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Abstract

Two types of brightness induction effects (named contrast and assimilation) have
been described depending on the interactions between a test stimulus and its sur-
roundings. Brightness contrast describes a shift of the test stimulus brightness away
from its surroundings and brightness assimilation describes the opposite (the bright-
ness of the test stimulus shifts towards that of its surroundings). These two ef-
fects have been accounted by a single framework (Blakeslee and McCourt, 1999)
called ODOG, using multiresolution decompositions and receptors modelled as ori-
ented difference-of-Gaussians. In this work we present a new multiresolution wavelet
framework which describes assimilation and contrast effects in a unified formulation,
including known psychophysical and physiological attributes of the primate visual
system (such as the contrast sensitivity function), its receptive fields (spatial fre-
quency and orientation bandwidths) and the visual cortex (contrast non-linearities).
This formulation reproduces known visual effects which were reproduced by pre-
vious models (like the ODOG model) such as simultaneous contrast, the White
effect, grating induction and Todorovic effect. Furthermore, our framework repro-
duces these effects and also some additional brightness induction effects such as
Mach bands, Chevreul effect, Adelson-Logvinenko snake and some previously un-
accounted effects such as the Dungeon illusion in a very intuitive way.

Key words: human visual system, brightness induction, White effect, Mach bands,
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1 Introduction

In visual perception, the term brightness refers to a non-quantitative percep-
tion of light elicited by the luminance of a visual target. This (perceived)
brightness depends not only on the light reaching the retina from the visual
target but also on the spatial distribution of light on its surroundings. Bright-
ness induction refers to these changes of appearance due to the surrounding
light and its effects are classified according to the perceptual direction of the
changes. When the change in brightness of the visual target goes away from the
surrounding brightness, it is called brightness contrast and when the change
goes towards that of the surrounding brightness, it is called brightness assim-
ilation.

1.1 Brightness induction effects

One of the oldest known examples of this phenomenon (already mentioned by
Alhazen in his book Optics -circa 1025AD-) is called simultaneous brightness
contrast (SBC). Fig. 7 shows an example where a grey patch looks darker
when placed over a white background than when placed over a black back-
ground (Wallack, 1948; Heinmann, 1955). This effect decreases for increasing
test field size, but is still strong for test fields as large as 10 deg (Yund &
Armington, 1975). Since this is far larger than receptive fields of retinal and
lateral geniculate nucleous (LGN) neurons in monkey (DeValois & DeValois,
1988), it suggests that other types of neurons may be involved in the process.
Such neurons with small excitatory centres and large inhibitory surrounds
(which may be suited for the task of shifting brightness towards or away from
a large test field) were found in area V4 of the primate visual cortex (Schein
& Desimone, 1990; Spillman & Werner, 1996).

A second known example of brightness induction is the so called grating in-
duction (GI) where a spatial variation of luminance (such as a grating) pro-
duces a counter-phase brightness variation on an adjacent extended text field
(McCourt, 1982) (see Fig. 10). The perceived contrast of the induced grating
again decreases with increasing test field, but also decreases with the spatial
frequency (s.f.) of the inducing grating (Foley & McCourt, 1985). The induced

Email address: xotazu@cvc.uab.es, maria@cvc.uab.es,
aparraga@cvc.uab.es (Xavier Otazu1, Maria Vanrell1,2, C. Alejandro Párraga1).
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grating is still perceived in test patches as large as 6 deg (Blakeslee & Mc-
Court, 1997). It has been argued that these two phenomena (SBC and GI)
are just manifestations of the same underlying mechanisms (Blakeslee & Mc-
Court, 1997) and its physiological basis are related to the discovery of cortical
neurons in cat (Rossi et al., 1996) and monkey (Gilbert et al., 1996) that in-
tegrate over relatively large distances.

Another well known brightness effect is the White effect (White, 1979) (see
Fig. 8), where grey test patches of the same luminance appear to have dif-
ferent brightness when placed on top of the black and white bars of a square
grating. Here, the brightness shift is independent of the aspect ratio of the
test patch (i.e. it does not depend of the amount of white or black border
near or in contact with the test patch). What makes this effect even more
interesting is that the contrast between the grey patch and its borders (or
surrounding area) seems to be less important than the contrast with the bar
upon which it is situated. A similar effect was described by Todorovic (1997)
where the brightness shift seems to be independent of the amount of black or
white background in contact with the test patch (see Fig. 11). Several expla-
nations both at the receptor-cortical level and at higher perceptual levels have
been attempted to explain the White effect (see below). However, it is clear
that the most plausible explanation for this effect at receptoral level needs
both elongated cortical filters (White, 1981; Foley & McCourt, 1985) and the
operation of spatially extensive neuronal mechanisms, as opposed to isotropic
receptive fields and shorter range spatial interactions such as those found in
the retina.

The Mach bands (named after the physicist Ernst Mach) are brightness max-
ima and minima perceived at the beginning and end of luminance gradients
respectively (Mach, 1865) (see Fig. 12). They have been interpreted in terms of
lateral inhibition of retinal ganglion cells (Goldstein, 1996) and more recently
as a consequence of the physical properties of real world luminance gradients
(Lotto et al., 1999). Chevreul illusion (Chevreul, 1890) is the name given to
the brightness minima and maxima respectively perceived at the foot and tip
of each step in a luminance staircase (see Fig. 13). There have been attempts
to explain this illusion in terms of single channel and the contrast sensitiv-
ity function (Cornsweet, 1970) but this explanation has been abandoned in
favour of multi-channel models and local features within the steps (Peromaa
and Laurinen, 2004; Morrone et al., 1994). However, there are also alternative
explanations of this effect in terms of filling-in process triggered by the edges
at the different spatial scales (Pessoa et al., 1995).

The Adelson tile illusion (Adelson, 1993), appears when a “wall made from
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homogeneous blocks” (see Fig. 14) is spatially modulated by a horizontal dark
stripe in such way that some of the diamonds that form the top of the blocks
fall within the brighter part of the wave and some fall within the darker part.
The top of the blocks (horizontal diamond shapes) are constructed to be phys-
ically the same (i.e. they reflect the same amounts of light), but the diamonds
that fall in the light strip look darker than the diamonds in the dark strip.
A way of showing the need to incorporate long-ranging receptor field interac-
tions to explain the Adelson tile illusion consists on rearranging the pattern to
make the effect disappear while keeping the local contrast around diamonds
the same (Adelson, 1993). A modification of the Adelson tile illusion was intro-
duced by Logvinenko (1999), who blurred the contrast edges of the horizontal
strips, thus removing any apparent transparency (and verifying that the il-
lusion still holds). There is a wide variety of explanations for the Adelson
illusions, ranging from “low-level” explanations based on local contrast and
multiscale spatial filtering (Cornsweet, 1970; Blakeslee and McCourt, 1999) to
those based on the role of borders or luminance junctions between or across
strips (Adelson, 1993, 2000; Anderson, 1997), “high-level” explanations where
the explanation s is based on how the visual system deals with illumination
(Gilchrist et al., 1999; Logvinenko & Ross, 2005) and “multi-level” explana-
tions (Kindom, 2003).

