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Abstract

Mutations in the gene for muscle phosphofructo-1-kinase (PFKM), a key regulatory enzyme of glycolysis, cause Type VII
glycogen storage disease (GSDVII). Clinical manifestations of the disease span from the severe infantile form, leading to
death during childhood, to the classical form, which presents mainly with exercise intolerance. PFKM deficiency is
considered as a skeletal muscle glycogenosis, but the relative contribution of altered glucose metabolism in other tissues to
the pathogenesis of the disease is not fully understood. To elucidate this issue, we have generated mice deficient for PFKM
(Pfkm2/2). Here, we show that Pfkm2/2 mice had high lethality around weaning and reduced lifespan, because of the
metabolic alterations. In skeletal muscle, including respiratory muscles, the lack of PFK activity blocked glycolysis and
resulted in considerable glycogen storage and low ATP content. Although erythrocytes of Pfkm2/2 mice preserved 50% of
PFK activity, they showed strong reduction of 2,3-biphosphoglycerate concentrations and hemolysis, which was associated
with compensatory reticulocytosis and splenomegaly. As a consequence of these haematological alterations, and of
reduced PFK activity in the heart, Pfkm2/2 mice developed cardiac hypertrophy with age. Taken together, these alterations
resulted in muscle hypoxia and hypervascularization, impaired oxidative metabolism, fiber necrosis, and exercise
intolerance. These results indicate that, in GSDVII, marked alterations in muscle bioenergetics and erythrocyte metabolism
interact to produce a complex systemic disorder. Therefore, GSDVII is not simply a muscle glycogenosis, and Pfkm2/2 mice
constitute a unique model of GSDVII which may be useful for the design and assessment of new therapies.
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Introduction

Phosphofructo-1-kinase (PFK) is a tetrameric enzyme that

phosphorylates fructose-6-phosphate to fructose-1,6-bisphosphate,

committing glucose to glycolysis. Three PFK isoenzymes, encoded

by separate genes, have been identified in mammals: muscle-type

(PFKM), liver-type (PFKL), and platelet-type (PFKP), all of which

are expressed in a tissue specific manner [1]. Thus, skeletal muscle

expresses only PFKM homotetramers, liver mainly PFKL

homotetramers, although it can also express M- and P-type

subunits, while erythrocytes contain PFKM and PFKL hetero-

tetramers [2,3]. Several mutations in PFKM cause type VII

glycogen storage disease (GSDVII), which is a rare disease

described by Tarui (Tarui’s disease) [4]. GSDVII is inherited as

an autosomal recessive trait and patients show loss of PFK activity

in skeletal muscle and also partial deficiency in erythrocytes.

Although GSDVII is characterized by accumulation of glycogen in

skeletal muscle and hemolysis, there are several subtypes with

different clinical features. No genotype-phenotype correlation

explaining the phenotypic heterogeneity of the disease has been

described [5]. It can be detected as a severe form with onset in

infancy with hypotonia, limb weakness, progressive myopathy and

respiratory failure leading to death early in the childhood [6,7].

Neonatal mortality may be responsible for the low number of cases

diagnosed. Adult patients with the classical form of the disease

develop myopathy with muscle cramps and myoglobinuria when

exercised as well as compensated haemolytic anemia.

GSDVII is considered as a muscle glycogenosis. Although,

alterations in oxidative metabolism and bioenergetics in skeletal

muscle have also been described in human patients, few data on

metabolic and fiber structural changes are available. In addition, the

contribution of altered glucose metabolism in other tissues to the

pathogenesis of the disease is not fully understood and may also lead

to misdiagnosis [8]. No therapies are available for GSDVII patients

and development of effective treatments requires both understand-

ing the molecular mechanisms that lead to the disease and the
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development of animal models in which to test new treatments.

Inherited PFKM deficiency has only been described in dogs [9,10].

However, PFKM deficient dogs exhibit mild muscle disease not

closely reproducing the human muscle pathology [11]. In the

present study, to determine the molecular mechanisms underlying

this disease, we have generated mice lacking the muscle isoform of

PFK. We found that PFKM deficiency leads to marked alterations

in muscle bioenergetics and erythrocyte metabolism that interact to

produce the complex pathology characteristic of GSDVII. The

availability of the Pfkm2/2 mouse model allows the study of

GSDVII as a systemic disorder, not simply as muscle glycogenosis.

Results

Pfkm2/2 mice exhibit high lethality and skeletal muscle
glycogenosis

To generate Pfkm deficient mice, standard gene-targeting

methods in mouse embryonic stem cells were used. Homologous

recombination of the targeting construct resulted in the deletion of

the 59 promoter region and exon 3, which contains the translation

start codon (Figure 1A). The presence of heterozygous and

homozygous (Pfkm+/2 and Pfkm2/2) mice was confirmed by

Southern blot (data not shown) and by PCR (Figure 1B). Pfkm+/2

mice were viable and fertile while Pfkm-null mice presented high

lethality around weaning (about 60%) and those surviving died

early during adulthood, at around 3 to 6 month of age, although

few animals survived for more than one year.

Pfkm+/2 mice showed 50% lower muscle Pfkm expression and

activity (Figure 1C and 1D). However, this lower enzyme activity

in Pfkm+/2 mice did not alter any metabolic parameter, such as

glucose-6-phosphate and glycogen levels (data not shown),

indicating that half of normal PFK activity is sufficient to prevent

metabolic alterations, as observed in heterozygous humans [12].

