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Abstract A family of transformations of the processes of accumulated residues of
linear models is used to construct tests of fit of the models, consistent for any
alternative, and focused on alternatives in the direction selected by the user. The
resulting tests are asymptotically distribution free, both under the null hypothesis of
fit, and under the selected alternatives. An interesting feature is that this distributions
do not depend on (possible) parameter estimations.
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1 Introduction

The transformation of experimental data in order to make noticeable certain devia-
tions from pre-established models has been in use for at least a decade in the con-
struction of goodness-of-fit tests. The theoretical ideas behind the transformations
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can be found in Cabaña and Cabaña (1997), and some examples of their use in
Scavino (1999), Graneri (2003), Cabaña and Cabaña (2003, 2005).

The procedure consists in constructing a random function containing the same
information as the data set and then transforming it in order to make visible some
of the characteristics of the data which are of interest for the decisions under
consideration.

Moreover, the asymptotic distribution of such transformed processes is normal.
This has technical consequences, for instance, the limiting distributions of the
functionals of these processes used as test statistics are easy to derive, and the use of
Le Cam’s Third Lemma to give a precise description of the behaviour of the resulting
tests under contiguous models, is quite simple.

The use of Transformed Empirical Processes allowed the design of focused, con-
sistent and asymptotically distribution free goodness-of-fit tests for i.i.d. samples. The
present work is a first attempt on the application of the same sort of transformations
to the process of accumulated residues in Linear Models, in order to check the
validity of such a model.

The problem of assessing the validity of a linear model is quite old, starting from
Nadaraya (1964) and Watson (1964). Most of the existing work deals with density
estimation, and so, most of the results are not consistent against alternatives which
approach the null hypothesis at rate

√
n. A fairly complete survey can be found in

Stute (1997) where a statistic based on marked residuals is proposed, which is con-
sistent against any alternative, although not focused. Stute’s methods rely on certain
martingale transforms introduced in Khmaladze (1981). The many applications in
inference of Khmaladze transform rely on its isometric properties, but the use of
a particular class of isometries (the L-isometries as named in Cabaña and Cabaña
(1997) Section 6.1 and Section 7.1) endows the transformations with martingale
properties that provide a powerful analytical way of proving the convergence of
estimators.

The statistics based on transforming the accumulated residues we propose here
(as well as the ones based in transforming the empirical process in previous papers
on the subject) are consistent, and their asymptotic behaviour is always the same: it
does not depend on the true (unknown) parameters of the model, and even whether
parameter estimation is required or not, our transformations provide statistics with
the same asymptotic laws. This last achievement imposes the use of particular isome-
tries adapted to the estimation procedures, and consequently the transformations we
apply not necessarily lead to martingales, so the asymptotic behaviour of our statistics
has to be established under different (in fact weaker) assumptions than Khmaladze’s
(this is discussed in Section 3.1.6).

The general framework for random design models is described in Section 2. As a
first introductory example of the use of the transformed residues process to focus the
power on the selected alternatives, we describe in Section 3.1 how to test the simple
hypothesis of fit to a completely determined model, in spite of its reduced practical
interest.

In Section 3.2, we study the general problem of fit to a linear model, in Section 3.3
we describe the asymptotic properties of the test statistics, and Section 4 is devoted
to their computation.

The particular example of polynomial regression is treated in Section 6, and the
power of the proposed tests in front of certain alternatives is computed. An empirical
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description of powers illustrates the behaviour of our tests for finite samples. In
particular we compare in Section 6.4 the power of our tests to that of Stute et al.
(1998) through an example introduced in their paper.

Finally, Section 7 contains the proofs of the asymptotic results described in
Section 3, and an appendix provides some technical properties about Legendre
Polynomials expansions.

2 Statement of the Problem

Let us assume that a number of independent experiments can be performed at values
t1, . . . , tn to be chosen of a parameter t in a given interval [a, b ]. For each ti, a random
variable

Yi = x(ti) + σ Zi (1)

is obtained.
Each Yi can be thought as an observation of an unknown continuous function x(t)

at t = ti, with an additive random error σ Zi. The variables Zi are assumed to be i.i.d.
standard normal.

Let us introduce a parametric family

X =
{p−1∑

i=0

βixi : β = (β0, . . . , βp−1)
tr ∈ Rp

}
(2)

of linear combinations of p continuous functions x0, . . . , xp−1. A typical example of
such family are the polynomials of degree less or equal than p − 1.

Our aim is to provide a test of the null hypothesis

H0 : x ∈ X , (3)

consistent for any alternative as the number n of observations goes to infinity and the
set of points of observation become progressively dense (infill asymptotics).

It is well known that even for omnibus tests consistent under any fixed alternative,
one cannot expect to have high power except for a finite number of alternatives (see
Janssen 2000). Hence, it is important to have tests which are sensitive to disturbing
alternatives.

Consequently, we shall design the test to be specially sensitive to the specific
alternatives

x = x′ + β∗x∗, x′ ∈ X , β∗ ∈ R,

for x∗ �∈ X arbitrarily chosen by the user.
We shall assume that the functions x, xj ( j = 0, 1, . . . , p − 1), x∗, are continuous in

[a, b ] and the points of observation are an ordered sample Tn,1 < Tn,2 < · · · < Tn,i <

· · · < Tn,n of a continuous distribution function G in [a, b ].
With no loss of generality we assume in addition that the interval [a, b ] is [0, 1],

G is the uniform distribution in [0, 1], and the functions x0, x1, . . . , xp−1, xp := x∗
are an orthonormal set of functions in L2([0, 1]) with the uniform measure (that is,∫ 1

0 xj(t)xk(t)dt = δj,k, where δj,k = 1{ j=k} denotes Kronecker delta).
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If the observations are placed at random with other known continuous probability
distribution G instead, we apply the probability integral transformation to write x in
Eq. 1 as x(t) = y(G(t)) and let y play the role of x.

We show in Section 5 that for the fixed design model with equally spaced
observation points the tests designed for uniformly distributed observations can be
applied. Likewise, a similar reduction can be made for fixed but not equally spaced
observations.

