
This is the accepted version of the journal article:

Cobos, Fernando; Fernández-Cabrera, Luz M.; Martín i Pedret, Joaquim. «Some
reiteration results for interpolation methods defined by means of polygons».
Proceedings of the Royal Society of Edinburgh Section A: Mathematics, Vol.
138, issue 6 (Dec. 2008), p. 1179-1195. DOI 10.1017/S0308210507000315

This version is available at https://ddd.uab.cat/record/271421

under the terms of the license

https://ddd.uab.cat/record/271421


SOME REITERATION RESULTS FOR INTERPOLATION

METHODS DEFINED BY MEANS OF POLYGONS

Fernando Cobos
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Departamento de Matemática Aplicada, Escuela de Estad́ıstica, Universidad

Complutense de Madrid, 28040 Madrid. Spain (luz fernandez-c@mat.ucm.es)

Joaquim Mart́ın

Departament de Matemàtiques, Universitat Autònoma de Barcelona, Edifici

C, 08193 Bellaterra (Barcelona). Spain (jmartin@mat.uab.es)

Abstract. We continue the research on reiteration results between in-

terpolation methods associated to polygons and the real method. Ap-

plications are given to N-tuples of function spaces, of spaces of bounded

linear operators and Banach algebras.

1. Introduction

This paper deals with interpolation methods for finite families (N -tuples)

of Banach spaces defined by means of a convex polygon Π in the plane

R
2 and a point (α, β) in the interior of Π. These methods were intro-

duced by Cobos and Peetre in [13], further investigations have been done

by Cobos, Kühn and Schonbek [10], Cobos, Fernández-Mart́ınez and Schon-

bek [9], Cobos, Fernández-Mart́ınez and Mart́ınez [7], Ericsson [15], Cobos,

Fernández-Mart́ınez, Mart́ınez and Raynaud [8], Cobos and Mart́ın [11] and

Fernández-Cabrera and Mart́ınez [18], among other authors. Thinking of

the Banach spaces as sitting on the vertices of Π they introduced K- and

J-functionals with two parameters and then they define K- and J-spaces by

using an (α, β)-weighted Lq-norm (the precise definitions are recalled in Sec-

tion 2). For the special choice of Π as the simplex, these methods give back

(the first nontrivial case of) spaces introduced by Sparr [26], and if Π is the

unit square they recover spaces studied by Fernandez [16]. Other references
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on interpolation methods for N -tuples can be found in the monographs by

Triebel [27] and Brudny̌ı and Krugljak [4].

It was shown in [7] and [15] that reiteration formulae between methods

associated to polygons and the real method are important to describe K- and

J-spaces in certain cases. In the present paper we continue their research.

First we complement a result of Ericsson on interpolation using the unit

square of a 4-tuple formed by spaces of class θj with respect to a couple

{X,Y }. As we show with an example, in this result is essential that (α, β)

does not lie in any diagonal of the square. The example refers to a 4-tuple

of the kind {X,Y, Y,X} with X →֒ Y . We also characterize the K-spaces

generated by this 4-tuple and we show that they are extrapolation spaces

when (α, β) is in the diagonal β = 1−α. Then, assuming a mild condition on

the θj and that q takes only the value 1 or ∞, we establish results that work

for general polygons Π and for any (α, β) in its interior, even if (α, β) lies

in any diagonal of Π. Applications are given to 4-tuples of Lorentz function

spaces, Besov spaces, Lorentz operator spaces and N -tuples of spaces of

bounded linear operators. We also establish a result on interpolation of

Banach algebras.

The paper is organized as follows. In Section 2 we review some basic

notions on K- and J-spaces associated to polygons. In Section 3 we show

the reiteration results for the unit square and their applications to function

spaces and to Lorentz operator spaces. Finally, in Section 4, we establish

the results for general polygons.

2. Preliminaries

By a Banach N -tuple A = {A1, . . . , AN} we mean N -Banach spaces

Aj , j = 1, . . . , N , which are continuously embedded in a common Haus-

dorff topological vector space. We put Σ(A) = A1 + · · · + AN and ∆(A) =

A1 ∩ · · · ∩ AN . When N = 2 we simply call {A1, A2} a Banach couple.

Let Π = P1 · · ·PN be a convex polygon in the affine plane R
2, with vertices

Pj = (xj, yj). Given any N -tuple A we imagine each space Aj as sitting on

the vertex Pj and we define K- and J-functionals by

K(t, s; a) = K(t, s; a;A) = inf
{

N
∑

j=1

txjsyj‖aj‖Aj
: a =

N
∑

j=1

aj , aj ∈ Aj

}

,

J(t, s; a) = J(t, s; a;A) = max
{

txjsyj‖a‖Aj
: 1 ≤ j ≤ N

}

.
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Here t and s stand for positive numbers.

Now let (α, β) be an interior point of Π, (α, β) ∈ Int Π, and let 1 ≤ q ≤ ∞.

The K-space A(α,β),q;K consists of all those a ∈ Σ(A) for which the norm

‖a‖A(α,β),q;K
=





∞
∫

0

∞
∫

0

(

t−αs−βK(t, s; a)
)q dt

t

ds

s





1
q

is finite (the integral should be replaced by the supremum if q = ∞).

The J-space A(α,β),q;J is formed by all those a ∈ Σ(A) which can be

represented as

(2.1) a =

∞
∫

0

∞
∫

0

u(t, s)
dt

t

ds

s

where u(t, s) is a strongly measurable function with values in ∆(A) and

satisfies

(2.2)





∞
∫

0

∞
∫

0

(

t−αs−βJ(t, s;u(t, s))
)q dt

t

ds

s





1
q

< ∞.