No Pfkm mRNA transcript was observed in skeletal muscle of

Pfkm2/2 mice (Figure 1C), in agreement with the lack of enzyme

activity (Figure 1D). This deficiency led to increased glucose-6-

phosphate (Figure 1E), intracellular glucose (Figure 1F) and

glycogen (Figure 1G) content in skeletal muscle. Considerable

glycogen storage was also evidenced by histochemical analysis of

Pfkm2/2 skeletal muscle (Figure 2A). Furthermore, electron

microscopy revealed very high subsarcolemmal and intermyofi-

brillar accumulation of glycogen, which altered fiber morphology

(Figure 2B). In addition, Pfkm2/2 mice showed lower serum

lactate levels (Figure 1H), suggesting lower flux through glycolysis

in skeletal muscle. Nevertheless, these mice were normoglycemic

(Pfkm+/+, 115612 vs. Pfkm2/2, 113616 mg/dl; (n = 12)). Consis-

tent with this, PFK activity and glucose metabolism were

unchanged in the liver (data not shown).

PFKM–deficient mice show exercise intolerance
Similar to patients with the classical form of GSDVII, two-

month-old Pfkm-null mice were intolerant to exercise. These mice

were unable to run for more than 1.5 min. in a treadmill before

developing severe muscle cramps, mainly in the rear limbs

(Figure 2C). When exercised, Pfkm2/2 mice accumulated higher

levels of glucose-6-phosphate (Figure 1E), consistent with increased

muscle glucose uptake (Figure 1F) and mobilization of muscle

glycogen (Figure 1G).

Since the muscles of these mice fail to perform glycolysis, lactate

did not rise after exercise (Figure 1H). Furthermore, in Pfkm2/2

skeletal muscles, ATP and ADP levels were lower even in the

resting state and fell with exercise (Figure 2D). These lower levels

of ATP agreed with the presence of muscle cramps after exercise,

spontaneous cramps during manipulation, and immediate rigor

mortis after death (not shown). Thus, skeletal muscle of Pfkm2/2

mice was unable to meet the energy demand required to maintain

normal contractile activity.

Despite low ATP levels in Pfkm2/2 mice, the expression of key

genes in oxidative metabolism and mitochondrial biogenesis was

higher than in wild-type mice, such as peroxisome proliferator-

activated receptor c coactivator-1a (PGC-1a), peroxisome pro-

liferator-activated receptor d (PPARd) muscle carnitine palmitoyl-

transferase 1 (M-CPT-1), citrate synthase (CS) and uncoupling

protein 2 (UCP2) (Figure 3A). Moreover, succinate dehydrogenase

and NADH-tetrazolium reductase activities, markers of oxidative

capacity, were also higher (Figure 3B). Up-regulation of the

expression of type I and IIa myosin heavy chain (MyHC-I and IIa)

oxidative-type fiber proteins, without changes in the glycolytic

MyHC-IIb, was also observed (Figure 3C). Consistent with these

findings, Pfkm2/2 mice showed proliferation of enlarged mito-

chondria surrounded by glycogen depots (Figure 2B). Increased

expression of genes involved in glucose uptake and phosphoryla-

tion, glucose transporter 4 (GLUT4) and hexokinase-II (HK), was

found in skeletal muscle of Pfkm2/2 mice (Figure 3D), which also

agreed with increased muscle glucose and glucose-6-phosphate

content (Figure 1E and 1F). In addition, the expression of the

pentose phosphate pathway transaldolase (TALDO1) and trans-

ketolase (TK) genes was higher in skeletal muscle of Pfkm2/2 than

in wild-type mice (Figure 3E). Therefore, despite an increased

compensatory response, oxidative metabolism was unable to

overcome the glycolysis blockade in Pfkm2/2 mice.

Lack of PFKM alters respiratory muscles and heart
Respiratory skeletal muscles were also severely altered in Pfkm2/2

mice. The lack of PFK activity in diaphragm, led to increased

glucose-6-phosphate and glycogen content (Figure 4A–4C). High

accumulation of glycogen was also observed in diaphragm

(Figure 4D) and intercostal muscle (Figure 4E) sections by PAS

Author Summary

Type VII glycogen storage disease (GSDVII), or Tarui
disease, is a rare genetic disorder characterized by
glycogen accumulation in skeletal muscle. The molecular
cause is loss of activity of the muscle isoform of
phosphofructokinase (PFK), which phosphorylates fruc-
tose-6-phosphate to fructose-1,6-bisphosphate, commit-
ing glucose to glycolysis. Entry of fructose-6-phosphate
into glycolysis is thus blocked, increasing glycogen
synthesis and accumulation. Clinical manifestations of
the disease are heterogeneous, ranging from exercise
intolerance to early childhood death. To further under-
stand the human pathology, we generated mice lacking
muscle PFK. As in human patients, these mice showed
severe exercise intolerance, hemolysis, and most died
young. Lack of glycolysis in skeletal muscle also causes
alterations in bioenergetics and compensatory changes in
key metabolic genes. Additionally, although erythrocytes
retained 50% of normal PFK activity, their overall
functionality was impaired, aggravating the muscle
dysfunction. Moreover, marked metabolic alterations in
the heart lead to chronic hypertrophy, suggesting that
cardiac pathology in GSDVII may be underestimated or
misdiagnosed. This study indicates that this disease is
more complex than a muscle glycogenosis and that
symptoms other than those classically described should
be taken into consideration. Finally, this animal model will
enable us to develop new therapeutic approaches and
better diagnostic tools.