Then, under H0, the observed variables Yn = (Yn,1, Yn,2, . . . , Yn,n)
tr follow the

linear model

Yn = Xnβ + σ Zn, β ∈ Rp, σ ∈ R+ (4)

where Xn is the matrix with rows (Xn)i,· = x(Tn,i), x = (x0, x1 . . . , xp−1) and Zn is a
random vector of i.i.d. standard normal components.

Weak limits can be established by means of strong convergences, by assuming
that r is a given standard Wiener process on [0, 1], and writing the components
Zn,1, . . . , Zn,p of Zn as

Zn,i = √
n

(
r
(

i
n

)
− r

(
i − 1

n

))
. (5)

This will render the convergence arguments easier.

3 The Goodness-of-Fit Test

A frequently used procedure for testing composite hypotheses for models depending
on unknown parameters is to replace estimators instead of fixed parameter values
in the related simple hypothesis test statistics. The Lilliefors tests for normality or
exponentiality are typical examples of this.

The test we propose in this article follows this general rule:

• we solve the problem for known parameters, which is equivalent to assuming
p = 0 and known variance, by introducing the accumulated residues process rn

and a suitably chosen transformation wn of rn (see Section 3.1), and
• we estimate the parameters, compute the estimated residues, and repeat the

procedure used to test the fit to the model with fixed parameters letting the
estimated residues play the role of the ordinary ones in Section 3.1.

Such procedures usually lead to suitable results, but there is some cost associated:
the replacement of the true parameters by the estimated ones changes the actual and
also the asymptotic distributions of the test statistics.

However, by a suitable selection of the transformation to be used in the definition
of the transformed accumulated residues process, we get the same asymptotic distrib-
ution of the test statistics regardless the parameters are estimated or not. This is one
of the main advantages of our proposal.

In addition, the test is designed for best discrimination of a particular sequence
of alternatives, and the asymptotic distribution of the test statistic under these
alternatives is also distribution free, depending only on the size of the alternatives
as defined after Eq. 18.
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3.1 The Model with Fixed Parameters

Testing Yn,i = x(Tn,i) + σf Zn,i with known regression and variance is equivalent to
testing Eq. 3 for model Eq. 1 with p = 0 in Eq. 2, and known variance σ 2 = σ 2

f , since
Yn,i can be replaced by Yn,i − x(Tn,i).

3.1.1 The Process of Accumulated Residues

In order to test the null hypothesis H0: “Yn,i = σf Zn,i” by means of the observations
Yn,i corresponding to Tn,i, i = 1, 2, . . . , n, let us compute the residues en,i = Yn,i

σf
=

Zn,i and introduce the normalized accumulated residues process

rn(t) = 1√
n

∑
Tn,i≤t

en,i, t ∈ [0, 1]. (6)

Let Fn denote the empirical distribution function of the observation points Tn,i. Our
assumption Eq. 5 implies rn(t) = r(Fn(t)) and hence rn converges uniformly to r a.s.
because of the a.s. uniform continuity of this last process and Glivenko-Cantelli Law.

We then reject H0 when the behaviour of rn differs significantly of that of a Wiener
process.

3.1.2 The Transformed Accumulated Residues Process

Let us introduce a new process wn(t), t ∈ [0, 1], that we call Transformed Accu-
mulated Residues Process (TARP), associated to a normalized score function a ∈
L2([0, 1]), ∫ 1

0 a2(t)dt = 1 and to an isometry T of L2([0, 1]) as follows:

wn(t) =
∫ 1

0
T (a1t)(s)drn(s) = 1√

n

n∑
i=1

T (a1t)(Tn,i)en,i. (7)

A reader familiar with Transformed Empirical Processes (TEPs) requires no
justification for the preceding definition, because of its close relationship with the
definition of a TEP. Further justifications rely on the properties and applications of
the TARPs, described in next sections.

The score function a will be chosen to focus the inference on the interesting
alternatives. The isometry appears to be crucial in further applications, but plays
no role in this simple case, and could be replaced by the identity map or any other
surjective isometry.

In order to describe the asymptotic behaviour of wn under H0, we may write it as
wn(t) = 1√

n

∑n
i=1 T (a1t)(Un,i)Zn, j(i), where {Un,i, i = 1, 2, . . . , n} are the i.i.d. uniform

variables with order statistics (Tn,i : i = 1, 2, . . . , n), and Tn, j(i) = Un,i. The random
functions T (a1t)(Un,i)Zn, j(i) are i.i.d. with expectation zero and covariances

ET (a1s)(Un,i)T (a1t)(Un,i)e2
n, j(i)

=
∫ 1

0
T (a1s)(u)T (a1t)(u)du =

∫ s∧t

0
a2(u)du.

Let V denote the function V(t) = ∫ t
0 a2(u)du (0 ≤ t ≤ 1). By the Central Limit

Theorem, the vectors (wn(s1), . . . , wn(sk)) of evaluations of wn on an arbitrary finite
set of points in [0, 1] converge in law to the evaluations at the same points of a
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V-Wiener process, that is, a centred Gaussian process with independent increments
and variance function V. We shall say in short that wn converges fi.di. to a V-Wiener
process.

Let us notice that the process w(V) defined by means of the Wiener integral

w(V)(t) =
∫ 1

0
T (a1t)dr (8)

is precisely a V-Wiener process. Therefore, the preceding observations can be
summarized by expressing that wn converges fi.di. to w(V).

3.1.3 The Behaviour of rn and wn Under Fixed Alternatives

Given a continuous function x∗ with L2[0, 1]-norm equal one, let us denote X∗
n =

(x∗(Tn,1), . . . , x∗(Tn,n))
tr and assume that the alternative H∗: “Yn = β∗σf X∗

n + σf Zn”
holds.

The residues are en,i = Zn,i + β∗x∗(Tn,i) and therefore rn(t) is the sum of
1√
n

∑
Tn,i≤t Zn,i, that converges in law to a Wiener process and is therefore stochas-

tically bounded, plus
√

nβ∗ times the average 1
n

∑n
i=1 1t(Un,i)x∗(Un,i) that converges

a.s. to
∫

1t(u)x∗(u)du = ∫ t
0 x∗(u)du by the Law of Large Numbers. Since the integral∫ t

0 x∗(u)du does not vanish for all t, this shows that rn is able to distinguish consistently
H0 from H∗, because under H0, the process rn is stochastically bounded, and under
H∗, limn→∞ sup0≤t≤1 |rn(t)| = ∞.