The norm on A(α,β),q;J is

‖a‖A(α,β),q;J
= inf

{





∞
∫

0

∞
∫

0

(

t−αs−βJ(t, s;u(t, s))
)q dt

t

ds

s





1
q
}

,

where the infimum is taken over all representations u satisfying (2.1) and

(2.2).

These spaces were introduced by Cobos and Peetre in [13]. If we take

Π equal to the unit square {(0, 0), (1, 0), (0, 1), (1, 1)}, we recover spaces

studied by Fernandez [16], [17] for 4-tuples. If Π is equal to the simplex

{(0, 0), (1, 0), (0, 1)}, then K- and J-spaces coincide with those considered

by Sparr in [26] for 3-tuples.

Note the analogy of these constructions with the real interpolation space

(X,Y )θ,q for Banach couples {X,Y }. The space (X,Y )θ,q can be described

by a similar scheme, but working with R instead of R
2, with the segment

[0, 1] taking the role of the polygon Π and 0 < θ < 1 being an interior point

of the segment [0, 1]. The space X should be imagined as sitting on the
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point 0 and Y on the point 1. The relevant functionals are now

K̄(t, a) = K̄(t, a;X,Y )

= inf{‖a0‖X + t‖a1‖Y : a = a0 + a1, a0 ∈ X,a1 ∈ Y }, a ∈ X + Y.

and

J̄(t, a) = J̄(t, a;X,Y ) = max{‖a‖X , t‖a‖Y }, a ∈ X ∩ Y.

It turns out that

(X,Y )θ,q =
{

a ∈ X + Y : ‖a‖(X,Y )θ,q
=





∞
∫

0

(

t−θK̄(t, a)
)q dt

t





1
q

< ∞
}

=
{

a ∈ X + Y : a =

∞
∫

0

u(t)
dt

t
with





∞
∫

0

(

t−θJ̄(t, u(t))
)q dt

t





1
q

< ∞
}

(see [2] or [27]).

A Banach space Z is said to be an intermediate space with respect to the

Banach couple {X,Y } if X ∩Y →֒ Z →֒ X +Y , where →֒ means continuous

inclusion. The intermediate space Z is said to be of class CK(θ;X,Y ) if

there is a constant C > 0 such that

K̄(t, a) ≤ Ctθ‖a‖Z for all a ∈ Z,

and Z is said to be of class CJ(θ;X,Y ) if there is a constant C > 0 such

that

‖a‖Z ≤ Ct−θJ̄(t, a) for all a ∈ X ∩ Y.

Here 0 ≤ θ ≤ 1. If Z is of class CK(θ;X,Y ) and of class CJ(θ;X,Y ) then

we say that Z is of class C(θ;X,Y ). Clearly X is of class C(0;X,Y ) and

Y is of class C(1;X,Y ). It is also well-known that for 0 < θ < 1 the real

interpolation spaces (X,Y )θ,q and the complex interpolation spaces (X,Y )[θ]

are spaces of class C(θ;X,Y ) (see [2] or [27]).

Working with the methods associated to polygons, K- and J-spaces do

not coincide in general, but we have that A(α,β),q;J →֒ A(α,β),q;K (see [13],

Thm. 1.3).

If R is any affine bijection on R
2 then K- and J-spaces defined by means

of Π and (α, β) coincide (with equivalence of norms) with those defined by

means of R(Π) = RP1 · · ·RPN and R(α, β) (see [10], Remark 4.1). We call

this fact the property of invariance under affine bijections.

The geometrical elements play an important role in the theory of K- and

J-spaces. Indeed, let Pα,β be the set of all triples {i, k, r} such that (α, β)
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Figure 2.1

belongs to the triangle with vertices Pi, Pk, Pr (see Fig. 2.1). For each

{i, k, r} ∈ Pα,β let (ci, ck, cr) be the (unique) barycentric coordinates of

(α, β) with respect to Pi, Pk, Pr. It was shown in [6], Thm. 1.3, that there

is a constant C > 0 such that for any a ∈ ∆(A) we have

(2.3) ‖a‖A(α,β),q;J
≤ C max{‖a‖ci

Ai
‖a‖ck

Ak
‖a‖cr

Ar
: {i, k, r} ∈ Pα,β}.

We also recall that, for any N non-negative real numbers M1, . . . ,MN we

have

(2.4) sup
t>0,s>0

[ min
1≤j≤N

{txj−αsyj−βMj}] = min
{i,k,r}∈Pα,β

{M ci

i M ck

k M cr
r }

(see [9], Thm. 1.11).

It is possible to relate J- and K-spaces generated by an N -tuple A with

those spaces generated by a subtuple Ã of A. Next we discuss the case when

the subtuple is a 3-tuple.

Let {i, k, r} ∈ Pα,β and suppose that (α, β) belongs to the interior of the

triangle PiPkPr. If we put Ã = {Ai, Ak, Ar} and we designate by K̃, J̃ the

K- and J-functionals defined by means of the triangle, then we have

K(t, s; a;A) ≤ K̃(t, s; a; Ã) for any a ∈ Ai + Ak + Ar,

J̃(t, s; a; Ã) ≤ J(t, s; a;A) for any a ∈ Ai ∩ Ak ∩ Ar.