PFKM Deficiency Causes a Systemic Disorder
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staining. These metabolic alterations may have contributed to alter

the respiratory capacity of Pfkm2/2 mice.

Cardiac muscle, which expresses the PFKM, PFKL and PFKP

[3], showed lower PFK activity in Pfkm2/2 mice (about 20% of

wild-type) and higher glucose-6-phosphate and glycogen levels

(Figure 5A–5C). In addition, increased glycogen storage was also

evident in electron microscopy sections of cardiac muscle

(Figure 5D). Two-month-old Pfkm2/2 mice showed increased

(about 55%) heart weight (Pfkm+/+, 4.460.1 mg/g b.w. vs. Pfkm2/2,

6.960.3 mg/g b.w.; (n = 5) p,0.01) and developed cardiac

hypertrophy and evident cardiomegaly with age (Figure 5E and

5F). Moreover, left ventricle enlargement without interstitial fibrosis

was observed after Masson trichromic staining of longitudinal

sections of Pfkm2/2 hearts (Figure 5G).

Pfkm2/2 mice develop hemolysis, reticulocytosis and

splenomegaly. Erythrocytes express both PFKM and PFKL

isoenzymes [13]. Consistent with the lack of PFKM in Pfkm2/2

mice, erythrocytes showed 50% lower PFK activity and

accompanying glucose-6-phosphate accumulation (Figure 6A

and 6B). This correlated with lower 2,3-bisphosphoglycerate

(2,3-BPG) levels (Figure 6C). These metabolic alterations

resulted in increased osmotic fragility of erythrocytes (data not

shown) and severe hemolysis. Thus, Pfkm2/2 mice had very high

levels of serum bilirubin (Figure 6D) and lactate dehydrogenase

and lower hematocrit (data not shown). As a consequence, Pfkm2/2

mice showed compensatory reticulocytosis (Figure 6E and 6F) and

splenomegaly (Figure 6G and 6H), which correlated to increased

hematopoietic precursors from spleen, but not bone marrow

(Figure 6I and 6J). These alterations are features of GSDVII, in

which patients show compensated hemolytic anemia with increased

serum bilirubin and reticulocyte count [14].

Skeletal muscle of Pfkm2/2 mice presents increased
vascularization and fiber necrosis and regeneration

The decrease of erythrocyte 2,3-BPG levels increases hemoglo-

bin affinity for oxygen and thus impairs oxygen extraction from

hemoglobin [15]. Thus, the inability of oxidative metabolism to

compensate for glycolysis blockade in Pfkm2/2 skeletal muscle may

also be due to decreased availability of oxygen to generate

sufficient energy. Furthermore, consistent with decreased oxygen

availability and marked hemolysis, skeletal muscle of Pfkm2/2

mice showed hypoxia, evidenced by higher expression (6-fold) of

the hypoxia induced factor 1a (HIF-1 a) (Figure 7A). Moreover,

Figure 1. Generation of Pfkm2/2 mice and the effect of Pfkm ablation on skeletal muscle glucose metabolism. (A) Schematic
representation of the wild-type Pfkm locus (top), targeting vector (middle) and targeted allele (bottom). The positions of HindIII (H) and XbaI (X) cleavage
sites, the neoR (neo) and herpes simplex virus thymidine kinase (HSV-tk) genes, and the location of PCR primers used to detect wild-type (PFK-Fw and
PFK-Rev) and targeted (Neo and PFK-Rev) alleles are shown. (B) PCR analysis of DNA from wild type (+/+), Pfkm+/2 (+/2) and Pfkm2/2 (2/2) mice using
the primers shown in (A). The 0.6 Kb band corresponds to the wild-type allele and the 0.7 Kb band to the mutant allele. (C) Expression of Pfkm in skeletal
muscle. Total RNA was obtained from gastrocnemius muscle and analyzed by Northern blot. A representative Northern blot hybridized with a Pfkm
probe is shown. (D) PFK activity was determined in skeletal muscle as indicated in Materials and Methods. Basal PFK activity in wild-type mice was
3662.4 U/g tissue. (E–G) Glucose-6-phosphate (E), glucose (F) and glycogen (G) concentrations were determined in perchloric extracts of skeletal muscle
from 2–3 month-old wild-type (+/+) and and Pfkm2/2 (2/2) mice, in rest and after exercise (5 min), as indicated in Materials and Methods. (H) Serum
lactate levels in wild-type (+/+) and Pfkm2/2 (2/2) mice, in rest and after exercise (5 min). Results in D-H are mean6SEM of five to eight mice per group.
*P,0.05, **P,0.01 vs. wild-type.
doi:10.1371/journal.pgen.1000615.g001
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expression of genes activated by HIF-1a, such as pyruvate kinase