As for the TARP, substituting the actual expression for the residues in Eq. 7
we get

wn(t) = 1√
n

n∑
i=1

T (a1t)(Tn,i)Zi + √
nβ∗

[
1
n

n∑
i=1

T (a1t)(Un,i)x∗(Un,i)

]
.

We have already established that the first term converges fi.di. to w(V) when n
tends to infinity. The Law of Large Numbers implies that the bracket has the limit∫ 1

0 T (a1t)(u)x∗(u)du = ∫ t
0 a(u)T −1x∗

T (u)du, where x∗
T is the projection of x∗ on the

range of T .
Consequently, wn also tends to infinity provided x∗ is not orthogonal to the range

of T and a �= 0 on a subset of [0, 1] of Lebesgue measure 1.

3.1.4 Behaviour of the TARP Under Contiguous Alternatives

Let us assume that for each n the alternative

Hn: “Yn = δσf√
n

X∗
n + σf Zn” (9)

holds.
The arguments used in the previous section show that rn(t) tends to r(t)

+δ
∫ t

0 x∗(u)du, and wn(t) converges fi.di. to w(V)(t) + δ
∫ t

0 a(u)T −1x∗
T (u)du.

The optimum value of a in order to maximize the ratio between the drift

δ
∫ t

0 a(u)T −1x∗
T (u)du = δ

∫ 1
0 1t(u)

T −1x∗
T (u)

a(u)
dV(u) and the standard deviation

√
V(t) of

the random term - and hence make more noticeable the difference between the
behaviour of wn under H0 and under Hn - is â = T −1x∗

T /‖x∗
T ‖.
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This is verified by using the Cauchy-Schwarz inequality to establish the bound

(∫ 1

0
1t(u)

T −1x∗
T (u)

a(u)
dV(u)

)2 1
V(t)

≤
∫ 1

0

(T −1x∗
T (u)

a(u)

)2

dV(u)

=
∫ 1

0
(T −1x∗

T (u))2du = ‖x∗
T ‖2

and verifying that the bound is reached for a = â and t = 1.

3.1.5 Performing the Test: The Rejection Region

We propose the use of a Cramér–von Mises test statistic, in order to decide if the
TARP wn behaves significantly different from a Wiener process: The null hypothesis
is rejected for large values of the quadratic statistic of Watson type (see Watson 1961)

Qn =
∫ 1

0

∫ 1

0

(∫ 1

0
ct1,t2(s)dwn(s)

)2

dV(t1)dV(t2)

constructed from the indicator function

ct1,t2(s) = 1{t1<s<t2} + 1{t2<t1<s} + 1{s<t2<t1}.

This notation has been introduced in Cabaña and Cabaña (2001).
Interchanging the integrals in the definition of Qn, it reduces to the simpler form

Qn =
∫ 1

0

∫ 1

0
γ (V(s), V(t))dwn(s)dwn(t), (10)

where γ (u, v) = (|u − v| − 1
2 )2 + 1

4 , as shown in the above mentioned article.
The computation of our quadratic statistics is discussed in next section, related to

the case of practical interest there considered.

3.1.6 On the Asymptotic Distribution of the Test Statistic Qn

The asymptotic behaviour of Qn is described by the following theorem. Its proof is
deferred until Section 7, as well as some brief comments on Theorems 2 and 3.

Theorem 1

(i) When H0 holds, the statistic Qn defined in Eq. 10 converges in law to

Q =
∫ 1

0

∫ 1

0
γ (V(s), V(t))dw(V)(s)dw(V)(t).

(ii) When the alternatives Eq. 9 hold with x∗ orthogonal to the range of T and
‖x∗‖ = 1, the statistic Qn defined in Eq. 10 converges in law to

Q + 2δ

∫ 1

0

∫ 1

0
γ (V(s), V(t))dw(V)(s)a(t)T −1x∗(t)dt

+ δ2
∫ 1

0

∫ 1

0
γ (V(s), V(t))a(s)T −1x∗(s)a(t)T −1x∗(t)dsdt. (11)



Methodol Comput Appl Probab

(iii) Let w be a standard Wiener process in [0, 1] such that w(V)(t) = w(V(t)),
and let c0 = 1, and, for each ν = 1, 2, . . . , cν(u) = √

2 cos 2πνu and sν(u) =√
2 sin 2πνu.

Then the random variables

Cν =
∫ 1

0
cν(t)dw(t), ν = 0, 1, 2, . . .

Sν =
∫ 1

0
sν(t)dw(t), ν = 1, 2, . . . ,

are i.i.d. standard normal, and

Q =
∫ 1

0

∫ 1

0
γ (u, u)dw(u)dw(v) = C2

0

3
+ 1

2

∞∑
ν=1

C2
ν + S2

ν

π2ν2 . (12)

(iv) If the test is focused on the alternatives Eq. 9, and hence a = T −1x∗, then Eq. 11
reduces to

Q + 2
3
δC0 + δ2

3
= (C0 + δ)2

3
+ 1

2

∞∑
ν=1

C2
ν + S2

ν

π2ν2 .

3.2 Goodness of Fit to the Model with Unknown Parameters

3.2.1 The Accumulated Estimated Residues Process and its Limiting Law Under H0

Consider the problem of testing H0:“the model Yn = Xnβ + σ Zn for suitable β ∈ Rp

and σ ∈ R+ fits the data”.
We estimate β as usual by

β̂n = (Xtr
n Xn)

−1 Xtr
n Yn,

and σ 2 by the sum of squares of successive differences

σ̂ 2
n = 1

2n − 2

n∑
i=2

(Yn,i − Yn,i−1)
2 (13)

because this estimator is less affected by departures from the regression specified
by H0 than the widely used 1

n‖Yn − Xnβ̂n‖2. In fact, as n → ∞, max{|Tn,i − Tn,i−1| :
i = 2, 3, . . . , n} → 0 a.s. and this implies σ̂ 2

n → σ 2 a.s., provided Eq. 1 holds with a
continuous regression function x, no matter if x suits the null hypothesis or not.