This yields the continuous embeddings

(2.5)

A(α,β),q;J →֒ (Ai, Ak, Ar)(α,β),q;J →֒ (Ai, Ak, Ar)(α,β),q;K →֒ A(α,β),q;K .
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If {i, k, r} ∈ Pα,β but (α, β) is not in the interior of the triangle, then

(α, β) should be in a diagonal of Π. Say, for example, that (α, β) belongs to

the diagonal joining Pi and Pk (see Fig. 2.2). The barycentric coordinates

of (α, β) with respect to the points Pi, Pk, Pr are (1 − θik, θik, 0) for some

0 < θik < 1. Then it turns out that

(2.6) A(α,β),1;J →֒ (Ai, Ak)θik ,1 , (Ai, Ak)θik,∞ →֒ A(α,β),∞;K

(see [7], Thm. 1.5).

bc

bcbc

bc

bc

bc bc

bc

bc

Pk

Pr

Pi

(α, β)

Figure 2.2

Assume that the polygon Π is placed in such a way that yj ≥ 0 for

j = 1, . . . , N , and let A be an N -tuple formed by spaces Aj of class θj with

respect to a given Banach couple {X,Y }. Suppose also that there are real

numbers δ, δ′, ρ, ρ′ such that δδ′ > 0, ρ, ρ′ 6= 0, 0 < δα + ρβ, δ′α + ρ′β < 1

and

δxj + ρyj ≤ θj ≤ δ′xj + ρ′yj for j = 1, . . . , N.

It was shown in [15], Lemma 2, that if Aj is of class CK(θj ;X,Y ) then

(2.7) A(α,β),q;K →֒ (X,Y )δα+ρβ,q + (X,Y )δ′α+ρ′β,q

and if Aj is of class CJ(θj ;X,Y ) then

(2.8) (X,Y )δα+ρβ,q ∩ (X,Y )δ′α+ρ′β,q →֒ A(α,β),q;J .

The following result is a consequence of (2.7), (2.8) and the invariance

under affine bijection (see [15], Cor. 4).

Let Π = P1P2P3 be a triangle, let (α, β) ∈ IntΠ with barycentric coor-

dinates (c1, c2, c3) with respect to P1, P2, P3 and let 1 ≤ q ≤ ∞. If Aj is a
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space of class C(θj ;X,Y ) with 0 ≤ θj ≤ 1, j = 1, 2, 3, and the θj are not all

equal then we have with equivalent norms

(2.9) (A1, A2, A3)(α,β),q;J = (A1, A2, A3)(α,β),q;K = (X,Y )θ,q

where θ = c1θ1 + c2θ2 + c3θ3.

3. Interpolation over the unit square.

In this section we take Π = P1P2P3P4 equal to the unit square, that is to

say, P1 = (0, 0), P2 = (1, 0), P3 = (0, 1), P4 = (1, 1). Let (α, β) ∈ IntΠ such

that (α, β) does not lie on any diagonal of Π and let Q = (1/2, 1/2). The

point (α, β) is in only one internal triangle PiPkQ and so it is in the two

triangles PiPkPr, PiPkPs formed by vertices of Π. Figure 3.1 illustrate the

situation for i = 1, k = 2, r = 3, s = 4. Let (ci, ck, cr) and (di, dk, ds) be the

bc

bcbc

bc

bc

bc

P1 P2

P3 P4

Q

(α, β)

Figure 3.1

barycentric coordinates of (α, β) with respect to Pi, Pk, Pr and Pi, Pk, Ps,

respectively. The following results improves [15], Thm. 6, by removing

several restrictions on the class of the spaces Aj .

Theorem 3.1. Let {X,Y } be a Banach couple, let Aj be a space of class

C(θj;X,Y ), 0 ≤ θj ≤ 1, j = 1, 2, 3, 4, and let 1 ≤ q ≤ ∞. We suppose

that θi 6= θk where i, k are the indices of the vertices Pi, Pk of the (unique)

internal triangle PiPkQ containing (α, β). Put

(3.1) θikr = ciθi + ckθk + crθr , θiks = diθi + dkθk + dsθs.

Then we have, with equivalent norms,

(3.2) (A1, A2, A3, A4)(α,β),q;K = (X,Y )θikr ,q + (X,Y )θiks,q

and

(3.3) (A1, A2, A3, A4)(α,β),q;J = (X,Y )θikr ,q ∩ (X,Y )θiks,q.
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Proof. First we assume that (α, β) lies in P1P2Q. Then θ1 6= θ2 and (α, β)

is in the triangles P1P2P3 and P1P2P4. Using (2.5) and (2.9) we get

(X,Y )θ123,q + (X,Y )θ124,q →֒ (A1, A2, A3, A4)(α,β),q;K

and

(A1, A2, A3, A4)(α,β),q;J →֒ (X,Y )θ123,q ∩ (X,Y )θ124,q .

In order to check the converse embeddings we consider the affine bijection

R

(

x

y

)

=

(

θ1

0

)

+

(

θ2 − θ1 −θ1 − 2

0 θ3 + 2

)(

x

y

)

.

Let RPj = P ′
j = (x′

j , y
′
j). Then P ′

1 = (θ1, 0), P
′
2 = (θ2, 0), P

′
3 = (−2, θ3 +

2), P ′
4 = (θ2 − θ1 − 2, θ3 + 2), so y′j ≥ 0 for j = 1, 2, 3, 4. Put

(α′, β′) = R(α, β) = (θ1 + α(θ2 − θ1) + β(−θ1 − 2) , β(θ3 + 2)).

Now we distinguish two cases. If

θ123 ≤ θ124 , that is , θ3 − θ1 ≤ θ4 − θ2

then we choose

δ = 1 , ρ = 1 , δ′ = 1 , ρ′ =
θ4 − θ2 + θ1 + 2

θ3 + 2
.