M (PK-M), lactate dehydrogenase (LDH), and glucose transporter-

1 (GLUT1), were up-regulated in this tissue (Figure 7A). This

increase in GLUT1 was also consistent with the observed higher

intracellular glucose (Figure 1F). The increase in HIF-1a was also

parallel to increased vascular endothelial growth factor (VEGF)

expression (Figure 7B). In addition, it has been described in

skeletal muscle that PGC1a is induced by a lack of oxygen and

that PGC1a powerfully regulates VEGF expression [16], which

may have also occurred in Pfkm2/2 mice. The increase in VEGF

led to hypervascularization, as evidenced by greater immuno-

staining of the platelet endothelial cell adhesion molecule

(PECAM-1), an endothelial cell marker, and collagen IV, a

basement membrane marker (Figure 7B). Furthermore, the

chronic lower levels of ATP in skeletal muscle of Pfkm2/2 mice

resulted in multiple sites of muscle fiber degeneration and necrosis,

characterized by inflammatory infiltration of mononucleated cells

and by phagocytosis of necrotic fibers (Figure 7C). In addition,

intense skeletal muscle regenerative activity was evidenced by wide

distribution of centrally-located nuclei fibers in Pfkm2/2 mice

(Figure 7D). Thus, severe muscle fiber alterations, in addition to

glycogen accumulation, result from PFKM deficiency.

Discussion

In this study we show that mice with targeted ablation of the

muscle isoform of PFK develop myopathic and hemolytic features

similar to those noted in type VII glycogenosis in humans. The

early lethality observed in Pfkm2/2 mice also resembled the most

severe variant of the disease, which presents in infancy and rapidly

proceeds to a progressive myopathy and death [6]. Importantly,

the full range of phenotypic changes we have observed in our

Figure 2. Pfkm2/2 mice develop skeletal muscle glycogenosis and exercise intolerance. (A) Glycogen storage evidenced by PAS staining in
skeletal muscle sections from wild-type (WT) and Pfkm2/2 mice. Scale bar 50 mm. (B) Transmission electron microscopic analysis of skeletal muscle.
Arrows show glycogen storage and asterisks point to mitochondria. Scale bar 1 mm. (C) Pfkm2/2 mice showing severe muscle cramps after exercise
(5 min). (D) ATP and ADP content was determined in perchloric extracts of skeletal muscle from wild-type (+/+) and and Pfkm2/2 (2/2) mice, in rest
and after exercise (5 min), as described in Materials and Methods. Results are mean6SEM of five mice per group. *P,0.05 vs. wild-type.
doi:10.1371/journal.pgen.1000615.g002
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model may impact on diagnosis and detection of human patients

since phenotypic heterogeneity is common. In addition, future

treatment strategies will need to consider the full extent of

pathogenesis to optimize effectivity and safety.

The increased glycogen and glucose-6-phosphate in skeletal

muscle observed in Pfkm2/2 mice is the classic hallmark described

in biopsies of human patients with GSDVII. Suppression of

glycolysis impaired the use of glycogen as a fuel leading to

increased storage. Moreover, blood glucose cannot be metabolized

by the glycolytic pathway causing glucose-6-phosphate accumu-

lation in skeletal muscle. Allosteric activation of glycogen synthase

by glucose-6-phosphate may have contributed to increase glycogen

storage [17]. Skeletal muscle uses glucose, either blood- or

glycogen- derived, as the major fuel during muscular activity.

The impairment of the principal catabolic pathway in skeletal

muscle of Pfkm2/2 mice led to energetic deprivation, which

resulted in failure to perform exercise. Similarly, PFKM deficient

patients show severe alterations in muscle bioenergetics leading to

muscle weakness and exercise intolerance [18,19]. Ineffective

utilization of glycogen in patients with type V glycogen storage

(GSDV) or McArdle’s disease also leads to impairment of exercise

capability. GSDV results from deficiency of the muscle isoform of

glycogen phosphorylase, which leads to blockade of glycogen

breakdown and to high glycogen storage in skeletal muscle [20].

However, GSDV patients show exercise tolerance after carbohy-

drate infusion since they can metabolize circulating glucose

because glycolytic flux is preserved [21]. In contrast, in GSDVII

patients, glucose infusion induces exertional fatigue attributed to

an insulin-mediated decreased availability of blood free fatty acids

and ketone bodies [22].

Muscle fibers of Pfkm2/2 mice failed to generate enough ATP to

maintain contractile activity, and mice developed muscle cramps

early during the exercise test and with manipulation. In addition,

even in rested state, Pfkm2/2 mice showed low levels of ATP in the

Figure 3. Effects of PFKM deficiency in skeletal muscle markers. (A) Expression of key genes in oxidative metabolism in skeletal muscle of
wild-type and Pfkm2/2 mice: Peroxisome proliferator-activated receptor c coactivator-1a (PGC-1a), peroxisome proliferator-activated receptor d
(PPARd), carnitine palmytoiltransferase-1 (M-CPT-1), citrate sinthase (CS) and uncoupling protein 2 (UCP-2). (B) Histochemical staining for succinate
dehydrogenase (SDH) and NADH-tetrazolium reductase (NADH-TR) activities in skeletal muscle of wild-type and Pfkm2/2 mice. Scale bar 25 mm. (C)
Expression of myosin heavy chains in skeletal muscle of wild-type and Pfkm2/2 mice: Type I, IIa ,and IIb myosin heavy chains (MyHC-I, MyHC-IIa,
MyHC-IIb). (D) Expression of the key genes in skeletal muscle glucose uptake, glucose transporter 4 (GLUT4) and hexokinase-II (HKII), in wild-type and
Pfkm2/2 mice. (E) Expression of pentose phosphate pathway genes, transaldolase (TALDO1) and transketolase (TK), in skeletal muscle of wild-type
and Pfkm2/2 mice. Relative expression in A, C, D and E was determined by quantitative PCR analysis of total RNA from skeletal muscle, as indicated in
Materials and Methods. Results are mean6SEM of five mice per group. *P,0.05 vs. wild-type.
doi:10.1371/journal.pgen.1000615.g003
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skeletal muscle, which is known to lead to muscle weakness and