Then compute the vector ên = (ên,1, . . . , ên,n)
tr of estimated residues

ên = Yn − Xnβ̂n

σ̂n
= HnYn

σ̂n
, Hn = I − Xn(Xtr

n Xn)
−1 Xtr

n . (14)

Under H0, Eq. 14 reduces to Hn Zn
σ̂n/σ

, asymptotically equivalent to Hn Zn, which does
not depend on the unknown parameters β and σ .

The accumulated estimated residues process is defined by replacing en,i by ên,i in
Eq. 6:

r̂n(t) = 1√
n

∑
Tn,i≤t

ên,i, 0 ≤ t ≤ 1.
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When n tends to infinity,

(i) 1√
n

∑
Tn,i≤t Zn,i = r(Fn(t)) → r(t), as noticed in Section 3.1,

(ii) 1√
n Xtr

n Zn = 1√
n

∑n
i=1(Xn)i,· Zn,i = ∑n

i=1 xtr(Tn,i)(r( i
n ) − r( i−1

n )) converges in

probability to
∫ 1

0 xtr(s)dr(s),
(iii) 1

n Xtr
n Xn → ∫ 1

0 xtr(t)x(t)dt a.s., by the Law of Large Numbers; the limit equals
the identity matrix I, because the functions xi are chosen to be orthonormal,
and

(iv) 1
n

∑
Tn,i≤t(Xn)i,· = 1

n

∑
Un,i≤t x(Un,i) → ∫ t

0 x(s)ds a.s. also by the Law of Large
Numbers.

Therefore, when H0 holds,

r̂n(t) = 1√
n

∑
Tn,i≤t

(Hn Zn)i = 1√
n

∑
Tn,i≤t

Zn,i − 1
n

∑
Tn,i≤t

(Xn)i,·
(

1
n

Xtr
n Xn

)−1 1√
n

Xtr
n Zn

behaves asymptotically as

ρ(t)=r(t) −
∫ t

0
x(s)ds

∫ 1

0
xtr(s)dr(s)=r(t)−

p−1∑
j=0

∫ t

0
x j(s)ds

∫ 1

0
x j(s)dr(s). (15)

On the other hand, σ̂n/σ → 1 a.s., so that the accumulated estimated residues
process has the asymptotic law of Eq. 15.

3.2.2 Transforming the Accumulated Estimated Residues Process

The Transformed Accumulated Estimated Residues Process (TAERP) is defined for
a given isometry T and a score function a such that

∫ 1
0 a2(s)ds = 1, as

ŵn(t) =
∫ 1

0
T (a1t)(s)dr̂n(s) = 1√

n

n∑
i=1

T (a1t)(Tn,i)ên,i. (16)

From Eq. 15 follows that the finite dimensional distributions of the TAERP are
asymptotically the ones of

∫ 1

0
T (a1t)(s)dρ(s)=w(V)(t)−

p−1∑
j=0

∫ 1

0
T (a1t)(s)x j(s)ds

∫ 1

0
x j(s)dr(s)

when the null hypothesis H0 holds.
In this case, as advanced at the beginning of this section, an adequate selection of

the isometry becomes important:

Theorem 2 When the range of T is orthogonal to x0, x1, . . . , xp−1, the asymptotic finite
dimensional distributions of wn are those of w(V), defined by Eq. 8, that is, the same
limiting distributions obtained when parameters are known, instead of been estimated.

Remark 1 We shall therefore choose T with range equal to the orthogonal comple-
ment of x0, x1, . . . , xp−1.
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3.2.3 Consistency of the Test Under Fixed Alternatives

Suppose now that the observations follow the alternative model

Yn = Xnβ + X ′
nβp + σ Zn, βp �= 0, (17)

for X ′
n = (xp(Tn,1), xp(Tn,2), . . . , xp(Tn,n))

tr where xp is assumed with no loss of
generality orthogonal to x0, x1, . . . , xp−1, and with norm one.

Under this model, ên = HnYn
σ̂n/σ

= X ′
nβp/σ+Hn Zn

σ̂n/σ
so that r̂n(t) → ∞ as n → ∞ for

each t such that
∫ t

0 xp(s)ds �= 0, because when this holds 1√
n

∑
Tn,i≤t βpx(Tn,i) =√

n(βp
∫ t

0 xp(s)ds + o(1)) diverges. The same happens with ŵn because xp is in the
range of T .

Remark 2 As a consequence, any test that rejects H0 when ŵn is large, is consistent.

3.2.4 Focusing the Power

Suppose now that we wish to focus the test to detect local alternatives including the
function xp with the properties specified in the previous section.

A contiguous sequence of such alternatives can be written as

Hn(δ, xp) : Yn = Xnβ + X ′
n

δσ√
n

+ σ Zn. (18)

We call δ and xp the size and direction of the sequence of alternatives.

Under the alternative model Eq. 18, ên = HnYn
σ̂n

= X ′
nδ/

√
n+Hn Zn

σ̂n/σ
so that r̂n(t) =

σ
σn

( 1√
n

∑
Tn,i≤t(Hn Zn)i + δ

n

∑
Tn,i≤t xp(Tn,i)

) → ρ(t) + δ
∫ t

0 xp(s)ds and the fi.di. limit of
ŵn(t) is∫ 1

0
T (a1t)(s)dρ(s) + δ

∫ 1

0
T (a1t)(s)xp(s)ds = w(V)(t) + δ

∫ t

0
a(s)T −1xp(s)ds.

Remark 3 As in Section 3.1.2, we choose the score function a in order to maximize
the rate between the drift δ

∫ t
0 a(s)T −1xp(s)ds and the standard deviation

√
V(t) of

the random term, thus obtaining â = T −1xp.

Remark 4 A very simple way to construct the test of fit to the model with columns
given by x0, x1, . . . , xp−1, focused on xp is to complete (x j) j=0,1,...,p in order to get
an orthonormal basis (x j) j=0,1,2,... of L2(0, 1) and define T : x j �→ x j+p. This leads to
â = x0.