We have

(3.4) δx′
j + ρy′j ≤ θj ≤ δ′x′

j + ρ′y′j , j = 1, 2, 3, 4,

with δα′ + ρβ′ = θ123 and δ′α′ + ρ′β′ = θ124. Therefore, by (2.7), (2.8) and

the invariance under affine bijection, we derive

(3.5) (A1, A2, A3, A4)(α,β),q;K →֒ (X,Y )θ123,q + (X,Y )θ124,q

and

(3.6) (X,Y )θ123,q ∩ (X,Y )θ124,q →֒ (A1, A2, A3, A4)(α,β),q;J .

If

θ124 ≤ θ123 , so , θ4 − θ2 ≤ θ3 − θ1

then we choose

δ = 1 , ρ =
θ4 − θ2 + θ1 + 2

θ3 + 2
, δ′ = 1 , ρ′ = 1 .

Again (3.4) holds. This time δα′ + ρβ′ = θ124 and δ′α′ + ρ′β′ = θ123. Hence,

(3.5) and (3.6) follows as in the previous case.

If (α, β) lies in an internal triangle different from P1P2Q then we use the

symmetry of the unit square to lead the situation to the result that we have
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just established. Assume, for example, that (α, β) is in P2P4Q (see Fig.

3.2). The remaining cases can be treated in the same way. Then we know

bc

bcbc

bc

bc

bc

bc

P1 P2

P3 P4

Q

(α, β)

(1 − β, 1 − α)

Figure 3.2

that θ2 6= θ4. The relevant numbers for (3.2) and (3.3) are θ234 , θ124. It

follows directly from the definition of K-spaces over the unit square that

(A1, A2, A3, A4)(α,β),q;K = (A1, A3, A2, A4)(β,α),q;K

and

(A1, A2, A3, A4)(α,β),q;K = (A4, A3, A2, A1)(1−α,1−β),q;K

with analogous formulae for J-spaces. Hence

(A1, A2, A3, A4)(α,β),q;K = (A4, A2, A3, A1)(1−β,1−α),q;K

and the point (1−β, 1−α) is in P1P2Q. Consider the 4-tuple B1 = A4, B2 =

A2, B3 = A3, B4 = A1, write θ∗j for the class of Bj with respect to {X,Y } and

define θ∗ikr as in (3.1) but using the barycentric coordinates of (1−β, 1−α)

and the θ∗j . We have θ∗1 = θ4 6= θ2 = θ∗2, hence we can apply the result that

we have established in the first part of the proof and derive that

(A1, A2, A3, A4)(α,β),q;K = (B1, B2, B3, B4)(1−β,1−α),q;K

= (X,Y )θ∗123,q + (X,Y )θ∗124,q = (X,Y )θ234,q + (X,Y )θ124,q.

This proves the K-formula. The J-formula follows similarly.

The proof is complete. �

Using Theorem 3.1 we can complement [15], Example 1, by reducing the

conditions on the parameters. Let us write down the outcome. Take any
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σ-finite measure space (Ω, µ) and for 1 < p < ∞ and 1 ≤ q ≤ ∞, let Lp,q be

the Lorentz function space

Lp,q =
{

f : ‖f‖Lp,q =





∞
∫

0



t
1
p
−1

t
∫

0

f∗(s)ds





q

dt

t





1
q

< ∞
}

where

f∗(s) = inf{γ > 0 : µ{x ∈ Ω : |f(x)| > γ} ≤ s}

(see [2] or [27]). We have (L1, L∞)θ,q = Lp,q for 1/p = 1 − θ. As a direct

consequence of Theorem 3.1 we obtain the following.

Corollary 3.2. Let 1 < pj < ∞, 1 ≤ qj, q ≤ ∞, j = 1, 2, 3, 4. Suppose that

α > β , α + β < 1 and p1 6= p2. Put

1

p123
=

1 − α − β

p1
+

α

p2
+

β

p3
,

1

p124
=

1 − α

p1
+

α − β

p2
+

β

p4
.

Then we have, with equivalence of norms,

(Lp1,q1, Lp2,q2, Lp3,q3, Lp4,q4)(α,β),q;K = Lp123,q + Lp124,q

and

(Lp1,q1, Lp2,q2, Lp3,q3, Lp4,q4)(α,β),q;J = Lp123,q ∩ Lp124,q.

Corollary 3.2 refers to the case when (α, β) lies in the internal triangle

P1P2Q. Similar results holds when (α, β) is in any of the other three internal

triangles.

In order to give a second application we recall the (Fourier-analytical)

definition of Besov spaces. Let S(Rn) and S ′(Rn) be the Schwartz spaces of

all rapidly decreasing complex infinitely differentiable functions on R
n and

the space of tempered distributions on R
n, respectively. For f ∈ S ′(Rn), the

Fourier transform and its inverse are defined in the usual way and denoted

by f̂ and f̌ , respectively. Let ϕ be a C∞ function in R
n with

supp ϕ ⊂ {ξ ∈ R
n : ‖ξ‖Rn ≤ 2} and ϕ(ξ) = 1 if ‖ξ‖Rn ≤ 1.

We put ϕ0 = ϕ and for j ∈ N we write ϕj(ξ) = ϕ(2−jξ) − ϕ(2−j+1ξ).

Let 1 < p < ∞, 1 ≤ q ≤ ∞ and s ∈ R. The space Bs
p,q is the collection of

all f ∈ S ′(Rn) such that

‖f‖Bs
p,q

= (

∞
∑

j=0

2jsq‖(ϕj f̂ )̌ ‖q
Lp(Rn))

1/q < ∞
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(with the usual modification if q = ∞). We refer to the monographs by

Triebel [28], [29], [30] for details on Besov spaces. It is clear from the defi-

nition that Bs
p,q →֒ Bu

p,q if u < s. The following interpolation formula holds

(Bs0
p,q0

, Bs1
p,q1

)θ,q = Bs
p,q.

