent HRT reductions. VSR is within the range of 20-25% during the whole experiment, with no significant variations. PCO₂ fluctuated between 59% and 75%. However, the only statistical differences were
 found between 4 and 3 days HRT.

Table 5 shows the statistical analysis of these results. Since maximum VFAP was obtained at 4 days HRT and this result is statistically different from all the other results obtained at the other HRT assayed, it can be established that the best working conditions, in terms of organic matter solubilisation, were found at 4 days HRT.

7 These results differ from those obtained for LCS possibly due to an increasing of organic loading rate, from 5.3 g VS_{fed}(L_{reactor}d)⁻¹ for LCS at 4 days HRT to 7.8 g 8 $VS_{fed}(L_{reactor}d)^{-1}$ for HCS at 4 days HRT). Another possible explanation may be the 9 10 inhibition exerted by the VFA produced. It should be noticed that OLR for optimal working conditions for LCS was 13 g $VS_{fed}(L_{reactor}d)^{-1}$ whereas for HCS was 7.8 g 11 VS_{fed}(L_{reactor}d)⁻¹. At these optimal conditions VFAP rate for LCS was 3.06 g 12 VFA_{produced}(L_{reactor}d)⁻¹ and 3.34 g VFA_{produced}(L_{reactor}d)⁻¹ for HCS and the VSR in terms 13 of VS $_{removed}(L_{reactor}d)^{-1}$ were 3.22 for LCS and 1.96 for HCS. 14

To compare similar OLR for the two solid contents assayed, results from HRT of 2 days for LCS and 4 days for HCS were used. Under these working conditions, OLR was 7.0 and 7.8 g $VS_{fed}(L_{reactor}d)^{-1}$ respectively. Corresponding VFAP rates were 1.06 g VFA(L reactord)⁻¹ for LCS and 2 days HRT and, 3.34 g VFA(L_{reactor}d)⁻¹ for HCS and 4 days HRT. These results indicate that the higher is the concentration in the feed, the higher the VFAP rate should be.

Influent acidification was also assessed with HCS. The results and the corresponding comparison are presented in Table 3.As it can be observed, neither VFA production nor VS removal increased at lower influent pH, thus influent acidification was also discarded as an alternative to improve the process. At the different HRT assayed, differences in VFAP were statistically significant while no significant differences were found for VSR. These results suggest that under the experimental
 conditions assayed, preacidification had a negative effect since it resulted in a 35%
 reduction in VFAP.

4 Some authors have reported that high temperatures improve the hydrolytic 5 reactions kinetics (Gavala et al., 2003, Kuo and Cheng, 2007). In order to further improve the H-A performance, a working temperature of 65 °C, was set up in the 6 7 reactor and the results obtained are showed in Figure 3 and Table 6. VSR followed an 8 increasing tendency, reaching the maximum and statistically different value of 33% 9 when working at a 4 day HRT, meanwhile PCO₂ fluctuated between 62% and 70%. The maximum VFAP of 0.097 g VFA_{produced} (g VS_{fed})⁻¹ was registered at 3 days HRT, but it 10 11 is not statistically different from the production obtained at 4 days HRT (0.091 g VFA produced (g VS_{fed})⁻¹) and from the one obtained at 4 days and 55°C (0.108 g VFA_{produced} (g 12 117 $VS_{fed})^{-1}$). 13

Some facts have to be taken into account to establish the optimal working 14 conditions in terms of HRT and temperature. It has been proved that a higher 15 16 temperature improves (or at least statistically maintains) organic matter solubilisation 17 during hydrolysis, expressed as VFA produced. However, working at higher 18 temperatures conveys higher economical costs. In order to balance out the cost of higher 19 temperature, a shorter HRT should be established. An economical analysis may be 20 required to assess whether smaller reactor volume due to 1 day HRT reduction could 21 compensate the energy expenses of 10°C temperature increase

As a general discussion, if the results of this work were to be applied in a treatment plant, where the solid concentration at the entrance of the H-A reactor could be modified, for a given VS concentration, LCS process would allow treating the same amount of VS but in half the process time than HCS process, since the OLR (13 g $VS_{fed}(L_{reactor} \cdot day)^{-1}$) for the former is almost twice the OLR for the latter (7.8 g

 $VS_{fed}(L_{reactor} \cdot day)^{-1}$. However, these solids would be hydrolysed to a lesser extend, as 1 2 demonstrated by the corresponding VFAP 0.56 (g VFA produced $(g VS_{fed})^{-1}$) and 0.108 3 (g VFA produced (g VS_{fed})⁻¹) for LCS and HCS, respectively, in spite VFAP rate being 4 similar in both processes. If less hydrolysed solids were to be obtained in the H-A 5 reactor, this probably would mean that longer times would be needed in the 6 subsequent anaerobic digestion to meet the required VS removal. In consequence, an 7 economic analysis of the process would necessary comprise both stages, the H-A and 8 the anaerobic digestion.