3.3 Asymptotic Critical Values and Power of the Tests with Optimum Scores

Theorem 3 The limiting distribution of Qn under Hn(δ, xp) is that of

∫ 1

0

∫ 1

0
γ (u, v)(dw(u) + δdu)(dw(u) + δdv) = Q + 2

3δw(1) + δ2

3 ,

with Q = ∫ 1
0

∫ 1
0 γ (u, v)dw(u)dw(u).
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Remark 5 Consequently an approximate critical region of level α for large n is Qn >

q(α), where q(α) solves P{Q > q(α)} = α. The resulting asymptotic power is


Q(δ) = P
{

Q + 2
3
δw(1) + δ2

3
> q(α)

}
.

In our experience, the use of asymptotic critical levels for samples of moderate
size leads to actual levels of significance smaller that the level α of design. The
undesirable consequence is that the power obtained is less than the asymptotic one.
This can be avoided by computing the critical value for the required n by means of
a simulation.

Table 1 shows the asymptotic power of the test with rejection regions Qn > q(α),
for α = 5% and 0 ≤ δ ≤ 5, corresponding to alternatives Hn(δ, xp) and optimum
score function â = T −1xp. As a reference, the values of 
0(δ) = �(�−1(.025) + δ) +
�(�−10.025) − δ) are also included in the table. The function 
0(δ) is the asymptotic
power of the test with rejection region |wn(1)| > �−1(.975), which is equivalent to the
two-sided test based on the likelihood ratio statistic. These tests are not consistent,
and it may be noticed that the loss in replacing 
0 by the asymptotic power of
the consistent test presented in this article, is not significant (see the last column
in Table 1).

Remark 6 It is worth noticing that with the optimum selection of the score function,
the asymptotic distribution of Qn under the alternatives to which the test is focused
is distribution free, that is, does not depend on the shape x∗ of the alternative.

Remark 7 When the test is constructed with the score a and the alternative is actually
in the direction of some unitary vector x in the range of T , then the asymptotic laws
of ŵn and Qn have biases δ

∫ t
0 a(s)T −1x(s)ds and δ2

∫ 1
0

∫ 1
0 γ (V(s), V(t))x(s)x(t)dsdt,

respectively.

Table 1 Asymptotic powers of the tests with rejection regions Qn > q(.05) (
(δ)) and |wn(1)| >

�−1(.975) (
0(δ)), and relative difference in percent of both powers

δ 
(δ) 
0(δ) 100 
0(δ)−
(δ)

0(δ)

δ 
(δ) 
0(δ) 100 
0(δ)−
(δ)

0(δ)

0.0 0.050 0.050 0.00 2.6 0.737 0.739 0.32
0.2 0.055 0.055 0.03 2.8 0.797 0.800 0.28
0.4 0.068 0.069 0.13 3.0 0.849 0.851 0.24
0.6 0.092 0.092 0.24 3.2 0.891 0.893 0.19
0.8 0.126 0.126 0.32 3.4 0.924 0.925 0.15
1.0 0.169 0.170 0.38 3.6 0.948 0.950 0.12
1.2 0.223 0.224 0.42 3.8 0.966 0.967 0.09
1.4 0.287 0.288 0.44 4.0 0.979 0.979 0.06
1.6 0.358 0.360 0.45 4.2 0.987 0.987 0.04
1.8 0.435 0.437 0.44 4.4 0.992 0.993 0.03
2.0 0.514 0.516 0.42 4.6 0.996 0.996 0.02
2.2 0.592 0.595 0.40 4.8 0.998 0.998 0.01
2.4 0.668 0.670 0.36 5.0 0.999 0.999 0.01
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4 Computing the Test Statistic Qn by Means of Fourier Expansions

Let us assume that x0, x1, . . . , xp−1, xp, . . . is a complete orthonormal set of functions
in L2(0, 1), and obtain the Fourier expansion of

ŵn(t) =
∫ 1

0
T (a1t)(s)dr̂n(s) = 1√

n

n∑
i=1

T (a1t)(Tn,i)ên,i,

with a = x0 as suggested in Remark 4.
The function x0(s)1t(s) has the expansion

∑∞
j=0

∫ t
0 x0(r)xj(r)drxj(s), hence

T (x01t)(s) = ∑∞
j=0

∫ t
0 x0(r)xj(r)drx j+p(s). Therefore

ŵn(t) =
∞∑
j=0

∫ t

0
x0(r)xj(r)drε̄n, j+p,

with

ε̄n, j = 1√
n

n∑
i=1

xj(Tn,i)ên,i, (19)

and hence dŵn(t) = ∑∞
j=0 x0(t)xj(t)ε̄n, j+pdt, so that

Qn =
∫ 1

0

∫ 1

0
γ (V(s), V(t))dwn(s)dwn(t) =

∑
j,k

c j,kε̄n, j+pε̄n,k+p, (20)

is written as a quadratic form in the infinite vector of weighted means of residues
Eq. 19, with coefficients

c j,k =
∫ 1

0

∫ 1

0
γ (V(s), V(t))x0(s)x0(t)xj(s)xk(t)ds dt (21)

that only depend on the orthonormal basis and the score function a.
In general, the coefficients of the quadratic form can be obtained by numerical

computation. For practical purposes we replace Qn by a finite approximation

Q

n =


∑
j=0


∑
k=0

c j,kε̄n, j+pε̄n,k+p

corresponding to a moderate value of 
. The choice of 
 obeys only to numerical and
not statistical reasons.

5 Goodness of Fit to a Fixed Design Model

We choose now the points of observation tn,i equally spaced over the interval [0, 1],
namely tn,i = i

n+1 , i = 1, 2, . . . , n.
The random matrix Xn on Eq. 4 is then replaced by the deterministic matrix X∗

n
with rows

(X∗
n)i,· = (x0(tn,i), . . . , xp−1(tn,i)).
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In this case our statistics Q

n = ∑


j=0
∑


k=0 c j,kε̄n, j+pε̄n,k+p computed from the
empirical data through the linear combinations of residues

ε̄n, j = 1√
n

n∑
i=1

x j(Tn,i)en,i, when the parameters are given, or

ε̄n, j = 1√
n

n∑
i=1

x j(Tn,i)ên,i, when the parameters are estimated,

must be replaced by Q
,∗
n = ∑


j=0
∑


k=0 c j,kε̄
∗
n, j+pε̄

∗
n,k+p where

ε̄∗
n, j = 1√

n

n∑
i=1

xj(tn,i)en,i, or ε̄∗
n, j = 1√

n

n∑
i=1

xj(tn,i)ê∗
n,i,

respectively. Let us notice that the new estimated residues differ from the old ones,
even if the errors are assumed to be the same, because they are obtained from Eq. 14
with X∗

n substituted for Xn.
We treat both cases separately, with the purpose of establishing that for each


, plim(Q
,∗
n − Q


n) = 0, which ensures that the limiting law of both sequences of
statistics is the same.