Here −∞ < s0 6= s1 < ∞, 1 < p < ∞, 1 ≤ q0, q1, q ≤ ∞, 0 < θ < 1 and

s = (1− θ)s0 + θs1. Consequently, according to Theorem 3.1, we obtain the

following.

Corollary 3.3. For j = 1, 2, 3, 4, let −∞ < sj < ∞, 1 ≤ qj, q ≤ ∞ and let

1 < p < ∞. Suppose that α > β , α + β < 1 and s1 6= s2. Put

s123 = (1 − α − β)s1 + αs2 + βs3 , s124 = (1 − α)s1 + (α − β)s2 + βs4,

s̄ = min{s123, s124} , s̆ = max{s123, s124}.

Then we have, with equivalence of norms,

(Bs1
p,q1

, Bs2
p,q2

, Bs3
p,q3

, Bs4
p,q4

)(α,β),q;K = B s̄
p,q

and

(Bs1
p,q1

, Bs2
p,q2

, Bs3
p,q3

, Bs4
p,q4

)(α,β),q;J = B s̆
p,q.

Similar results hold if (α, β) lies in an internal triangle different from

P1P2Q.

If (α, β) lies in any diagonal of the square then it should be in two internal

triangles at least (see Fig. 3.3). In this case, Theorem 3.1 is not valid in

bc

bcbc

bc

bc

bc

P1 P2

P3 P4

Q

(α, β)

Figure 3.3

general even if we assume that θi 6= θj for any triangle PiPkQ containing

(α, β). We show it with an example.
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Counterexample 3.4. Let ℓ1(wn) be the weighted ℓ1-space with weights

wn. Put

X = ℓ1(n
−1/2) , Y = ℓ1(n

−1) , A1 = A4 = X andA2 = A3 = Y.

Then X →֒ Y so spaces (X,Y )θ,1 increase with the parameter θ (see [27],

Thm. 1.3.3). The spaces Aj are of class C(θj;X,Y ) with θ1 = θ4 = 0 and

θ2 = θ3 = 1. Take (α, β) = Q = (1/2, 1/2). This point is in any of the four

internal triangles and θi 6= θk for each PiPkQ of them. However A(1/2,1/2),1;K

does not coincide with (X,Y )θ,1 for any value of θ because (see [9], Example

2.8)

(

ℓ1(n
−1/2), ℓ1(n

−1), ℓ1(n
−1), ℓ1(n

−1/2)
)

(1/2,1/2),1;K
= ℓ1(

1 + log n

n
).

The next result characterizes the K-interpolation spaces for a 4-tuple

(X,Y, Y,X) with X →֒ Y when (α, β) lies in any diagonal. Recall that for

1 ≤ q ≤ ∞ the extrapolation space (X,Y )1,q is defined to be the collection

of all a ∈ Y which have a finite norm

‖a‖(X,Y )1,q
=

(∫ ∞

1
(t−1K̄(t, a))q

dt

t

)1/q

(if 1 ≤ q < ∞),

‖a‖(X,Y )1,∞
= sup

t≥1
{t−1K̄(t, a)}

(see [20] and [23]). Here K̄ is the K-functional with respect to the couple

{X,Y }. Note that, since t−1K̄(t, a) is a decreasing function of t, we have

‖a‖(X,Y )1,∞
= K̄(1, a) = ‖a‖X+Y . Therefore, (X,Y )1,∞ = X + Y .

Theorem 3.5. Let {X,Y } be a Banach couple with X →֒ Y , let 0 < α < 1

and 1 ≤ q ≤ ∞. Then we have, with equivalent norms,

(X,Y, Y,X)(α,α),q;K =















(X,Y )2α,q if 0 < α < 1/2,

(X,Y )2(1−α),q if 1/2 < α < 1,

(X,Y )1,q if α = 1/2,

and

(X,Y, Y,X)(α,1−α),q;K = (X,Y )1,q for any 0 < α < 1.

Proof. Take any a ∈ Y and suppose that 1 ≤ q < ∞. It is easy to check that

K(t, s; a) = min{1, ts}K̄

(

min{t, s}

min{1, ts}
, a

)

.
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Splitting the double integral of the norm of the K-space in the sets

Ω1 = {(t, s) ∈ R
2 : 0 < t ≤ 1 , 0 < s ≤ t},

Ω2 = {(t, s) ∈ R
2 : 0 < t ≤ 1 , t < s ≤ 1/t},

Ω3 = {(t, s) ∈ R
2 : 0 < t ≤ 1 , 1/t < s < ∞},

Ω4 = {(t, s) ∈ R
2 : 1 < t < ∞ , 0 < s ≤ 1/t},

Ω5 = {(t, s) ∈ R
2 : 1 < t < ∞ , 1/t < s ≤ t},

Ω6 = {(t, s) ∈ R
2 : 1 < t < ∞ , t < s < ∞},

it follows that

(3.7) ‖a‖(X,Y,Y,X)(α,α),q;K
∼

(∫ ∞

1
(t−2(1−α)K̄(t, a))q

dt

t

)1/q

+

(
∫ 1

0
K̄(t, a)q

dt

t

)1/q

+

(
∫ ∞

1
(t−2αK̄(t, a))q

dt

t

)1/q

.