There are particularly striking cases where simple predictions from the SBC
effect (black surroundings induce lighter targets, etc.) seem to be completely
reversed. One example of these is the Necker cube presented by Agostini &
Galmonte (2002) whose dashed sides are perceived lighter even when they are
completely surrounded by white background and vice versa. Other examples
are the dungeon illusion (Bressan, 2001) and the Checkerboard contrast illu-
sion (DeValois & DeValois, 1988), where grey features surrounded by white
look lighter and grey features surrounded by white look darker. These were
interpreted in terms of higher level “grouping factors” where, for example each
set of dashes in the Necker cube is anchored by the cube (Gilchrist, 2006).

Current interpretations of these brightness induction effects are either based on
low-level sensory processes (sensitive to contrast) or higher level processes in-
volving assumptions about the illumination and the configuration of the visual
display as a whole. These two lines are identified with the work of 19th century
scientists Hermann (1870) and Helmholtz (1867). The “Hering approach” was
concerned with adaptation and local interactions and favoured a connection
between physiology and psychophysics (e.g. a Laplacian derivative operator
modelled retinal cells with centre-surround opponency). Centre-surround op-
ponency (or lateral inhibition) can go a long way explaining some illusions
especially those involving sharp transitions in light intensity (such as the edge
in the Craik-O’Brien-Cornsweet illusion (Cornsweet, 1970)). The Helmholtz
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approach is based on higher level knowledge of the world. He proposed that
our perceptions are “best guesses” of what it is in the world, based on previous
experience and low level data. Under this view, brightness induction effects
are the results of the whole visual system trying to interpret natural scenes.

In the following section we review several attempts to model brightness in-
duction in computational frameworks.

1.2 Modelling attempts

One of the earliest computational models to explain some of these phenomena
was developed by Land & McCann (1971) and called Retinex. It applies a
derivative operator to obtain edge information of a given image. This model
takes into account the spatial differences between changes in reflectance (which
tend to change abruptly at the edges of objects) and illuminance (which tend
to change gradually in space) and attempts to remove illuminant variations,
thus incorporating higher level knowledge of the statistics of the natural world.
Subsequent models of brightness perception have been developed using multi-
scale approaches to low level vision. Some postulate that edges and lines are
the driving features of early vision and a set of operators (receptive fields) are
in charge of detecting these (Tolhurst, 1972; Morrone & Burr, 1988; Fiorentini
et al., 1990; duBuff, 1994). These models may differ in the way these operators
interact with each other. For example, both the models of Tolhurst (1972) and
Morrone & Burr (1988) employ pairs of orthogonal operators but the first ap-
plies mutual inhibition between them while the second pools their responses.
The model of Fiorentini et al. (1990) employs a single filter type at different
spatial scales while the model proposed by duBuff (1994) uses operators that
resemble pairs of simple cells centred at the same location but in quadrature.

A second type of models is based on the framework originally proposed by
Marr (1982). An example of these is MIRAGE (Watt & Morgan, 1985) which
filters the stimuli at various spatial scales and generates a list of “primitives”
and uses a set of rules to detect lines and edges. A more sophisticated ver-
sion was proposed by Kingdom & Moulden (1991) and called MIDAAS, which
includes a gain control mechanism (light adaptation), spatial scale filtering,
thresholding and symbolic descriptions at each spatial scale before applying a
set of rules and combining the outputs across scales.

A third type of models propose that the main task of the visual system is
not to extract salient features of scenes (as do the other two types of mod-
els) but to build perceptual representations that keep the geometric structure
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of scenes (Pessoa et al., 1995). The latest model uses a contrast-driven and
a luminance-driven representation. The first representation is then filtered
to produce boundaries. The filtering overshoots and undershoots trapped by
these boundaries are filled-in before the contrast and luminance signals are re-
combined to provide the model’s output, which is meant to resemble the spatial
distribution of the percept. These models can account for several brightness
induction effects such as the Mach bands and the Chevreul illusion with vary-
ing degrees of accuracy (for a review see Pessoa et al. (1995)).

A unified brightness model based on low level isotropic filters (difference of
Gaussians or DOG) sensitive to contrast at multiple spatial scales was pro-
posed by Blakeslee & McCourt (1997) to explain the GI effect which, they
argue, cannot be explained by a fill-in type of model. The main difference be-
tween this model and the previous ones (Moulden & Kingdom, 1991; Kingdom
& Moulden, 1991) was the presence of more s.f. filters (sensitive to lower spa-
tial frequencies) and a weighting scheme adjusted to match the psychophysical
data. This simple model is capable of accounting for other brightness effects
such as SBC and the Hermann grid illusion. A more sophisticated version,
which includes anisotropic filters (oriented difference of Gaussians or ODOG),
non-linearly pooled, was developed to account for a variety of brightness effects
that require oriented filters such as the White effect (Blakeslee and McCourt,
1999; Blakeslee & McCurt, 2001; Blakeslee and McCourt, 2004; Blakeslee et
al., 2005). Another multi-resolution perceptual model is the one developed by
D’Zmura & Singer (1998, 1999). Here the visual space is decomposed into s.f.
and orientation axis, and subdivided into several regions according to their
spatial properties. The authors use four (octave-wide) s.f. channels and six
orientations of 30 deg width. The contrast of the surround is introduced in
this model as a Gaussian blurring of the full-wave rectified frequency channel
(called spatial pooling of contrast).

The Perceptual Wavelet Model (PWM) we present here shares some similar-
ities with both the ODOG and the D’Zmura & Singer (1998, 1999) models.
Although a multi-resolution decomposition of the stimulus is performed, the
output of the s.f. channels is processed differently (see below) and the con-
trast sensitivity function and stimulus distance are introduced explicitly. Also
in contrast to the previous models, a precise dependency on the contrast en-
ergy of the surround compared to the central stimulus is introduced here. In
the ODOG model the interaction of the central stimulus and its surround is
performed through a normalisation of the total visual space (and in the case
of the D’Zmura model this explicit comparison is not performed). We decided
to use the wavelet transform as the main framework for this work. Wavelets
share several mathematical properties that fit nicely with those of the early vi-
sual system (e.g. two-dimensional receptive field profiles are well described by
two-dimensional Gabor functions (Jones & Palmer, 1987)). Although there is
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considerable variability in the receptive field shapes across neurons (Tolhurst
& Thompson, 1982; DeValois et al., 1982) and no single basis set can capture
this variability, wavelets provide basis functions that are well localized (both
in space and frequency) among other mathematical properties (such as self-
similarity) which makes them popular among modelers (Zetzsche & Nuding,
2005; Van Rullen & Thorpe, 2001; Field, 1999; Olshausen & Field, 1997).

2 The Perceptual Wavelet Model

In this work we propose a new low-level brightness induction model (the
PWM) that combines three important contributions, namely spatial frequency,
spatial orientation and surround contrast to brightness assimilation/contrast
phenomena.