5.1 The Model with Known Parameters

As in Section 3.1, the residues en,i = Zn,i = √
n
(
r( i

n ) − r
( i−1

n

))
coincide with the

standardized errors. We introduce now the notations ξn, j for the sectionally constant
random function that has the value xj(Tn,i) on

( i−1
n , i

n

)
, and ξ ∗

n, j for the sectionally
constant function with the value xj(tn,i) on

( i−1
n , i

n

)
.

Then

ε̄∗
n, j − ε̄n, j =

n∑
i=1

(xj(tn,i) − xj(Tn,i))

(
r
(

i
n

)
− r

(
i − 1

n

))

can be thought as the stochastic integral of ξ ∗
n, j − ξn, j with respect to dr. That integral

has expectation zero and variance E
∫ 1

0 (ξn, j∗(t) − ξn, j(t))2dt = 1
n

∑n
i=1 E(xj(tn,i) −

xj(Tn,i))
2 → 0, so that plim(ε̄∗

n, j − ε̄n, j)=0 and hence, for each 
, plim(Q
,∗
n − Q


n)=0.

5.2 The Model with Unknown Parameters

From the estimated residues

ê∗
n = Yn − X∗

nβ̂
∗
n

σ̂ ∗
n

= H∗
nYn

σ̂ ∗
n

= H∗
n Zn

σ̂ ∗
n /σ

, H∗
n = I − X∗

n(X∗
n

tr X∗
n)

−1 X∗
n

tr
,

we compute

ε̄∗
n, j = 1√

n

n∑
i=1

xj(tn,i)ê∗
n,i

= 1√
n

n∑
i=1

xj(tn,i)

σ̂ ∗
n /σ

(Zn,i − (X∗
n)i(X∗

n
tr X∗

n)
−1 X∗

n
tr Zn).



Methodol Comput Appl Probab

With the notation ξ ∗
n = (ξ ∗

n,0, ξ
∗
n,1, . . . , ξ

∗
n,p−1), ε̄∗

n, j is written as

σ

σ̂ ∗
n

(∫ 1

0
ξ ∗

j dr −
∫ 1

0
ξ ∗

n, j(t)ξ
∗
n(t)dt

(∫ 1

0
(ξ ∗

n(t))
trξ ∗

n(t)dt
)−1 ∫ 1

0
(ξ ∗

n(t))
trdr(t)

)
.

Since the continuity of the functions xj implies that

(i) plimn→∞
∫ 1

0 ξ ∗
n, jdr = ∫ 1

0 xj(t)dr(t),

(ii) limn→∞
∫ 1

0 ξ ∗
n, j(t)ξ

∗
n(t)dt = (δ0, j, δ1, j, . . . , δp−1, j) = 0 for j ≥ p,

(iii) limn→∞
∫ 1

0 (ξ ∗
n(t))

trξ ∗
n(t)dt = I,

(iv) plimn→∞
∫ 1

0 (ξ ∗
n(t))

trdr(t) = ∫ 1
0 (x(t)tr)dr(t)

and σ̂ ∗ given by Eq. 13 is likewise a consistent estimator of σ , then plimε̄∗
n, j =∫ 1

0 xj(t)dr(t) for j ≥ p.
On the other hand, as seen in Section 3.2.1 with arguments based on the properties

of the stochastic integrals and the Law of Large Numbers, similar limits can be
obtained for the formulas based on random matrices Xn and functions ξn, and
therefore the limit in probability of ε̄n, j for j ≥ p is the same Wiener integral∫ 1

0 xj(t)dr(t).
This leads us to conclude again that plim(Q
,∗

n − Q

n) = 0.

6 An Example: Polynomial Regression

We assume that each xj is a polynomial of degree j. Since we impose that these
functions constitute an orthonormal system, they are determined up to its sign to be
the so called modified Legendre Polynomials.

6.1 The Legendre Polynomials

Consider the Hilbert space L2((0, 1), dλ), where λ is the Lebesgue measure. The
sequence of polynomials pn(t), n = 0, 1, . . . with degree equal to the index, ortho-
normal in L2((0, 1), dλ), is obtained by a change of variable and normalization from
the Legendre Polynomials Pn, given by

Pn(x) = 1
2nn!

dn

dxn
(x2 − 1)n.

The sequence Pn is orthogonal in L2((−1, 1), λ) and

〈Pm, Pn〉 =
∫ 1

−1
Pm(s)Pn(s)ds = 2δm,n

2n + 1
, (22)

with δm,n = 1{m=n}.
From Eq. 22, it follows that pn(t) = √

2n + 1Pn(2t − 1) are the required orthonor-
mal polynomials in L2([0, 1], dλ). See for instance, Sansone (1959), Chapter III.
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6.2 Testing if a Polynomial Regression of Order p − 1 Fits the Data

In order to test H0 with X given by Eq. 2, xj = pj, focusing the power in the
alternative of a polynomial model with degree p, we choose a = x0 = 1, so that
V(t) = t.

A general expression for the coefficients

c j,k =
∫ 1

0

∫ 1

0
γ (s, t)pj(s)pk(t)ds dt (23)

is available (see Section 8, Theorem 4): they are all zero, except for c0,0 = 1/3, c1,1 =
1/30, and, for j ≥ 2, c j, j = 1

(2 j−1)(2 j+3)
, c j−1, j+1 = c j+1, j−1 = − 1

4 j+2
√

c j, j.
Their values corresponding to small j and k are indicated in Table 2.