Here ∼ means equivalence of norms. For the other diagonal we have

(3.8) ‖a‖(X,Y,Y,X)(α,1−α),q;K
∼

(
∫ ∞

1
(t−1K̄(t, a))q

dt

t

)1/q

+

(
∫ 1

0
(t−(2α−1)K̄(t, a))q

dt

t

)1/q

+

(
∫ 1

0
(t−(1−2α)K̄(t, a))q

dt

t

)1/q

.

We may assume, without loss of generality, that the norm of the embed-

ding X →֒ Y is 1. Then

K̄(t, a) = t‖a‖Y for all 0 < t ≤ 1.

This yields that for any δ > −1 , 0 < γ ≤ 1 and 0 < θ < 1

(3.9)

(∫ 1

0
(tδK̄(t, a))q

dt

t

)1/q

= ((1 + δ)q)−1/q ‖a‖Y

≤
(

(1 + δ)γq2
)−1/q

(
∫ ∞

1
(t−γK̄(t, a))q

dt

t

)1/q

and

(3.10) ‖a‖(X,Y )θ,q
∼

(
∫ ∞

1
(t−θK̄(t, a))q

dt

t

)1/q

.

Let α < 1/2, so −2(1 − α) < −2α. By (3.7), (3.9) and (3.10), we obtain

‖a‖(X,Y,Y,X)(α,α),q;K
∼

(
∫ ∞

1
(t−2αK̄(t, a))q

dt

t

)1/q

∼ ‖a‖(X,Y )2α,q
.
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If 1/2 < α then −2α < −2(1 − α) and we get

‖a‖(X,Y,Y,X)(α,α),q;K
∼

(∫ ∞

1
(t−2(1−α)K̄(t, a))q

dt

t

)1/q

∼ ‖a‖(X,Y )2(1−α),q
.

For the other diagonal, from (3.8) and (3.9) we derive

‖a‖(X,Y,Y,X)(α,1−α),q;K
∼

(
∫ ∞

1
(t−1K̄(t, a))q

dt

t

)1/q

= ‖a‖(X,Y )1,q
.

The case q = ∞ can be treated analogously. �

Next we specialize Theorem 3.5 to two concrete cases. Let (Ω, µ) be a

finite measure space with µ(Ω) = 1. Recall that the Zygmund spaces L log L

is formed by all µ-measurable functions f on Ω for which

‖f‖L log L =

∫ 1

0
(
1

t

∫ t

0
f∗(s)ds)dt < ∞

(see [1]). As it was pointed out in [20], Example 2.6, the space L log L can be

obtained by extrapolation from the couple {L∞, L1}. Indeed, by [2], Thm.

5.2.1, the K-functional for {L1, L∞} is given by

K̄(t, f ;L1, L∞) =

∫ t

0
f∗(s)ds so (L∞, L1)1,1 = L log L.

As a direct consequence of Theorem 3.5 we get the following result.

Corollary 3.6. Let 0 < α < 1. Then

(L∞, L1, L1, L∞)(α,1−α),1;K = L log L.

Now take a Hilbert space H and let L(H) be the space of all bounded

linear operators acting from H into H. The singular numbers of T ∈ L(H)

are

sn(T ) = inf{‖T − R‖ : rankR < n} , n ∈ N.

For 1 ≤ p ≤ ∞, the Schatten p-class Lp(H) consists of all T ∈ L(H) having

a finite norm

‖T‖Lp(H) =

(

∞
∑

n=1

sn(T )p

)1/p

.

We refer to [19] for details on these spaces. In a more general way, given

1 < p < ∞ and 1 ≤ q ≤ ∞ the Lorentz operator space Lp,q(H) is defined as
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the collection of all T ∈ L(H) for which

‖T‖Lp,q(H) =





∞
∑

n=1

(n(1/p)−1
n
∑

j=1

sj(T ))qn−1





1/q

< ∞

(see [27]). Spaces Lp,q(H) are the analogues for operators to the Lorentz

function spaces Lp,q. From the point of view of interpolation theory, both

families of spaces behave in a similar way. Namely,

(L1(H),L(H))θ,q = Lp,q(H) ,
1

p
= 1 − θ , 0 < θ < 1 , 1 ≤ q ≤ ∞.

Hence, writing down Theorem 3.1 for these spaces we obtain a similar result

to Corollary 3.2 but replacing Lp,q by Lp,q(H).

In order to specialize Theorem 3.5, we recall that for 1 ≤ q < ∞ the space

L∞,q(H) is formed by all T ∈ L(H) for which

‖T‖L∞,q(H) =

(

∞
∑

n=1

sn(T )qn−1

)1/q

< ∞

(see [22] and [14]). These spaces correspond to the limit case p = ∞ in the

Lorentz scale but the general theory of Lorentz operator spaces does not

cover the case of L∞,q-spaces (see [14], p. 325). It is shown in [12], Cor. 4.3,

that

(L1(H),L(H))1,q = L∞,q(H).

Consequently, Theorem 3.5 gives the following formulae.

Corollary 3.7. Let 0 < α < 1 and 1 ≤ q < ∞. Then

(L1(H),L(H),L(H),L1(H))(α,α),q;K =



















L 1
1−2α

,q(H) if 0 < α < 1/2,

L 1
2α−1

,q(H) if 1/2 < α < 1,

L∞,q(H) if α = 1/2,

and

(L1(H),L(H),L(H),L1(H))(α,1−α),q;K = L∞,q(H) for any 0 < α < 1.

4. Interpolation over general polygons.

In this section we deal with general polygons Π = P1 · · ·PN . Assuming a

mild condition on the θj and that q takes only the values 1 or ∞, we shall

establish results that work even if (α, β) lies in any diagonal.
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Recall that Pα,β is formed by all triples {i, k, r} such that (α, β) ∈ PiPkPr.