At the basis of the PWM there is a multiresolution wavelet decomposition
which separates an achromatic image in different spatial frequency (reminis-
cent of parvocellular s.f. channels) and orientation components. The recovery
of the perceptual brightness image is done by weighting the wavelet coefficients
using a modified version of the human contrast sensitivity function (CSF).
This modified CSF takes into account the (spatial) surround information, so
that the value of the contrast sensitivity increases when surround contrast
decreases and vice versa. Observation distance is also taken into account to
generalise the model.

We aim to produce the simplest mathematical formulation (i.e. including the
least possible number of free parameters) which models these three proper-
ties in a manner compatible with current physiological and psychophysical
research.

With this simple architecture, we approximately reproduce several brightness
induction effects such as the Simultaneous Brightness Contrast, White effect,
Grating Induction, Todorovic effect, Mach Bands effect, Chevreul illusion,
Adelson-Logvinenko snake illusion, Dungeon illusion and Checkerboard effect.

2.1 Contrast Sensitivity Function

The detection threshold for sinusoidal gratings depends on the grating s.f.
(Mullen (1985) and Simpson & McFadden (2005)) and this relationship is
described by the contrast sensitivity function (CSF (ν)) which is band pass
for achromatic stimuli. Fig. 1 shows an approximate representation of the CSF.

Experiments with square-wave periodic patterns have shown that brightness
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assimilation effects increase when the s.f. of the target feature is higher than
certain induction threshold. For brightness induction, this transition point
νthr was estimated to be near 4 cpd (Walker, 1978) and for chromatic contrast
induction between 4 - 6.7 cpd (Fach et al, 1986) and 4 cpd (Smith et al., 2001).
ALEJ:This point needs to be made clear: why chose 6 cpd when the
literature says 4 cpd???
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Fig. 1. Generic profile of the CSF (ν). Dots are the original data obtained by Mullen
(1985). Spatial frequency is in cycles per degree (cpd)

ALEJ: This CSF seems a bit strange... why is it peaking at 6 cpd
when it is generally lower (see Mullen (1985)???

Physiological and psychophysical studies (Blakemore & Campbell, 1969; Gra-
ham & Nachmias, 1971; DeValois et al., 1982; Wilson et al., 1983; Werner,
2003) show that spatial frequencies differing by a factor of around 2 (i.e. one
octave) are processed by narrowly-tuned, nearly independent s.f. channels.
These channels have a bandwidth of about one octave and the CSF acts as an
overall envelope for them (Wilson et al., 1983).

The ordinate axis of the CSF is usually defined in terms of cycles per degree of
visual angle. Since visual angle is related to both the object’s physical size and
its distance d from the observer, we can associate a spatial scale s to a certain
visual angle ν (see Appendix A for details). Therefore, given an observation
distance d the psychophysical CSF (ν) function shown in Fig. 1 can be defined
in the scale space s as a function CSFd(s) and approximated by a piecewise
function defined by two Gaussians (see eq. (B.1) in Appendix B). We can also
define a particular scale sthr associated to the particular νthr = 3 cpd spatial
frequency (see Appendix A) where the CSF peaks XOP: HEmos puesto 3
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cpd en el maximo, pero si miramos la grafica de Mullen diria que
puede estar incluso en el 1cpd !!!. This allows us to define the function
CSFd(ṡ), being ṡ = s − sthr.

The spatial decomposition of the visual stimuli into the one-octave bandwidth
independent channels that form the basis of the CSF is modelled by a mul-
tiresolution wavelet transform, as described in the next section.

2.2 Multiresolution wavelet analysis

A multiresolution analysis allows us to describe an image in terms of dif-
ferent spatial resolution (i.e. spatial frequency) components. The particular
multiresolution framework used in this work is similar to the one described
by the Mallat decomposition algorithm (Mallat, 1989, 1998) which is mainly
used to perform orthogonal wavelet transforms, and has been modified here to
produce non-orthogonal basis with a smooth and symmetric profile. Despite
these mathematical differences, the main concept and philosophy of these two
algorithms is the same. The Mallat algorithm decomposes the input in a se-
ries of new images ωo

s (or wavelet planes) that contain features of the original
image at different spatial frequencies, indexed by s, and spatial orientations,
indexed by o. Our algorithm also decomposes the image in 3 orientations with
45◦ orientation bandwidths, i.e. in vertical, horizontal and diagonal orienta-
tions. In Fig. 2 we show a graphical scheme of this decomposition. The terms
ωv

1 , ω
h
1 and ωd

1 represent the highest frequency components of the input image
for the vertical, horizontal and diagonal orientations respectively. The terms
ωv

2 , ω
h
2 and ωd

2 represent similar orientation wavelet planes of s.f. one octave
lower. The c2 image is a residual plane, which is a smoothed version of the
original image and can be similarly decomposed, as shown in Fig. 2 b). After
being decomposed, the original image I is represented as a summa of wavelet
planes of different s.f. and orientation as follows

I =
n∑

s=1

(
ωv

s + ωh
s + ωd

s

)
+ cn , (1)

being n the number of wavelet planes. The term cn is a residual plane, which
is a low resolution version of original image. This expression can be expressed
more compactly as

Ipercep =
n∑

s=1

∑
o=v,h,d

ωo
s + cn , (2)

being the index o the several orientations vertical, horizontal and diagonal,
i.e. o = v, h, d.
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Fig. 2. Mallat multiresolution decomposition: a) The White effect image from Fig.
3 a) is decomposed into several wavelet planes ω which contain features of a certain
s.f. and orientation. In this case only 2 multiresolution levels are shown.

In our model, these s.f. channels (wavelet planes ωs) have a bandwidth and
layout similar to those of the human visual system (h.v.s.) channels that de-
termine the shape of CSF (ν).

2.3 Hypothesis

As mentioned before, there is ample evidence that our perception of a central
stimulus can be modified by the spatial content of the surroundings (Heeger,
1992; DeValois et al., 1982; Chubb et al., 1989; Werner, 2003; D’Zmura &
Singer, 1998, 1999; Yu et al., 2001, 2002). In this section describe how we
model the interaction of the three main stimulus properties: spatial frequency,
spatial orientation and surround contrast.