9

10 4. Conclusions

11 The results obtained in this work can be used to establish the best working conditions 12 for the Hydrolytic-Acidogenic stage when treating sewage sludge of different solid content. These results indicated that maximum Volatile Fatty Acids Production for Low 13 Concentration Sludge was obtained at 1 day Hydraulic Retention Time and an Organic 14 Loading Rate of 13.0 g $VS_{fed}(L_{reactor}day)^{-1}$, whereas for High Concentration Sludge 15 16 maximum Volatile Fatty Acids Production was obtained at 4 days Hydraulic Retention Time and an Organic Loading Rate of 7.8 g VS_{fed}(L_{reactor}day)⁻¹. Moreover, influent 17 18 acidification did not increase Volatile Fatty Acids Production with either Low 19 Concentration Sludge or High Concentration Sludge sewage sludge feeding while a 20 higher operating temperature of 65°C did not improve Volatile Fatty Acids Production 21 when treating High Concentration Sludge.

The findings of this study can be used to optimise the Hydrolytic-Acidogenic stage when treating sewage sludge of different solid content. However, in order to assess their impact on the overall process, particularly on the process economics, both stages, the hydrolysis-acidogenic and the anaerobic digestion stage, should be considered.

1 Acknowledgements

3	The authors wish to thank the financial support provided by the Spanish
4	Ministry of Science and Technology and FEDER (REN2002-00926/TECNO).
~	
5	
6	
7	
8	
0	
9	
10	
11	
12	
10	Defense
13	References
14	Drerr
15	Ahn, J.H. and Forster, C.F. (2000) A comparison of mesophilic and termophilic
16	anaerobic upflow filters. Bioresource Technology 73, 201-205.
17	
18	Ahring, B.K., Mladenovska, Z., Iranpour, R. and Westrman, P. (2001) State of art and
19	future perspectives of thermophilic anaerobic digestion. Proc. 9 th World Congress on
20	Anaerobic Digestion I., Antwerpen, Belgium. 455-460.
21	
22	Bhattacharya, S.K., Madura, R.L., Walling D.A. and Farrell, J. B. (1996) Volatile solids
23	reduction in two-phase and conventional anaerobic sludge digestion.
24	Water Research 30(5), 1041-1048.
25	
26	Boardman, G., Tisinger, J. and Gallagher, D. (1995) Treatment of clam processing
27	wastewater by means of upflow anaerobic sludge blanket technology. Water Research
28	29(6), 1483-1490.
29	

1	Climent, M., Ferrer, I., Baeza M.M., Artola, A., Vázquez, F. and Font, X. (2007)
2	Effects of thermal and mechanical pretreatments of secondary sludge on biogás
3	production under thermophilic conditions. Chemical Engineering Journal 133, 335-342
4	production under thermophine conditions. Chemical Engineering southar 155, 555-542.
5	De la Rubia, M.A. (2003) Puesta en marcha y optimización de la degradación anaerobia
6	termofilica de lodos de EDAR. Tesis de Doctorado. Serv. Publicaciones de la
7	Universidad de Cádiz. Cadiz, Spain.
8	
9	Elefsiniotis P. and Oldham W.K. (1994) Effect of HRT on acidogenic digestion of
10	primary sludge. Environmental Engineering 120(3), 645-660
11	
12	Eliosov, B., Argaman, Y. (1995) Hydrolysis of particulate organics in activated sludge
13	system. Water Research 29(1), 155–163.
14	
15	Gavala, H.N., Yenal, U., Skiadas, I.V., Westermann, P. and Ahring, B.K. (2003)
16	Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge.
17	Effect of pre-treatment at elevated temperature. Water Research 37, 4561-4572.
18	ore-P
19	Hanaki K. (1994) Selective use of microorganisms in anaerobic treatment processes by
20	application of immovilization. Water Research 28(4), 993-996.
21	
22	Harper, S.R. and Pohland, F.G. (1986) Recent developments in hydrogen management
23	during anaerobic biological waste water treatment. Biotechnology Bioengineering 28,
24	585-602.
25	
26	Henry, M.P., Sajjad, A. and Ghosh, S. (1987) The effects of environmental factors on
27	acid-phase digestion of sewage sludge. In: Proceedings 42 nd Purdue Industrial Waste
28	Congress; pp.727-737.
29	
30	Hill, D.T. and Holmbert, R.D. (1988) Long chain volatile fatty acid relationship in
31	anaerobic digestion of swine waste. Biological Wastes 23,195-214
32	