6.3 Empirical Determination of the Power in the Particular Case p = 2,
with Equally Spaced Observations

Let us assume now that we wish to test the null hypothesis that a linear regression
fits well the observations Y tr

n = (Y1, Y2, . . . , Yn), and consider the alternative models

Yn = (x0, x1)

(
β0

β1

)
+ δσ√

n
xh + σ Zn,

xh =
(

ph

(
1

n + 1

)
, ph

(
2

n + 1

)
, . . . , ph

(
n

n + 1

))tr

(24)

for h = 2, 3, 4, . . .

The power of the test based on Q
,∗
n for different alternatives depends only on δ,

h, 
 and n, but not on the parameters β0, β1, σ . Therefore, an empirical study of the
powers can be performed by simulating samples of the model with these parameters
chosen arbitrarily, for instance, β0 = β1 = 0, σ = 1.

We have generated 20.000 samples following the null hypothesis δ = 0 in order to
compute the critical value of Q
,∗

n for n = 50 and 
 = 8, 20. Then we have performed
the test focused on the alternative corresponding to h = 2, for 5.000 samples of the
same size, generated with δ = 0 : .25 : 10 and h = 2, 3, 4, 5, 6.

The resulting powers are in Table 3. The change in 
 makes no important
differences. The powers corresponding to 
 = 20 are indicated graphically in Fig. 1.

Table 2 Values of c j,k for j, k = 0, 1, . . . , 7

j k=0 1 2 3 4 5 6 7

0 1
3 0 0 0 0 0 0 0

1 0 1
30 0 − 1

10
√

21
0 0 0 0

2 0 0 1
21 0 − 1

42
√

5
0 0 0

3 0 − 1
10

√
21

0 1
45 0 − 1

18
√

77
0 0

4 0 0 − 1
42

√
5

0 1
77 0 − 1

66
√

13
0

5 0 0 0 − 1
18

√
77

0 1
117 0 − 1

26
√

165
6 0 0 0 0 − 1

66
√

13
0 1

165 0

7 0 0 0 0 0 − 1
26

√
165

0 1
221
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Table 3 Powers (rejections in 1000 trials based on 10000 replications) of the test with level 5% for
linear regression focused on the addition of a quadratic term, for samples of the alternative model
Eq. 24 with 
 = 8 and 20, and h = 2, 3, 4, 5, 6

δ 
 = 8 
 = 20

h = 2 3 4 5 6 h = 2 3 4 5 6

Sample size n = 50
0 50 50 50 50 50 50 50 50 50 50
0.5 74 52 52 51 53 76 51 52 50 50
1 149 55 58 54 56 154 54 56 53 53
1.5 272 64 69 58 61 286 61 66 56 58
2 443 75 83 65 68 464 71 81 63 65
2.5 626 92 108 73 79 648 86 105 73 76
3 780 117 146 88 91 798 111 145 87 88
3.5 893 153 198 107 107 902 145 197 107 107
4 954 203 274 132 129 960 194 269 130 127
4.5 984 272 362 173 159 988 259 362 165 152
5 996 356 475 218 191 996 346 467 214 183
5.5 999 455 594 276 230 999 450 585 272 223
6 1000 566 708 350 279 1000 557 703 343 268
6.5 1000 673 803 432 335 1000 666 799 431 321
7 1000 769 879 520 394 1000 765 877 519 380
7.5 1000 849 937 611 460 1000 846 933 609 446
8 1000 907 972 700 528 1000 905 968 696 518
8.5 1000 947 988 781 599 1000 949 987 777 591
9 1000 970 995 845 668 1000 974 993 848 661
9.5 1000 986 998 898 736 1000 988 998 900 726
10 1000 992 999 936 795 1000 995 999 936 785

Sample size n = 200

0 50 50 50 50 50 50 50 50 50 50
0.5 83 51 51 51 51 84 51 52 51 51
1 178 53 55 53 51 163 54 54 55 51
1.5 327 59 65 56 54 313 60 63 58 54
2 511 67 78 61 56 494 67 77 63 58
2.5 696 79 103 69 60 687 79 98 71 62
3 843 98 143 79 64 837 102 136 82 66
3.5 935 127 204 93 69 929 134 196 100 73
4 978 172 293 111 76 975 181 283 127 82
4.5 994 240 416 143 86 993 251 398 166 93
5 999 327 561 184 100 999 339 539 213 109
5.5 1000 439 701 238 118 1000 452 685 278 130
6 1000 565 824 310 143 1000 579 806 360 158
6.5 1000 692 912 402 173 1000 702 899 457 193
7 1000 800 960 510 212 1000 811 955 563 238
7.5 1000 885 985 616 268 1000 892 984 668 297
8 1000 941 995 719 332 1000 945 994 761 363
8.5 1000 973 999 812 411 1000 975 998 842 441
9 1000 990 1000 886 500 1000 991 1000 907 536
9.5 1000 997 1000 933 596 1000 996 1000 946 633
10 1000 999 1000 965 688 1000 998 1000 974 727
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Note: Fig. 1 exhibits a power for the alternative h = 3 smaller than the one for
h = 4. This apparent anomaly is explained because the relative asymptotic incre-

ments
∫ 1

0 γ (u−v)x2
h−2(u)du∫ 1

0 γ (u−v)x2
0(u)du

= 3
∫ 1

0 γ (u − v)x2
h−2(u)du (see the final remark in Section 3.3)

in the expectation of the statistic Qn for a given δ and h = 3, 4, 5, 6 with respect to
the increment for the same δ and h = 2 are respectively 10.0%, 14.2%, 6.7% and
3.9%, and hence, when the test is tuned to detect the contamination by a polynomial
of order 2, it becomes easier to detect the contamination by a polynomial of degree
four, than by a polynomial of degree three.