2.3.1 Stimulus-surround relative spatial frequency

The spatial frequency content of the surroundings is one of the main con-
tributors to the perceived brightness changes in a central stimulus. As shown
by grating perception studies (Werner, 2003; D’Zmura & Singer, 1998, 1999;
Yu et al., 2001, 2002), when the spatial frequencies of both central and sur-
round stimulus are similar, brightness contrast of the central stimulus is re-
duced (brightness assimilation) and when these frequencies are different the
central stimulus contrast is enhanced (brightness contrast). Therefore, bright-
ness assimilation is only performed when both central and surround stimuli
have similar spatial frequencies within a frequency range of about an octave
(Blakemore & Campbell, 1969; Graham & Nachmias, 1971; DeValois et al.,
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1982; Wilson et al., 1983; Werner, 2003; D’Zmura & Singer, 1998, 1999; Yu
et al., 2001, 2002). Panel (a) in Fig. 3 shows this property. In this figure, the
grey patches have the same horizontal s.f. as the surrounding black and white
stripes. The left patch is perceived darker because of the induced brightness
assimilation with the contiguous dark vertical stripes, and similarly for the
right grey patch among contiguous white stripes which is perceived brighter.
Panel (b) shows how doubling the s.f. of the grey patches (i.e. one octave dif-
ference with the background), weakens the effect. Considering this effect, we
define the CSF function by defining the first of the three assumptions in our
model:

Assumption 1: Brightness assimilation is only performed when both central
and surround stimuli have similar spatial frequencies within a frequency range
of about an octave.

a) b)

Fig. 3. a) Example of the influence of surround spatial frequency. Grey patches have
different brightness because of their different local spatial information content. Both
grey patches and vertical stripes have the same width (i.e. horizontal size or spatial
scale) and this produces a strong induction effect. b) When the widths of the grey
patches are different to that of the black and white stripes, the brightness induction
effect is largely reduced.

The multiresolution wavelet framework allows us to decompose the visual
stimulus into one octave-bandwidth spatial frequency components and esti-
mate the influence of every spatial feature on features of the same spatial
scale. The wavelet scales s here are related to the s.f. channels that make the
CSFd(ṡ).

2.3.2 Stimulus-surround relative spatial orientation

Another important contribution to brightness assimilation in gratings comes
from the relative orientation of central and surround stimulus. Several studies
(Cannon & Fullenkamp, 1991; Solomon et al., 1993; Yu et al., 2001, 2002, 2003)
show that brightness assimilation in a central stimulus is strongest when this
and the surround stimulus have identical orientations. On the contrary, when
the relative spatial orientations are orthogonal, brightness assimilation of the
central stimulus is weakest (brightness contrast is strongest). This effect can
be observed in Fig. 4 (Panel a) where the grey stripe has the same spatial
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orientation as its surrounding black and white stripes. Conversely, the grey
stripe in Fig. 3 b) has a different spatial orientation than its surrounding
stripes and is perceived brighter than the grey stripe in Fig. 3 a). Following
this, we define our second assumption:

a) b)

Fig. 4. The vertical grey stripe (a) is perceived darker than the horizontal grey
stripe (b) because of brightness assimilation with its surrounding vertical black and
white stripes (i.e. classical White effect). If the grey patch is orthogonal (i.e. at 90
degrees) to the black and white stripes, brightness assimilation does not occur.

Assumption 2: Brightness assimilation is strongest when the central stimulus
and the surround stimulus have identical orientations. On the contrary, when
the relative spatial orientations are orthogonal, brightness assimilation of the
central stimulus is weakest (brightness contrast is strongest).

This assumption was implemented by weighting and pooling the different ori-
entation components of the wavelet transform, e.g. ωh

s , ωv
s , ω

d
s .

2.3.3 Stimulus-surround relative contrast energy

Surround contrast is the third important contribution to brightness induction
considered by our model. It has been shown that the contrast of the surround
stimuli plays an important role in brightness assimilation effects (Nachmias
& Sansbury, 1974; Cannon & Fullenkamp, 1991; Chubb et al., 1989; Ejima
& Takahashi, 1985; Ellemberg et al., 1998; Klein et al., 1974; Mackay, 1973;
Yu et al., 2001, 2002, 2003). Brightness assimilation in a central test stimulus
increases as its surround contrast increases (and vice versa), before reaching a
saturation state. This effect can be observed in Fig. 5 where the two vertical
grey lines are placed in backgrounds with different contrast. The left grey line
is always in contact with dark stripes, and right grey line is always in contact
with white stripes. When the surrounding luminance is uniform (i.e. surround
contrast is null), brightness contrast is induced in the lines with the left line
being perceived brighter and the right line darker (simultaneous contrast).
When the contrast of the surrounding vertical stripes increases (downwards
direction in Fig. 5) our perception of the grey stripes changes, clearly reversing
their previously perceived difference when the contrast of the surrounding bars
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is maximum, i.e. when they are black and white. This way, we define the third
assumption of our method as:

Assumption 3: When the brightness contrast of the surround features in-
creases, brightness assimilation increases, i.e. brightness contrast decreases,
and viceversa.

Fig. 5. In this series of images, the surround contrast of the two vertical grey lines
is increased downwards in 4 steps. The left grey line is in contact with black stripes,
and the right grey line is in contact with white stripes. As the line extends down-
wards (and surround contrast increases) brightness induction increases, i.e. the left
grey line becomes darker and the right grey line becomes brighter.

To translate this assumption to the model we will need to insert the surround
contrast as a new parameter of the model. We will see in the next section how
to perform this.

2.4 Multiresolution brightness induction model

All the assumptions mentioned above are implemented in our model as a recon-
struction process from the decomposed original image towards the perceptual
or induced image, i.e. modifying the wavelet coefficients in eq. (2). To accom-
plish this perceptual recovery, we can modify the wavelet coefficients applying
a weighting factor function to. This function should reflect some perceptual
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properties of the HVS. As a first approximation, we assume that this function
has a shape similar to the human CSF, defining

Ipercep =
n∑

s=1

∑
o=v,h,d

(CSF o
d (ṡ) · ωo

s) + cn . (3)

being Ipercep the recovered perceptual image.

As seen before, the relative s.f. and orientation between central and surround
stimulus are important contributors to brightness induction. In the multireso-
lution framework, image components are grouped by both their s.f. and orien-
tation, giving us a representation in which similar features are grouped into the
same data set (i.e. wavelet plane). This way, Assumption 1 and Assumption 2
are naturally achieved within this framework.

On the other hand, Assumption 3 introduces the concept of surround contrast.
Since the coefficients at spatial scale s and orientation o of the wavelet decom-
position represent the variation of these image features at a certain scale and
orientation around a mean value, the measured energy of these coefficients
is related to the contrast energy of the corresponding feature. Therefore, we
can easily estimate the relative contrast of a central feature compared to the
contrast of its surround features by defining

r =
σ2

cen

σ2
sur

, (4)

being σ2
cen and σ2

sur the standard deviation of the wavelet coefficients on two
concentric annuli that represent a centre-surround interaction around each
point (x, y). The regions determined by these annuli (referred as Φ and Ψ,
respectively) were modelled as squares of 5 × 5 and 13 × 13 points wide,
enclosing NΦ and NΨ points inside, respectively. Region Φ was chosen to be
5 × 5 points wide in order to include 2 complete Nyquist periods (Ts), when
measuring the variation of the central region ds(x, y), therefore, NΦ = 25. Its
surrounding region Ψ is 13× 13 points wide, that is about 3 times larger than
the inner region, an approximate ratio suggested by Spitzer & Semo (2002)
and Shapley & Enroth-Cugell (1984) and psychophysically measured by Yu et
al. (2001). Althrough the surround region Ψ is centred in the same point, it
does not overlap with the inner region Φ (it includes only NΨ = 144 points).