We denote by (ci, ck, cr) the barycentric coordinates of (α, β) with respect

to Pi, Pk, Pr.

Theorem 4.1. Let Π = P1 · · ·PN be a convex polygon with Pj = (xj , yj)

and let (α, β) ∈ Int Π. Assume that {X,Y } is a Banach couple and that A =

{A1, . . . , AN} is a Banach N -tuple formed by spaces Aj of class C(θj;X,Y )

with 0 ≤ θj ≤ 1, j = 1, . . . , N . For each {i, k, r} ∈ Pα,β with (α, β) ∈

Int PiPkPr we suppose that the numbers θi, θk, θr are not all equal. If (α, β) ∈

PiPkPr but (α, β) is not in Int PiPkPr, say because ci = 0, then we suppose

that θk 6= θr.

For {i, k, r} ∈ Pα,β we put θikr = ciθi + ckθk + crθr and we let

θ̄ = min{θikr : {i, k, r} ∈ Pα,β} , θ̆ = max{θikr : {i, k, r} ∈ Pα,β}.

Then we have, with equivalent norms,

(i) A(α,β),∞;K = (X,Y )θ̄,∞ + (X,Y )θ̆,∞,

(ii) A(α,β),1;J = (X,Y )θ̄,1 ∩ (X,Y )θ̆,1.

Proof. Let {i, k, r} ∈ Pα,β . If (α, β) ∈ Int PiPkPr, it follows from (2.5) and

(2.9) that

(4.1) (X,Y )θikr ,∞ →֒ A(α,β),∞;K .

If (α, β) ∈ PiPkPr but it is not in its interior, we still obtain (4.1) but using

now (2.6). Hence

(X,Y )θ̄,∞ + (X,Y )θ̆,∞ →֒ A(α,β),∞;K .

To establish the converse embedding, take any a ∈ A(α,β),∞;K and let

a =
∑N

j=1 aj be any representation of a with aj ∈ Aj . For any t, s, λ > 0, if

K̄ is the K-functional with respect to {X,Y }, we have

min
1≤j≤N

{txjsyjλ−θj}K̄(λ, a) ≤

N
∑

j=1

txjsyjλ−θjK̄(λ, aj).

Since Aj is of class C(θj;X,Y ) there is a constant C > 0 such that

N
∑

j=1

txjsyjλ−θjK̄(λ, aj) ≤ C

N
∑

j=1

txjsyj‖aj‖Aj
.

Hence

min
1≤j≤N

{txjsyjλ−θj}K̄(λ, a) ≤ CK(t, s; a).
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This yields that

sup
t,s>0

[ min
1≤j≤N

{txj−αsyj−βλ−θj}]K̄(λ, a) ≤ C‖a‖A(α,β),∞;K
.

By (2.4) we know that

sup
t,s>0

[ min
1≤j≤N

{txj−αsyj−βλ−θj}] = min{λ−θikr : {i, k, r} ∈ Pα,β}

so

sup
0<λ≤1

{λ−θ̄K̄(λ, a)} + sup
1≤λ<∞

{λ−θ̆K̄(λ, a)} ≤ 2C‖a‖A(α,β),∞;K
.

Now using Holmstedt’s formula (see [2], Thm. 3.6.1) we derive

‖a‖(X,Y )θ̄,∞+(X,Y )
θ̆,∞

= K̄(1, a;X θ̄,∞,X θ̆,∞)

≤ C1[ sup
0<λ≤1

{λ−θ̄K̄(λ, a) + sup
λ≥1

{λ−θ̆K̄(λ, a)}] ≤ C2‖a‖A(α,β),∞;K
.

This proves (i).

We turn to the proof of (ii). Using (2.5), (2.6) and (2.9), we obtain that

Ā(α,β),1;J →֒ (X,Y )θikr ,1 for any {i, k, r} ∈ Pα,β. Hence

Ā(α,β),1;J →֒ (X,Y )θ̄,1 ∩ (X,Y )θ̆,1.

To establish the converse inclusion we recall the discrete version of (X,Y )θ,1,

0 < θ < 1, realized as a K-space (see [2] or [27]). The space (X,Y )θ,1 consists

of all a ∈ X + Y such that

‖a‖∗(X,Y )θ,1
=

∞
∑

ν=−∞

2−θνK̄(2ν , a) < ∞.

Moreover, ‖ · ‖(X,Y )θ,1
and ‖ · ‖∗(X,Y )θ,1

are equivalent norms.

Given any a ∈ (X,Y )θ̄,1 ∩ (X,Y )θ̆,1, by the fundamental lemma (see

[2], Lemma 3.3.2) there is a representation a =
∑∞

ν=−∞ uν with {uν} ⊂

X ∩ Y and J̄(2ν , uν) ≤ 4K̄(2ν , a) for each ν ∈ Z. We claim that the series
∑∞

ν=−∞ uν is absolutely convergent in Ā(α,β),1;J . Indeed, using (2.3) and
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that Aj is of the class C(θj;X,Y ), we have

∞
∑

ν=−∞

‖uν‖(α,β),1;J ≤ C
∞
∑

ν=−∞

max{‖uν‖
ci

Ai
‖uν‖

ck

Ak
‖uν‖

cr

Ar
: {i, k, r} ∈ Pα,β}

≤ C1

∞
∑

ν=−∞

max{2−θici J̄(2ν , uν)ci2−θkck J̄(2ν , uν)
ck2−θrcr J̄(2ν , uν)cr

: {i, k, r} ∈ Pα,β}

≤ C1

∞
∑

ν=−∞

max{2−θikrν J̄(2ν , uν) : {i, k, r} ∈ Pα,β}

≤ C1

(

∞
∑

ν=−∞

2−θ̄ν J̄(2ν , uν) +

∞
∑

ν=−∞

2−θ̆ν J̄(2ν , uν)

)

≤ 4C1

(

∞
∑

ν=−∞

2−θ̄νK̄(2ν , a) +

∞
∑

ν=−∞

2−θ̆νK̄(2ν , a)

)

.