mitochondrial myopathy in other animal models [23,24]. Physio-

logical situations involving energy deprivation in skeletal muscle, like

exercise and fasting, lead to adaptive changes towards the oxidation

of fat as a fuel [25]. In skeletal muscle of Pfkm2/2 mice, increased

expression of oxidative marker genes and proliferation of enlarged

mitochondria revealed an attempt to overcome glycolysis deficiency

by shifting substrate metabolism toward a higher reliance on

oxidative metabolism. Factors involved in this adaptation included

PGC-1a, PPARd and muscle CPT-1, which are responsible for

mitochondrial biogenesis, oxidative phosphorylation and fatty acid

oxidation [25]. Furthermore, PGC-1a and PPARd may have been

involved in structural changes towards the formation of oxidative

muscle fibers by increasing the expression of MyHC-I [26,27].

Moreover, PGC-1a up-regulation was probably responsible for the

increased expression of GLUT-4 and HK-II in skeletal muscle of

Pfkm2/2 mice [28]. This led to enhanced glucose uptake and

phosphorylation, also consistent with the high levels of glucose and

glucose-6-phosphate detected in skeletal muscle of Pfkm2/2 mice. In

addition, the increased expression of transaldolase and transketolase

enzymes suggested that glucose could be used through the pentose

phosphate pathway in skeletal muscle of Pfkm2/2 mice. However,

despite these compensatory responses, oxidative metabolism was

unable to overcome the glycolysis blockade in Pfkm2/2 mice.

Anaplerosis of the tricarboxylic acid (TCA) or Krebs cycle

plays a key role in oxidative metabolism in skeletal muscle by

providing the TCA cycle with intermediates to permit its

continued function. Impaired production of glycolytic substrates

could limit oxidative metabolism by reducing concentrations of

Krebs cycle intermediates [29,30]. Blockade of glucose utiliza-

Figure 4. Effect of Pfkm ablation in diaphragm glucose metabolism and in respiratory muscle glycogen storage. (A) PFK activity was
determined in diaphragm extracts as indicated in Materials and Methods. Basal PFK activity in wild-type mice was 26.564.2 U/g tissue. (B,C) Glucose-
6-phosphate (B) and glycogen concentrations (C) were determined in diaphragm perchloric extracts from wild-type (+/+) and Pfkm2/2 (2/2) mice, as
indicated in Materials and Methods. Results are mean6SEM of five mice per group. *P,0.05, **P,0.01 vs. wild-type. (D,E) Glycogen storage
evidenced by PAS staining in diaphragm sections (D) from wild-type (wt) and Pfkm2/2 mice (scale bar 50 mm) and in intercostal muscle sections (E)
from Pfkm2/2 mice (scale bar 300 mm). IC, intercostal muscles; R, rib.
doi:10.1371/journal.pgen.1000615.g004
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tion through the glycolysis pathway in skeletal muscle of Pfkm2/2

mice may lead to impaired production of the glucose-derived

anaplerotic substrates phosphoenolpyruvate and pyruvate. Dys-

regulation of the TCA cycle intermediates probably impaired

oxidative phosphorylation and the ability of skeletal muscle in

Pfkm2/2 mice to generate an adequate amount of ATP. The

significance of the regulation of TCA cycle intermediates in the

control of skeletal muscle energy metabolism has clearly been

shown in mice overexpressing phosphoenolpyruvate carboxyki-

nase (PEPCK-C). PEPCK-C transgenic mice show increased

oxidative capacity in skeletal muscle leading to enhanced exercise

performance [31].

Figure 5. Pfkm2/2 mice show altered heart glucose metabolism and develop cardiomegaly with age. (A) PFK activity was determined in
heart extracts. Basal PFK activity in wild-type mice was 27.465.4 U/g tissue. (B,C) Glucose-6-phosphate (B) and glycogen concentrations (C) were
determined in heart perchloric extracts from 2-month-old wild-type (+/+) and Pfkm2/2 (2/2) mice. Results are mean6SEM of five mice per group.
*P,0.05, **P,0.01 vs. wild-type. (D) Transmission electron microscopic analysis of cardiac muscle. Arrows show glycogen storage. Scale bar 2 mm.
(E,F) One-year-old Pfkm2/2 mice develop cardiac hypertrophy, evidenced by hematoxilin-eosin staining of heart sections (scale bar 1 mm) (E) and
cardiomegaly (F). (G) Longitudinal sections of heart from 3-month-old mice stained with Masson trichromic reagent (scale bar 1 mm). Inset shows
septum sections (scale bar 50 mm).
doi:10.1371/journal.pgen.1000615.g005
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GSDVII is also characterized by compensated hemolytic

anemia due to reduction in the erythrocyte PFK activity. Pfkm2/2

mice clearly underwent hemolysis and compensatory erythropoi-

esis evidenced by marked reticulocytosis. Since erythrocytes lack

mitochondria, glycolysis is essential for their energy metabolism.