A pioneering study by Nachmias & Sansbury (1974) on how contrast masking
varied with mask contrast suggested the presence of contrast non-linearities
in visual s.f. channels. These contrast non-linearities were modelled with a
function close to the Naka & Rushton (1966) function (which has also been
successful in reproducing the responses of cortical V1 neurons (Albrecht &
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Hamilton, 1982; Sclar et al., 1990; Tolhurst & Heeger, 1997)). The same re-
lationship has been used to model non-linear dynamic feedback between a
single channel and the all the others (across s.f. and orientations), implying
that visual channels are subject to gain control (Heeger (1992)). Since we
are attempting to model the influence of surrounding image features on the
perception of a central stimulus (in ways that are related to grating contrast
masking) we defined a similar non-linearity which provides an acceleration at
sub-threshold contrast levels and a compression at supra-threshold:

zctr =
r2

1 + r2
, (5)

where zctr is non-linear and fulfils zctr(x, y; s, o) ∈ [0, 1]. The previous expres-
sion is a non-linearisation of the r variable in eq. (4).

As seen in the previous section, local contrast of a central test feature decreases
as the contrast of its surround features increases and vice versa (see Fig. 5).
Since r in eq. (4) is an estimation of the central feature contrast relative to its
surround contrast, zctr in eq. (5) can be interpreted as a non-linear estimation
of the degree of brightness contrast induced by the surround contrast into a
central feature.

To introduce the effect of surround contrast features into the CSFd(ṡ) we
use this variable zctr(x, y; s, o) where s represents the s.f. and o is orientation
involved. A new CSF ′ can be written as follows:

CSF ′(ṡ, zctr) = zctr · CSFd(ṡ) + CSFmin(ṡ) (6)

In this expression, CSF ′(ṡ, zctr) is minimum when zctr = 0 (i.e. minimum
brightness contrast or maximum brightness assimilation). To avoid CSF ′(ṡ, zctr)
becoming null for some spatial frequencies s (mainly for low spatial frequen-
cies -see Fig. 6) we have introduced the term CSFmin(ṡ) in Eq. (6). The exact
mathematical expression we used for CSFmin(ṡ) is shown in Appendix B. In
this way CSF ′(ṡ, zctr) → CSFmin(ṡ) when zctr → 0. This avoids a high degree
of assimilation being performed at low s.f. (i.e. large scale features), which
would make them become unseen. We show this function CSFd(ṡ) in Fig. 6.
In the opposite situation, CSF ′(ṡ, zctr) is maximum when zctr = 1. Spitzer &
Semo (2002) estimates that the maximum enhancement factor, i.e. maximum
perceived brightness contrast, in the HVS is around 1.5. It is the peak value
of CSF ′(ṡ, zctr) (see Fig. 6).

Another important property of the CSF ′(ṡ, zctr) is that it reproduces the dip
function for grating adaptation and masking effects. A wavelet basis is usually
represented in the s.f. plane by a Heinsenberg box with certain bandwidth
in both space and frequency (Mallat, 1998). The function that defines the
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Fig. 6. (continuous function): Same function as Fig. 1. (dotted function): Profile of
CSF ′(ṡ; zctr(·)) with zctr(x, y; s, o) = 0.75. That is, when applying zctr(·) = 0.75
just on a particular s wavelet plane which fulfils ṡ ≡ s − sthr = −1, see text for
details.

spread’s influence is defined by averaging the Wigner-Wille distribution (Mal-
lat, 1998, chap. 4), which can itself be approximated by a Gaussian function.
In order to show what is the effect on the continuous CSF ′(·) function when
weighting down an individual wavelet coefficient from a particular discrete
scale, we multiplied a Gaussian function with one octave frequency band-
width by this weight (see dashed line in Fig. 6). To construct this function we
defined a certain observation distance d and obtained the corresponding sthr

value (see Appendix A). Following this, we found the particular wavelet plane
s that fulfils (ṡ = sthr − s = −1). The dashed line in Fig. 6 shows how the
CSF ′(·) is modified when we force zctr < 1 for a certain feature belonging to
this particular wavelet plane. The resulting plot is very similar to the dip func-
tion obtained by Graham & Nachmias (1971); Nachmias & Sansbury (1974)
for grating adaptation and masking effects, using a mathematical expression
qualitatively equivalent the ours (eq. (5)).

Eq. (3) shows the general expression to recover a perceptual image Ipercep

represented by a set of wavelet planes ωo
s . Replacing the set of weights α by

our own weighted CSF ′

α(s, ·) ≡ CSF ′(ṡ, zctr(·)) (7)
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We obtain

Ipercep(x, y) =
n∑

s=1

∑
o=v,h,d

CSF ′(ṡ, zctr(x, y; s, o)) · ωo
s(x, y) + cn(x, y) (8)

which defines the perceptual image recovered from the wavelet components of
the original image.

3 Model predictions

Once we have introduced the PWM model, let us to show some predictions
on a set of images we have already commented in section 1 that show some
known brightness induction effects. We are going to show quantitatively and
qualitatively how the model predicts some visual effects as the Simultaneous
Brightness Contrast (SBC), the White effect (W), the Grating Induction (GI),
the Todorovic effect (T), the the Mach bands (MB), the Chevreul effect (C),
the Adelson-Logvinenko snake, the Dungeon illusion and the checkerboard
illusion. Many models have been proposed to account for these individual ef-
fects, but few are general enough to explain all of them. Our modelling frame-
work is similar in philosophy to the ODOG model (Blakeslee and McCourt,
1999) and can reproduce all these visual effects including some effects which
were previously unexplained at low level such as the Dungeon illusion and the
Checkerboard effect.

To be able to compare PWM predictions to the psychophysical data available
from the literature, we adjusted the input image and the model’s parameters
to be consistent with the physical dimensions (size, visual angle, observation
distance, etc.) of the actual stimuli. For the SBC, GI, W and T effects, we
compared our model to published psychophysical results (Blakeslee and Mc-
Court, 1999) kindly supplied by M.E. McCourt. For the MB and the C effect
we obtained data from Lu & Sperling (1995) (Table 2).

3.1 SBC and White effect

Panels (a) and (c) in Fig. 7 show two versions of the SBC effect. The grey
rectangle is seen darker when it is in front of a bright background, and brighter
when it is in front of a dark background.

For this example, we used the same stimulus geometry and observation dis-
tance as Blakeslee and McCourt (1999), and obtained a value of sthr = 2.65
for our model.
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Fig. 7. Panels (a) and (c) show an example of the simultaneous contrast effect and
panels (b) and (d) show our model’s results. The solid lines in the plots on the right
show the profile of the central row taken from the corresponding left panel. The
dashed lines show our model’s predicted brightness profile (darker left grey patch
and a brighter right grey patch.)