1	Joubert, W.A. and Britz, T.J. (1986) The effect of pH and temperature manipulation on
2	metabolite composition during acidogenesis in a hybrid anaerobic digester. Applied
3	Microbiology Biotechnology 24, 253-258.
4	
5	Kisaalita, W.S., Pinder, K.L. and Lo, K.V. (1987) Acidogenic fermentation of lactose.
6	Biotechnology Bioengineering 33, 623-630
7	
8	Kugelman, I.J. and Chin, K.K. (1971) Toxicity synergism and antagonism in anaerobic
9	waste treatment processes. Anaerobic biological treatment processes. Advances in
10	Chemistry Series, 105. American Chemical Society. Washington D.C
11	
12	Kuo, W-C. and Cheng, K-Y. (2007) Use of respirometer in evaluation of process and
13	toxicity of thermophilic anaerobic digestion for treating kitchen waste. Bioresource
14	Technology 98(9), 1805-1811.
15	
16	Lu, J., Gavala, H.N., Skiadas, I.V., Mladenovska, Z. and Ahring B.K. (2007)
17	Improving anaerobic sewage sludge digestion by implementation of a hyper-
18	thermophilic prehydrolysis step. Journal of Environmental Management,
19	doi:10.1016/j.jenvman.2007.04.020
20	
21	Marchaim, U. and Krause, C. (1993) Propionic to acetic ratios in overloaded anaerobic
22	digestion. Bioresource Technology 43, 195.
23	
24	Massanet-Nicolau, J., Dinsdale, R. and Guwy A. (2008) Hydrogen production from
25	sewage sludge using mixed microflora inoculum: Effect of pH and enzymatic pre-
26	treatment. Bioresource Technology, doi:10.1016/j.biortech.2007.12.012
27	
28	Mata-Alvarez, J., Macé, S., Llabrés, P. (2000) Anaerobic digestion of organic solid
29 20	wastes. An overview of research achievements and perspectives. Bioresource
30	Technology /4 (1), 3–16.
31	
32	Metcalt and Eddy Inc. Biological Unit processes. (1991) In: Clark B.J., Morriss J.M.,
33	editors. Wastewater Engineering; treatment, disposal and reuse, pp. 359-444. McGraw-
34	Hill International Editions, New York .

1	
2	Oktem, Y. A., Ince, O., Donnelly, T., Sallis, P., and Ince, B. K. (2006) Determination
3	of optimum operating conditions of an acidification reactor treating a chemical
4	synthesis-based pharmaceutical wastewater. Process Biochemistry 41 (11), 2258-2263.
5	Delmisence A.C. and Derley M.A. (1071) Mismehiology of solid suggests In D.U.
0	Visional Editor The microhiology of extreme and unusual environments pp. 72 104
/ Q	CPC Press London
0 9	CKC Tress, London
10	Pavlostathis, S.G. and Giraldo-Gómez, E. (1991) Kinetic of anaerobic treatment: a
11	critical review Critical reviews in environmental Control 21(5) 411-490
12	
13	Pholand, F.G. and Ghosh, S. (1971) Developments in anaerobic stabilization of organic
14	wastes, the two-phase concept. Environmental Technology 1, 225-266.
15	
16	Shana A., Asaadi M., Morchoisne T. and Marsh P. (2002) Acid phase digestion pre-
17	treatment and its impact on conventional mesophilic anaerobic digestion. I&D. Thames
18 19	Water, Spencer House. Reading RG2 0JN
20	Siggert, I. and Banks C. (2005) The effect of volatile fatty acid additions on the
21	anaerobic digestion of cellulose and glucose in batch reactors. Process Biochemistry
22	40(11), 3412-3418.
23	
24	Veeken, A. andHameleres, B. (1999) Effect of temperatura on hydrolisis rates of selects
25	biowastes components. Bioresource Technology, 29, 249-254.
26	
27	Wu, W., Jai, M., Thiele, J. and Zeikus, G. (1995) Effect of storage on the performance
28	of methanogenic granules. Water Research 29(6), 1445-1452.
29	
30	Yu, HQ., Zheng, XJ., Hu, ZH. and Gu, GW. (2003) High-rate anaerobic
31	hydrolysis and acidogenesis of sewage sludge in a modified upflow reactor. Water
32	Science and Technology 48(4), 69-75.
33	

1	Zábranská, J., Stepová, J. Wachtl, R., Jenicek, P. and Dohanyos, M. (2000) The activity
2	of anaerobic biomass in thermophilic and mesophilic digesters at different loading rates.
3	Water Science and Techonology 42(9), 49-56.
4	
5	Zahller, J.D., Bucher, R.H., Ferguson, J.F., Stensel, H.D. (2007) Performance and
6	stability of two-stage anaerobic digestion. Water Environment Research 79(5), 488-497.
7	
8	Zoetemeyer, R.J., van den Heuvel, J.C. and Cohen, A. (1982) pH influence on
9	acidogenic dissimilation of glucose in an anaerobic digestor. Water Research 16, 303-
10	311.
11	
12	
13	Figure Legends
14	
15	Figure 1: Hydrolytic-acidogenic anaerobic digestion stage of LCD at 55 °C. Volatile
16	solid (VS) removal, CO ₂ content in biogas, volatile fatty acid (VFA) generation and
17	biogas production (SB) as function of HRT.
18	Figure 2: Hydrolytic-acidogenic anaerobic digestion stage of HCS at 55 °C. Volatile
19	solid (VS) removal, CO ₂ content in biogas, volatile fatty acid (VFA) generation and
20	biogas production (SB) as function of HRT.
21	Figure 3: Hydrolytic-acidogenic anaerobic digestion stage of HCS at 65 °C. Volatile
22	solid (VS) removal, CO ₂ content in biogas, volatile fatty acid (VFA) generation and
23	biogas production (SB) as function of HRT.