Consequently, although erythrocytes of Pfkm2/2 mice preserve

about half of the PFK activity observed in wild-type mice, it was

not enough to maintain erythrocyte integrity. Moreover, the

kinetic properties of residual L homotetramer may turn it

somehow dysfunctional in Pfkm2/2 erythrocytes [32]. Removal

of defective erythrocytes was probably responsible for the

increased spleen size in Pfkm2/2 mice. Splenomegaly has broadly

been described as a result of hemolysis or hematopoietic stress in

several diseases [33,34]. Thus, increased hematopoiesis may have

also contributed to increase spleen size in Pfkm2/2 mice. Similar

hematological features are found in spontaneous mutant mice with

reduced activity of the glycolytic enzyme pyruvate kinase (Pk-1slc)

in red blood cells [35].

Lower PFK activity in erythrocytes of Pfkm2/2 mice led to

lower concentrations of glycolytic intermediates and 2,3-BPG. In

turn, low levels of 2,3-BPG increase the oxygen affinity of

hemoglobin, reducing oxygen delivery to the tissues and

stimulating erythropoiesis. Skeletal muscle requires large amounts

of oxygen during intense exercise and alterations in the affinity of

hemoglobin for oxygen could impair muscle performance [15].

Consistent with decreased oxygen availability and marked

hemolysis, skeletal muscle of Pfkm2/2 mice showed features of

hypoxia and angiogenesis together with necrosis and intense

regenerative activity. This decreased oxygen availability probably

contributed to impair the compensatory oxidative metabolism in

Figure 6. Reduction of erythrocyte PFK activity leads to hemolysis, reticulocytosis, and splenomegaly. (A) PFK activity was determined in
blood cell lysates from wild-type (+/+) and Pfkm2/2 (2/2) mice as indicated in Materials and Methods. (B,C) Glucose-6-phosphate (B) and 2,3-
bisphosphoglycerate (2,3-BPG) (C) concentrations were determined in blood cell perchloric extracts as indicated in Materials and Methods. (D–F) Pfkm2/2

show high serum bilirubin levels (D) and reticulocyte number (E,F). New methylene blue stained blood samples were extended on slices (E) and counted
(F). Arrows indicate reticulocytes. Scale bar 15 mm. (G,H) Splenomegaly in Pfkm2/2 mice. A high increase in spleen size (G) and weight (H) was observed.
Scale bar 5 mm. (I,J) Hematopoietic precursors in cultured cells from spleen (I) and femur (J) from wild-type (+/+) and Pfkm2/2 (2/2) mice. Results are
mean6SEM of five to eight mice per group. **P,0.01 vs. wild-type.
doi:10.1371/journal.pgen.1000615.g006
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the skeletal muscle of PFK deficient mice, exacerbating its loss of

functionality. In addition, changes in oxygen delivery to tissues

may result in lower respiratory and cardiac function in Pfkm2/2

mice.

Involvement of respiratory and cardiac muscles in the

pathogenesis of GSDVII is not clearly understood. Myopathic

alterations in the respiratory muscles are responsible for loss of

respiratory function and even death in a wide spectrum of muscle

disorders [36,37] and other glycogen storage diseases [38,39]. In

addition, premature death due to a respiratory failure is a feature

of the severe infantile form of GSDVII [6,40]. The structural and

metabolic abnormalities observed in the diaphragm and respira-

tory muscles of Pfkm2/2 mice suggest impaired respiratory

function and may have contributed to the lethality observed in

these mice. On the other hand, cardiac abnormalities, such as low

voltage electrocardiogram, tachycardia, ventricular hypertrophy

and atrium enlargement, have only been described in a few

patients [41]. Cardiac hypertrophy may result as an adaptive

response to increased workload, and prolonged hypertrophy is

associated with increased risk for sudden death or progression to

heart failure [42]. Although most frequent causes of heart

hypertrophy are chronic hypertension, exercise, myocardial

infarction or aortic valve stenosis, several reports point to defects

in cardiac energetic metabolism underlying heart enlargement

[43]. Thus, heart specific ablation of GLUT-4 glucose transporter

or deletion of the adenine nucleotide translocator-1 gene lead to

heart hypertrophy in mice [24,44]. Therefore, altered glucose

metabolism in the heart of Pfkm2/2 mice may have led to

deficient energy production in cardiomyocyte and compensatory

chronic heart hypertrophy, which probably increased mortality in

these mice. These results suggest that the cardiac pathology in

GSDVII may probably be underestimated or misdiagnosed [41].

In addition, this study indicates that symptoms other than

classically described may be taken into consideration for the

diagnostic of the GSDVII.