The continuous function in Fig. 7, (panels (b) and (d)) shows the luminance
profile of the central row from panels (a) and (c) which contains the grey
patch surrounded by the light/dark uniform background. The dashed lines in
the plots show the perceptual profile predicted by our model. We see that
PWM predicts the increase/decrease of the perceived brightness of this grey
patch over its original value. Furthermore, the model predicts the perceived
maxima and minima that appears to run parallel to the vertical light/dark
edge at the centre of figures (a) and (c). The operation of PWM can be
summarised as follows. Consider the left grey patch in panel (a), which is
relatively well represented in the wavelet plane that best corresponds to its
s.f. and orientation. Since the grey patch is not surrounded by similar features
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(or it may be said that is surrounded by similar features with zero contrast),
brightness contrast is induced on it at this particular spatial scale. Given that
the grey square is darker than its local surround, it becomes even more darker
(perceptually). The same reasoning can be applied to the other grey patch
on top of the dark background, which becomes perceptually lighter (and the
bottom panels in Fig. 7).

Another extensively studied effect (shown in Fig. 8 panels (a) and (c), where
the left grey rectangle is seen brighter than the right one in panel (a) and
darker in panel (c) ) is the White effect. This effect is generally considered
a particular case of SBC (Zaidi, 1989; Moulden & Kingdom, 1991) and can
be explained using spatially oriented filters (Blakeslee and McCourt, 1999;
Blakeslee et al., 2005).

It has been suggested (Blakeslee et al. (2005)) that the White effect is not
an assimilation effect because the direction of brightness change is kept, even
when the height of the test patch is reduced so that it has more border contact
with the bar on which it is situated. In our formulation, the White effect can
be modelled as a spatially-oriented brightness assimilation.

The continuous functions in Fig. 8 (panels (b) and (d)) show the luminance
profile of a row from panels (a) and (c), respectively, containing the grey
patches. The dashed line in the same figure shows the perceptual profile pre-
dicted PWM. We see that our method correctly predicts that left grey patches
are perceived darker and right patches brighter. The model also predicts that
the vertical white stripes are predicted to be lighter, and the black stripes
darker.

As a comparison, we have added in Fig. 8 the psychophysical brightness values
obtained by Blakeslee and McCourt (1999) for the same image. We can see
that the brightness predicted by the present method fits the psychophysical
data well.

Our model reproduces the White effect in a similar way as before. Consider
for example, the patch on the right side of panel (a) (i.e. the one in front of
white vertical stripes and in lateral contact with dark vertical stripes). There
is an optimal wavelet plane where this patch is well represented because of its
particular s.f. and orientation. This is the same wavelet plane where the back-
ground grating is also best represented, since it shares the same horizontal s.f.
Since here the surround contrast is greater than the local contrast, brightness
assimilation is induced on the grey patch (it becomes perceptually darker).
On wavelet planes corresponding to different orientations (e.g. vertical) the
opposite interaction may occur, since at these orientations the background is
not best represented in the same wavelet plane as the grey patch. As a result,
horizontal features induce brightness assimilation and vertical features induce
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Fig. 8. Panels (a) and (c) show an example of the White effect, where the grey bars
are equal but perceived with different brightness because of their different surrounds.
Panels (b) and (d) show the profile of a row from (a) and (c) respectively, containing
the grey patches. The dashed lines are the model’s predictions, showing a perceptual
brightness increase of the left grey patch and a decrease on the right patch. Similarly,
perception of the vertical stripes is modified (i.e. brightness increase of white vertical
stripes and brightness decrease of black vertical stripes). The same effects can be
observed in panels (c) and (d).

brightness contrast. The total perceived brightness is a combination of these
orientation-dependent interactions.

Fig. 8 (panels (b) and (d)) also shows that the model’s prediction for per-
ceived brightness of bright vertical stripes is higher that the original value
and similarly, the predicted brightness for dark vertical stripes is darker. The
reason for this may be the brightness contrast induced by the surrounding
(low s.f.) plain grey background on the vertical stripes. Fig. 9 illustrates this
effect, where the original images (grey background) are represented on the

20



left while a version of the same images on black background is on the right.
The presence of a black background induces a brightness contrast effect on
the vertical stripes, making the perceived light bars lighter and the perceived
dark bars darker.

a) b)

c) d)

Fig. 9. Influence of a dark background on the White effect. Images (b) and (d)
are the same as (a) and (c) but surrounded by a dark background. The perceived
brightness of vertical dark stripes in dark background surroundings is different than
in the case of the grey background.

3.2 Grating induction

Grating Induction (GI) (McCourt, 1982) is a brightness effect that produces a
perceived brightness variation (a grating) on an spatially extended test field,
see Fig. 10 (a). The central thin horizontal test patch has constant luminance,
but its brightness is perceived as an horizontal sinusoidal in counterphase with
the upper and lower sinusoidal extended patches. As shown by Blakeslee &
McCourt (1997) (who modelled it with their ODOG model), this effect may
be interpreted as a particular case of brightness contrast.
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Fig. 10. Panel (a) In the GI effect, the thin horizontal stripe with constant luminance
between the horizontal sinusoidal gratings is perceived as a sinusoidal brightness
stripe in counterphase with the grating. Panel (b) Profile of a row of panel (a)
showing the constant luminance of the horizontal stripe (continuous line) and the
brightness predicted by our method (dashed function) in counterphase with a row
of the horizontal sinusoidal luminance grating (dotted function). A similar effect is
shown in panels (c) and (d).

Fig. 10 Panel (b) shows the profile of the central row of both the uniform
brightness of the central thin horizontal patch, the brightness profile predicted
by our method and a row of the extended sinusoidal luminance grating. As
we can see, the perceived brightness of the central grey stripe is predicted
as a sinusoidal brightness profile in counterphase with the extended patches.
Panels (c) and (d) show a similar example for a lower s.f. sinusoidal patch.

In the GI example, the situation is similar to the simultaneous contrast: since
the horizontal grey patch is orthogonal to the grating, is not well represented
in the same vertically oriented wavelets planes as the grating and therefore a
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contrast effect is induced. The overall result is a sinusoidal brightness grating
in counterphase with the sinusoidal luminance grating.

3.3 Todorovic effect

In Fig. 11 (a) we show a version of the Todorovic effect (Todorovic, 1997).
This image is the same as in Fig. 7 Panel (c), except for the superimposed
black and white squares which make the grey patches take the form of a cross
(bordered by equal amounts of black and white). The test patch on the black
background appears brighter than the test patch on the white background
despite the fact that both patches have the same amount of black and white
border contact.

0 500 1000
column

-100

-50

0

50

100

150

200

250

300

350

400

B
ri

gt
hn

es
s

Original brigthness
Predicted brigthness

a) b)

Fig. 11. Panel (a): in the Todorovic effect (Todorovic, 1997) the left grey patch is
perceived darker that right one, even when they have the same amount of border
contact with black and white surfaces. Panel (b): predicted brightness from our
model.