Consequently, a belongs to A(α,β),1;J and

‖a‖(α,β),1;J ≤ 4C1

(

‖a‖∗(X,Y )θ̄,1
+ ‖a‖∗(X,Y )

θ̆,1

)

≤ 8C1‖a‖(X,Y )θ̄,1∩(X,Y )
θ̆,1

.

This gives (ii) and completes the proof. �

Next we show some direct applications of Theorem 4.1. Assume first

that the Banach couple {X,Y } is formed by Banach algebras such that

multiplications in X and Y coincide on X ∩ Y . It was shown by Bishop [3]

(see also [21] and [5]) that for 0 < θ < 1 the space (X,Y )θ,1 is a Banach

algebra. Multiplication in (X,Y )θ,1 being the same as in X and Y on X∩Y .

So Theorem 4.1 yields the following result.

Corollary 4.2. Let Π = P1 · · ·PN be a convex polygon and let (α, β) ∈

Int Π. Let {X,Y } be a couple of Banach algebras and let A = {A1, . . . , AN}

be an N -tuple formed by spaces Aj of class C(θj;X,Y ) where the θj sat-

isfy the same assumptions as in Theorem 4.1. Then A(α,β),1;J is a Banach

algebra.

Finally we consider a Banach couple {H0,H1} formed by Hilbert spaces

such that H0 ∩ H1 is dense in H0 and H1. It was shown by Ovchinnikov

[24], [25] that

(L(H0,H0),L(H1,H1))θ,∞ = L((H0,H1)θ,1, (H0,H1)θ,∞).
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Hence, using Theorem 4.1, we derive the following.

Corollary 4.3. Let Π = P1 · · ·PN be a convex polygon and let (α, β) ∈

Int Π. Take X = L(H0,H0), Y = L(H1,H1) and let A = {A1, . . . , AN} be

an N -tuple formed by spaces Aj of class C(θj;X,Y ) where the θj satisfy the

same assumptions as in Theorem 4.1. Then we have

A(α,β),∞;K = L((H0,H1)θ̄,1, (H0,H1)θ̄,∞) + L((H0,H1)θ̆,1, (H0,H1)θ̆,∞).
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[10] F. Cobos, T. Kühn and T. Schonbek, One-sided compactness results for Aronszajn-

Gagliardo functors, J. Funct. Anal. 106 (1992) 274-313.

[11] F. Cobos and J. Mart́ın, On interpolation of function spaces by methods defined by

means of polygons, J. Approx. Theory 132 (2005) 182-203.

[12] F. Cobos and M. Milman, On a limit class of approximation spaces, Numer. Funct.

Anal. and Optimiz. 11 (1990) 11-31.

[13] F. Cobos and J. Peetre, Interpolation of compact operators: the multidimensional

case, Proc. London Math. Soc. 63 (1991) 371-400.

[14] F. Cobos and I. Resina, Representation theorems for some operator ideals, J. London

Math. Soc. 39 (1989) 324-334.

[15] S. Ericsson, Certain reitaretion and equivalence results for the Cobos-Peetre polygon

interpolation method, Math. Scand. 85 (1999) 301-319.

[16] D. L. Fernandez, Interpolation of 2n Banach spaces, Studia Math. 45 (1979) 175-201.

[17] D. L. Fernandez, Interpolation of 2d Banach spaces and the Calderón space X(E),

Proc. London Math. Soc. 56 (1988) 143-162.

[18] L. M. Fernández-Cabrera and A. Mart́ınez, Interpolation methods defined by means

of polygons and compact operators, Proc. Edinburgh Math. Soc. (to appear).

[19] I. C. Gohberg and M. G. Krein, “Introduction to the theory of linear nonselfadjoint

operators”, American Mathematical Society, Providence, RI, 1969.

[20] M. E. Gomez and M. Milman, Extrapolation spaces and almost-everywhere conver-

gence of singular integrals, J. London Math. Soc. 34 (1986) 305-316.

[21] S. Kaijser, Interpolation of Banach algebras and open sets, Integr. Equ. Oper. Theory

41 (2001) 189-222.

[22] V. I. Macaev, A class of completely continuous operators, Soviet Math. Dokl. 2 (1961)

972-975.

[23] M. Milman, “Extrapolation and optimal decompositions”, Lecture Notes in Math.

1580, Springer, Berlin, 1994.

[24] V. I. Ovchinnikov, Interpolation in symmetrically normed ideals of operators that act

in different spaces, Funktsional. Anal. i Prilozhen. 28(3) (1994) 80-82; translation in

Funct. Anal. Appl. 28(3) (1994) 213-215.

[25] V. I. Ovchinnikov, Lions-Peetre construction for couples of operator spaces, Russian

J. Math. Phys. 3(3) (1995) 407-410.

[26] G. Sparr, Interpolation of several Banach spaces, Ann. Math. Pura Appl. 99 (1974)

247-316.

[27] H. Triebel, “Interpolation theory, function spaces, differential operators”, North-

Holland, Amsterdam, 1978; 2nd edn Barth, Leipzig, 1995.

[28] H. Triebel, “Theory of function spaces”, Birkhäuser, Basel, 1983.
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