In summary, these results indicate that the skeletal and cardiac

muscle impairments observed in Pfkm2/2 mice interact with

disturbed erythrocyte metabolism to produce the heterogeneous

and complex pathology characteristic of type VII glycogen storage

disease. The availability of this murine model of GSDVII allows

determination of the role of such metabolic alterations in different

tissues and organs together with their interactions, and, impor-

tantly, allows the study of GSDVII as a systemic disorder, not

simply as a muscle glycogenosis. Moreover, Pfkm2/2 mice

Figure 7. Pfkm2/2 mice show increased skeletal muscle hypoxic markers, vascularization, and fiber necrosis. (A) The expression of the
hypoxia-induced factor (HIF-1a), pyruvate kinase (PK-M), lactate dehydrogenase (LDH), and glucose transporter-1 (GLUT-1) in skeletal muscle of
Pfkm2/2 mice was determined by quantitative PCR analysis, as indicated in Materials and Methods. Results are mean6SEM of four mice per group.
*P,0.05, **P,0.01 vs. wild-type. (B) Skeletal muscle sections showed increased immunostaining for VEGF, leading to hypervascularization, as
evidenced by greater immunostaining for endothelial cell marker PECAM-1 (scale bar 25 mm) and collagen IV (scale bar 10 mm). Arrows show blood
vessels around muscle fiber. (C) Fiber necrosis in skeletal muscle sections of Pfkm2/2 mice. Arrows indicate cell infiltration of necrotic fibers (scale bar
25 mm). (D) Muscle fiber regeneration is evidenced by multiple centrally located nuclei (arrows) (scale bar 25 mm).
doi:10.1371/journal.pgen.1000615.g007
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constitute a unique model of GSDVII, which will most likely be

very useful for the design and assessment of new therapeutic

interventions for this disease.

Materials and Methods

Generation of Pfkm2/2 mice
Genomic clones for mouse Pfkm were isolated from a mouse

129/SvJ library (Stratagene). To construct the targeting vector,

two fragments of the genomic DNA flanking the exon 3 were

subcloned at convenient restriction sites in the pPNT vector.

Linearized pPTN/pfkm was transfected into 129/SvJ derived

embryonic stem cells (ES) (CMTI-1, Speciality Media). Selection

was performed with G418 and gancyclovir, and resistant clones

were screened for homologous recombination by Southern blot.

Targeted ES cells were injected into blastocysts from C57BL/6J

mice and transferred into uteri of pseudopregnant females.

Chimeric males were mated to C57BL/6J females and the

offspring was screened by PCR analysis using both locus-specific

and Neo cassette-specific primers: PFK-Fw: 59-AATGCACTCC-

GATCTGCTCC-39; Neo: 59-CGCCTTCTATCGCCTTCTTG

ACGAGTTCTT-39; PFK-Rev: 59-GCAAGCAATGCCTAAA-

TCTG-39. Homozygous mutant mice were obtained by mating

heterozygous littermates. Mice were fed ad libitum with a standard

diet (Panlab, Barcelona, Spain) and maintained under a light-dark

cycle of 12 h (lights on at 9:00 A.M.). Animals were killed and

samples were taken between 9:00 and 10:00 A.M. In the

experiments described, male mice, aged 2–3 months were used

with littermates as controls. All experimental procedures involving

mice were approved by the Ethics Committee in Animal and

Human Experimentation of the Universitat Autònoma de

Barcelona.

RNA analysis
Total RNA was obtained from skeletal muscle samples and

analyzed by Northern blot. Northern blots were hybridized to 32P-

labeled pfkm cDNA probe labeled following the method of random

oligopriming, as described by the manufacturer (Amersham

Corp.). For real-time qPCR, 1 mg of RNA samples was used as

a template to synthesize cDNA in a volume of 20 ml (Omniscript

kit, Qiagen). Oligo-dT was used as a primer for the reaction in the

presence of Protector RNase inhibitor (Roche). RT-PCR was

performed in a SmartCycler II (Cepheid) using QuantiTect SYBR

Green PCR kit (Qiagen). The sequences of the respective sense

and antisense oligonucleotide primers were: Primers sequences:

PGC-1a: (F) ATACCGCAAAGAGCACGAGAAG and (R) CT-

CAAGAGCAGCGAAAGCGTCACAG; PPARd: (F) TCCA-

TCGTCAACAAAGACGGG and (R) ACTTGGGCTCAAT-

GATGTCAC; M-CPT1: (F) GCACACCAGGCAGTAGCTTT

and (R) CAGGAGTTGATTCCAGACAGGTA; CS: (F) TGCC-

CACACAAGCCATTTG and (R) CTGACACGTCTTTGC-

CAACTT; HIF-1a: (F) AGCCC TAGATGGCTTTGTGA and

(R) TATCGAGGCTGTGTCGACTG; PK-M: (F) CGATCT-

GTGGAGATGCTGAA and (R) AATGGGATCAGATGCAA-

AGC; LDH: (F) TGTCTCCAGCAAAGACTACTGT and (R)

GACTGTACTTGACAAT GTTGGGA; GLUT-1: (F) CAG-

TTCGGCTATAACACTGGTG and (R) GCCCCCGACAGA-

GAAGATG; MyHC-I: (F) AGAGGGTGGCAAAGTCACTG

and (R) GCCATGTCCTCGATCTTGTC; MyHC-IIa: (F) CGA-

TGA TCTTGCCAGTAATG and (R) TGATAACTGAGATA-

CCAGCG; MyHC-IIb: (F) ACAGACTAAAGTGAAAGCC and

(R) CTCTCAACAGAAAGATGGAT; GLUT4: (F) GACGGA-

CACTCCATCTGTTG and (R) CATAGCTCATGGCTGG

AACC; HKII: (F) GAAGGGGCTAGGAGCTACCA and (R)

CTCGGAG CACACGGAAGTT; TALDO1: (F) GATTCCAG-

GCCGTGTATCCAC and (R) AATCCCCTCCCAGGTTGAT-

GA; TKT: (F) TGGCATACACAGGCAAATACTT and (R)

TCCAGCTTGTAAATTCCAGCAA and 36B4: (F) GGCCCT-

GCACTCTCGCTTT and (R) TGCCAGGACGCGCTTGT.