In Fig. 11, panel (b) we show the brightness predicted by our model. It cor-
rectly predicts that the grey patch on the white background is perceived darker
than the grey patch on the black background. In this example, the grey patches
do not share features with the rest of the figure within the same orientation
and spatial-scale wavelet planes, and therefore brightness contrast is induced.
All other squares do share some similarities and therefore have a tendency to
be assimilated.
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3.4 Mach bands

In the Mach Bands effect (Mach, 1865), see Fig. 12 (a), bright and dark bands
are perceived near the brighter and darker border, respectively, of a ramp edge
between two uniform regions of different luminance. Models that reproduce
this effect can be classified as feature-based models (Tolhurst, 1972; Morrone &
Burr, 1988; Fiorentini et al., 1990), rule-based models (Watt & Morgan, 1985;
Kingdom & Moulden, 1991), filling-in models (Pessoa et al., 1995; Pessoa,
1996) and gradient-based models Keil et al. (2006).
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Fig. 12. Panel (a): example of the Mach bands effect. Panel (b): original data lu-
minance (solid lines) and perceptual brightness predicted by our model (dashed
line).

Panel (a) in Fig. 12 shows two plateaus of different luminance with a wedge
between them. A brighter vertical cusp is perceived where the wedge meets
the brighter plateau and a darker vertical cusp is perceived where the wedge
meets the dark plateau. Our model correctly predicts this behaviour, as shown
in panel (b). The same panel also shows the luminance profile for the central
row of both the original image and the perceptual brightness predicted by
our method. The Mach bands effect is reproduced at the region between the
central wedge and the lateral plateaus.

In this case the s.f. features defined by the edges of the wedge and the two
plateaus will be prominent in a particular group of wavelet planes of the
optimal spatial scale and orientation. There will be no other such prominent
feature in the same wavelet planes and this will determine a brightness contrast
induction, producing the perceived cusps.
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3.5 Chevreul effect

In the Chevreul illusion (see Fig. 13), a series of stripes with staircase profile
is perceived as a sawtooth, that is, each stripe is perceived with a brightness
increasing regularly from one stripe to the next. This effect has been modelled
with various accuracy levels (Keil, 2006; Morrone & Burr, 1988; Morrone et
al., 1994; McArthur & Moulden, 1999).

In Fig. 13, Panel (b) we show the original staircase profile (continuous func-
tion) and the brightness predicted by our method (dashed function), which
correctly follows an approximately sawtooth profile.

The luminance step between two patches is outlined by several s.f. components
(mainly high s.f. components) that will feature highly in a group of wavelet
planes of the optimal spatial scale and horizontal orientation. Since at these
particularly high spatial frequencies they are not surrounded by similar compo-
nents (the size of the steps make interactions between edges weak), brightness
contrast is induced in the edges, leading to the final sawtooth profile.

3.6 Adelson-Logvinenko snake

In Fig. 14 (Panel (a) we show a version of the Adelson snake pattern created
by Logvinenko (Logvinenko, 1999). This image consists of a 2D representation
of several 3D cubes modulated by a horizontal sinusoidal grating, where the
upper (or lower, depending on how the observer solves the cube’s ambigu-
ity) sides of the cubes have equal luminance but are perceived with different
brightness. The grey level of these top surfaces is 134 digital number (DN).
Our method predicts 134 DN for the apparently light surfaces and 99 DN for
the apparently dark ones.

The presence of the vertical (low s.f.) modulating sinusoidal grating means
that there will be a particular vertically-oriented wavelet plane where this
feature will be represented best with very little influence of the rest of the
image. This will induce a strong brightness contrast effect in the rows that are
coincident with the peaks and valleys of this sinusoidal (precisely where the
tops of the cubes are located), therefore producing the final perceived effect.

3.7 Dungeon illusion

There is a subset of illusions where the direction of contrast does not fit the
one predicted by traditional contrast theories (Gilchrist, 2006). One of these
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Fig. 13. Panel (a) Example of the Chevreul effect. The original image has a lumi-
nance staircase profile, but it is perceived with a sawtooth profile. Panel (b) shows
the original data values and the perceptual brightness predicted by our model.

is the dungeon illusion (Fig. 15 Bressan (2001) where the perceived difference
between the grey squares on the left and the right of the picture is the opposite
as one would predict from analysis of individual squares and their immediate
surroundings (Gilchrist, 2006) . Panel (a) in Fig. 15 shows an example of the
dungeon illusion and panel (b) shows the brightness predicted by our model
for the central row, where all grey rectangles on the left side are represented
with a darker shade of grey than those on the right side of the image. This
effect can be qualitatively explained by the fact that all grey rectangles are
surrounded by other rectangles of the same size and at a distance similar
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Fig. 14. Panel (a): example of the Adelson snake. The parts of the cubes at the crests
and valleys of the modulating sinusoidal have all the same luminance but are per-
ceived differently. The model we present qualitatively predicts these differences(see
text).

to its size, both vertically, horizontally and diagonally. Therefore, they will
be strongly represented in the same wavelet planes, leading to a brightness
assimilation effect. This in turn will produce darker rectangles in the left side
of the image (where the rectangles’ brightness will tend towards that of the
bars) and slightly brighter rectangles on the right side.

3.8 Checkerboard

Another example of a complete reversal of contrast is the checkerboard illusion
(shown in Panel (a) of Fig. 16). Here, the grey square in contact with white
squares is perceived brighter that the grey square in contact with the black
squares (an effect similar to the dungeon illusion). A simplified explanation can
be given in terms of the features that surround each of the squares, since the
grey squares are horizontally and vertically surrounded by elements of equal
size and high contrast, they will again be represented in the same spatial scales
and orientations wavelet planes which will induce brightness assimilation on
them. If the square is surrounded by black squares (left), its brightness will
tend to go in the direction of the local surroundings (darker). The other grey
square will be assimilated towards the other end (it will look brighter).

4 Discussion: Comparison with psychophysics

To make a more quantitative assessment of our model’s predictions, we tested
our model against psychophysical measures from the literature of the rela-
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Fig. 15. Panel (a) shows an example of the dungeon effect. Individual grey squares
on the left side are completely surrounded by black pixels and should be seen lighter
than individual grey squares on the right side, which are in turn surrounded by white
pixels. The opposite occurs. Panel (b) shows our model’s predictions for the central
row of the figure in Panel (a), demonstrating the power of a multiresolution wavelet
approach to provide a qualitative explanation of the effect.

tive brightness increase/decrease produced by brightness induction. We simu-
lated the physical conditions (image size and observer’s distance) in our model
and produced a set of predictions that were compared to the measurements.
Figures 17 and 18 show the psychophysically-measured values published by
Blakeslee and McCourt (1999) and our predicted values for some of the vi-
sual effects described above, (e.g. Simultaneous Brightness Contrast, Grating
Induction, White effect and Todorovic effect). In Fig. 17, all experimental val-
ues (and their associated 95% confidence limit error bars) are represented by
bars (dotted bars for observer MM and solid bars for observer BB in Blakeslee
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Fig. 16. Panel (a) shows an example of the checkerboard contrast effect. The image
shows two grey squares (of the same luminance) embedded in a checkerboard, that
are perceived differently by the observer. The right square is perceived brighter than
the left one. Panel (b) shows the real and perceptual brightness profiles of these two
squares as predicted by our model.
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and McCourt (1999)). Our predicted values are represented by squares, (empty
squares for test patches on dark background, and solid squares for test patches
on bright background). The ordinate axis shows the difference between the
matching luminance and the mean luminance expressed as a proportion of
the mean luminance, consistently with Blakeslee and McCourt (1999). The
0.0 value represents the luminance of the test patches. We can see that our
method approximately predicts the direction and magnitude of the brightness
induction. The greatest deviation from the psychophysical values is for the
GI3 (our model underestimates the effect) and W2 (our model overestimates
the effect) results. It is possible to obtain better fits by modifying CSF ′ in-
dividually for these two sets of results, but for the sake of consistency and
simplicity, we prefer to keep the lowest number of degrees of freedom (and the
simplest mathematical expression) in all cases.
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Fig. 17. Representation of the values predicted by our model (empty squares for
patches on dark background and filled squares for patches on bright background)
and the psychophysical values obtained by Blakeslee and McCourt (1999) (dotted
bars for MM and continuous bars for BB) for Simultaneous Brightness Contrast
(SBC), Grating Induction (GI), White effect (W) and Todorovic effect (T).

In Fig. 18 we show a plot of the values predicted by our model (abcissae) versus
the psychophysical values (ordinate) for all considered visual effects. Each
point in the plot represents an observer (either MM or BB) from Blakeslee
and McCourt (1999). We also show the diagonal line (dotted line) where all
points would lie should our model’s predictions be 100% accurate. The points
show an aproximately linear behaviour. The solid line represents the best
fitting line (linear regression) with a slope of around 0.9 and a correlation
coefficient r = 0.87.

We also used psychophysical data by Lu & Sperling (1995) in order to ana-

30



-0.2 -0.1 0 0.1 0.2
Model predictions

-0.2

-0.1

0

0.1

0.2

0.3

M
at

ch
in

g 
lu

m
in

an
ce

 (
pr

op
or

tio
n 

m
ea

n)

-0.2 -0.1 0 0.1 0.2

-0.2

-0.1

0

0.1

0.2

0.3
y = 0.898 * x - 0.007

r = 0.868

Fig. 18. Representation of the values predicted by our model (filled circles) and the
psychophysical values obtained by Blakeslee and McCourt (1999) for all the visual
effects considered in the figure above.

lyze the predictions of our model for the Mach bands and the Chevreul effect.
Similarly to the previous examples, we simulated in our model the physical
conditions of Lu & Sperling (1995). In the case of the Mach bands effect,
these authors report a brightness increment/decrement (in the bright and
dark plateau, respectively) which is around 8% of the luminance difference
between the bright and the dark plateau. Our model also predicts a bright-
ness increment around 13%. For the Chevreul effect, these authors report an
increment/decrement of the brightness around 54% of the luminance differ-
ence between consecutive steps. Our model predicts an increment/decrement
around 17%, which is different from the observed 54% value.

Plots in Fig. 17 and 18 and the comparison with psychophysical data show
that despite its simplicity, our wavelet model is capable of predicting both the
direction and magnitude (except for the Chevreul effect) of the psychophysical
data. The analysis presented in the previous section also shows a qualitative
agreement between the model’s prediction and the spatial distribution of the
brightness changes of the observed phenomena. It is also worth pointing out
that a simple explanation based on common features in terms of spatial scale
and orientation provides guidelines as to how to interpret these effects.
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5 Conclusions

Our simplistic model of brightness induction in the HVS is based on three
main features of visual scenes: spatial scale (i.e. spatial frequency), spatial
orientation and surround contrast. We selected these not only because there
is evidence that they are highly relevant to brightness perception phenomena,
but also because there is evidence (both psychophysical and physiological)
that these attributes are processed in parallel by pre-cortical and cortical semi-
independent channels. In our framework, we assume that brightness induction
is performed mostly between features of similar s.f. and spatial orientation (i.e.
within the same wavelet plane) and the effect is also dependent on the contrast
of surround features compared to the central test feature for each spatial scale
and orientation. The model also makes use of a psychophysically determined
contrast sensitivity function and explicitly includes the observation distance
to be able to relate the different spatial scales (wavelet planes) to the actual
world. This simple set of assumptions allow to unify brightness assimilation
and brightness contrast in a single mathematical framework, and to reproduce
(qualitatively in all cases, quantitatively in some) several known brightness
induction effects, e.g. SBC, White effect, GI, Todorovic effect, Mach bands,
Chevreul effect, Adelson-Logvinenko snake, dungeon illusion and checkerboard
illusion, which were not explained by a single (unified) framework before.

But we believe our most important contribution is to explicitly incorporate ob-
servation distance, which dramatically changes the perceived effect, to include
physiologically-plausible features in the model and to balance the weight of
surround features in favour of those that are spatially matched and similarly
oriented to the central elements. At this stage we have avoided more complex
issues such as global contrast normalisation, which may have introduced more
degrees of freedom at the cost of extra complexity.
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Fig. A.1. An object of size l observed from a distance d has a visual angle β.

A Induction threshold sthr

Let d be the distance from the observer to the stimulus (printout, computer
screen, etc.) If a given feature subtends a visual angle β when observed from
distance d, the feature’s size l is (see Fig. A.1):

l = d · tan β . (A.1)

This projection is measured on the image space as a spatial measure, which
in turn can be related to a period, i.e. a cycle, at a given spatial frequency.
By definition, a scale s is related to a certain frequency ν(s), i.e. to a period
T = 1

ν(s)
. This relation is defined by 2s = T = l

lp
, where l

lp
is the number of

pixels into one frequency period T , and lp is the image pixel size.

If instead of 1 cycle, i.e. 1 period, we want to include 6 cycles of a certain
spatial scale in the same longitude, we can define

6 T ≡ 6 · 2sthr =
l

lp
. (A.2)

being sthr this particular scale. If we take the particular case of a feature that
show 1 visual degree when observed at distance d, using eq. (A.1) into eq.
(A.2) we obtain

sthr = log2

(
d · tan 1◦

6 · lp

)
. (A.3)

The sthr factor is the image scale associated to the νthr = 6 cpd induction
threshold value when observing an image with a pixel size lp from a distance
d.
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B Piecewise CSF

We have approximated the human CSF by a piecewise function defined by
two Gaussians of the form:

CSF (s) =

⎧⎪⎨
⎪⎩

exp
{
− s2

2σ2
1

}
s ≤ sthr

exp
{
− s2

2σ2
2

}
s > sthr

. (B.1)

Parameters σ1 and σ2 are the standard deviation of the piecewise Gaussian
function for s ≤ sthr and sthr < s, respectively. When σ1 = σ2, eq. (B.1) is a
symmetric Gaussian. To reproduce the approximate profile of the psychophys-
ical CSF (s) functions obtained from the literature citepMullen85, we made
σ2 = 2 σ1 and σ1 = 2.

CSFmin(s) was defined as:

CSFmin(s) =

⎧⎪⎨
⎪⎩

1
2

exp
{
− s2

2σ2
1

}
s ≤ sthr

1
2

s > sthr

. (B.2)
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