Data was normalized with 36B4 gene values and analyzed as

previously described [45].

Enzyme and metabolite assays
To determine PFK activity and the concentration of metabolites

mice were anesthetized with a mixture of ketamine (100 mg/kg)

and xylacine (10 mg/kg). Afterwards, skeletal muscle was freeze

clamped in situ, and kept at 280uC until analysis. Diaphragm and

heart were rapidly excised, weighed, frozen in liquid nitrogen and

kept at 280uC. Heparinized blood samples were centrifuged, cells

collected and frozen. For PFK activity, samples were homogenized

in 10 volumes (1 ml/100 mg tissue) of an ice-cold buffer (pH 7.4)

containing 20 mM Tris-HCl, 100 mM KCl, 5 mM MgCl2, 5 mM

Phosphate Buffer and 30% Glycerol. Samples were centrifugued

and PFK activity was determined in the presence of 6 mM

fructose 6-phosphate and 18 mM glucose 6-phosphate by

spectrophotometric analysis as previously indicated [46]. The

concentrations of glycogen, glucose 6-phosphate, glucose and 2,3-

BPG were measured in perchloric extracts, which were adjusted to

pH 5 with 5 M K2CO3 to determine glycogen and glucose, and to

pH 7 for glucose 6-phosphate and 2,3-BPG. Glycogen levels were

measured using the a-amyloglucosidase method [47]. Glucose and

glucose 6-phosphate concentrations were determined enzymati-

cally [48]. 2,3-BPG was determined using a specific kit (Roche

Diagnostics GMBH). The concentration of ATP and ADP was

determined as described previously [49,50]. Serum lactate

dehydrogenase activity and total bilirubin and lactate levels were

measured in the autoanalyzer Pentra400 (ABX Diagnostics) using

specific kits (ABX Diagnostics). Glucose concentration in blood

was determined by using a Glucometer Elite (Bayer) following the

manufacturer’s instructions.

Exercise test
Mice were exercised for 5 min on an enclosed treadmill LE-

8708 (Panlab) supplied with an electrified grid at the rear of the

belt to provide motivation. The speed of the belt was 30 cm/sec.

Retyculocyte count and hematopoietic cultures
To determine the number of retyculocytes, blood samples were

stained with new methylene blue, extended on slices, and counted

under microscope. Hematopoietic cultures were performed in

extracts of bone marrow and spleen. Triplicate assays were done in

35 mm plates. Samples were cultured for 7 days at 37uC, 5% CO2

and 95% relative humidity in MethoCult GF M3434 medium

(StemCell Technologies Inc.). Colonies were counted under

inverted microscope including CFU-GM, BFU-E, and CFU-Mix.

Histochemical analysis
Skeletal muscle and heart were fixed for 12 to 24 h in formalin,

embedded in paraffin and sectioned. To determine muscle

morphology, sections were stained with hematoxylin/eosin.

Glycogen content was analyzed by Periodic Acid Schiff (PAS)

staining. Heart fibrosis was determined by Masson trichrome

staining. For histochemical analysis of succinate dehydrogenase

(SDH) and NADH-tetrazolium reductase (NADH-TR) activities,

gastrocnemius muscle was dissected and frozen in isopentane

supercooled with liquid nitrogen. Frozen sections were analyzed as

previously indicated [51,52].
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Immunohistochemistry
For immunohistochemical detection of VEGF and collagen IV

proteins, paraffin sections were incubated overnight at 4uC with

rabbit anti-mouse VEGF antibody (Santa Cruz) diluted at 1:50

and with rabbit anti-mouse collagen IV antibody (Chemicon Inc.)

diluted at 1:100. For immunohistochemical detection of PECAM-

1, cryosections were incubated overnight at 4uC with rat anti-

mouse PECAM-1 antibody (Pharmingen BDbiosciences) diluted at

1:100. Afterwards, samples were incubated with the biotinylated

secondary antibodies (dilution 1:200): Rabbit against rat IgG

(Vector laboratories) or goat against rabbit IgG (Vector labora-

tories). The localization of VEGF was determined using

streptavidin conjugate Alexa fluor 488 (Molecular Probes),

collagen IV using streptavidin conjugate Alexa fluor 568

(Molecular Probes) and PECAM-1 by ABC peroxidase mouse

IgG staining kit (Pierce Biotechnology).

Transmission electron microscopic analysis
Skeletal and cardiac muscle samples were obtained and fixed in

2.5% glutaraldehyde and 2% paraformaldehyde for 2 h at 4uC.

After washing in cold cacodylate buffer, the specimens were

postfixed in 1% osmium tetroxide, stained in aqueous uranyl

acetate, and then dehydrated through a graded ethanol series and

embedded in epoxy resin. Ultrathin sections (600–800 Å) from the

resin blocks were stained using lead citrate and examined in a

transmission electron microscopy (Hitachi H-7000).

Statistical analysis
All values were expressed as mean6SEM. Two-tailed P values

were calculated by unpaired Student’s t test. Differences were

considered statistically significant at P values less than 0.05.
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