6.4 Embedding Particular Cases into the General Scheme. An Example

Let us apply the general scheme of Section 3.2.4, Remark 2 to an example of Stute,
Thies and Zhu, taken from Stute et al. (1998):

The null hypothesis model is Yn,i = θTn,i + σ Zn,i where Tn,i is the i-th order
statistic of a sample of size n of the uniform distribution on (0, 1) and Zn,i,

i = 1, 2, . . . , n are i.i.d. Normal(0,1).
Our test shall be focused on the alternatives Yn,i = θTn,i + aT2

n,i + σ Zi. For

that purpose we introduce the orthonormal system x0(t) = √
3t =

√
3

2 p0(t) + 1
2 p1(t),

x1(t) = √
5(4t2 − 3t) = 2

3 p2(t) +
√

5
2
√

3
p1(t) −

√
5

6 p0(t), x2(t) =
√

5√
3

p2(t) − 1√
3

p1(t)+
1
3 p0(t), xi = pi (i = 3, 4, 5, . . . ). The ingredients needed in order to compute the
statistics statistic given by Eqs. 19, 20 and 21 are: The isometry T equal to the
shift T xi = xi+1, the score a = T −1x1 = x0 and consequently the function V(t) =∫ t

0 a2(s)ds = t3.
The coefficients Eq. 21 now are

c j,k = 3
∫ 1

0

∫ 1

0
γ (s3, t3)stx j(s)xk(t)ds dt

and, since sx j(s) and txk(t) are polynomials, then c j,k can be readily obtained after
computing

bh,i =
∫ 1

0

∫ 1

0
γ (s3, t3)shtidsdt =

∫ 1

0

∫ 1

0

[
(s3 − t3)2 − |s3 − t3| + 1

2

]
shtidsdt

−2
∫ 1

0

(∫ s

0
(s3 − t3)tidt

)
shds +

∫ 1

0

(∫ 1

0
(s3 − t3)tidt

)
shds

= 1
(h + 7)(i + 1)

+ 1
(h + 1)(i + 7)

− 2
(h + 4)(i + 4)

+ 1
2(h + 1)(i + 1)

−3
h2 + 5h + i2 + 5i + 8

(h + 1)(h + 4)(i + 1)(i + 4)(h + i + 5)
.

In fact, let B, C denote the (infinite) matrices with entries bh,i, ch,i (h, i = 0,

1, 2, . . . ), respectively, P the lower diagonal matrix with entries ph,i, h = 0, 1, 2, . . . ,
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� Fig. 1 Powers of the test of fit for linear regression, focused on the addition of a quadratic term,
for 
 = 20 and alternatives adding Legendre polynomials of degrees 2 (asterisks), 3 (triangles),
4 (squares), 5 (plus signs) and 6 (multiplication signs). The dotted lines indicate the asymptotic powers

i = 0, . . . , h equal to the coefficients of the Legendre polynomials ph(t) = ∑h
i=0 ph,iti,

r(t) the vector of powers r(t) = (1, t, t2.t3, . . . )tr and

M0 =
⎛
⎝

√
3/2 1/2 0

−√
5/6

√
5/(2

√
3) 2/3

1/3 −1/
√

3
√

5/
√

3

⎞
⎠ .

With these notations, the vector of Legendre polynomials can be computed as

p(t) = (p0(t), p1(t), p2(t), p3(t), . . . )tr = Pr(t)

and the vector of functions of the orthonormal system adapted to our model is x(t) =
(x0(t), x1(t), x2(t), x3(t), . . . )tr, given by

x(t) = M p(t), with M =
(

M0 0
0 I

)

so that

C = 3
∫ 1

0

∫ 1

0
γ (s3, t3)stx(s)(x(t))trdsdt = 3MPI1 BItr

1 Ptr Mtr.

Our statistic Qn is the quadratic form with matrix C evaluated in the vec-
tor ε̄ of components (ε̄1, ε̄2, . . . )

tr given by Eq. 19. Let η̄ = (η̄0, η̄1, η̄2, . . . )
tr, η̄j =

1√
n

∑n
i=1 pj(Tn,i)ên,i, so that ε̄ = I1 Mη̄ and hence Qn = η̄trC̃η̄ with

C̃ = 3Mtr Itr
1 MPI1 BItr

1 Ptr Mtr I1 M. (25)

The finite quadratic form Q(
)
n involving (ε̄1, ε̄2, . . . , ε
+1)

tr is obtained by replacing
the infinite matrices in Eq. 25 by the square 
 + 2-matrices with rows and columns
from 0 to 
 + 1, because of the particular (essentially upper-diagonal) shape of the
factors at the right-hand side of B.

The empirical powers based on 10.000 replications are indicated in Table 4. The
powers reported in Stute et al. (1998) for the test of Cramér - von Mises type

Table 4 Empirical powers of
our test based on Q(
)

n and the
test based on W̃2

n proposed in
Stute et al. (1998) Section 2
for the null hypothesis
a = 0, based on samples
of size n = 200 of
Yn,i = 5Tn,i + aT2

n,i+
σ Zi (a = 0, 1,; σ 2 = 1, 2, 3)

a σ 2 Q(8)
n -test W̃2

n-test

α = 5% α = 1% α = 5% α = 1%

0 1 5.11 1.05 5.7 1.5
2 4.92 1.01 5.2 0.8
3 4.97 0.94 4.9 0.8

1 1 34.45 14.97 30.0 12.7
2 19.8 6.29 19.8 7.5
3 14.72 4.25 15.4 4.5

2 1 87.61 68.12 81.8 58.8
2 60.41 33.08 52.2 28.8
3 43.79 21.16 39.0 18.6
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proposed in that article, are also indicated, for the sake of comparison. Since our
test is tunned to the alternatives considered, it is not surprising that the powers of the
Q(
)

n -test be larger than the powers of the W̃2
n-test.

7 Proofs of the Statements on the Asymptotic Laws of the Test Statistics

7.1 On Theorem 1

In order to prove Theorem 1 we establish first the following lemmas.

Lemma 1 Let g denote a differentiable function in L2
V = L2((0, 1), dV). Then the

integrals
∫ 1

0 g(t)dwn(t) and
∫ 1

0 g(t)dw(V)(t) have expectation zero and variance ‖g‖2
V =∫ 1

0 g2(t)a2(t)dt.

By applying integration by parts, the definition the TARP wn in Eq. 7, then
interchanging the integrals in t and u and finally interchanging the integral in t and
the application of the isometry T , we get∫ 1

0
g(t)dwn(t) = g(1)wn(1) −

∫ 1

0
wn(t)ġ(t)dt

= g(1)wn(1) −
∫ 1

0

∫ 1

0
T (a1t)(u)drn(u)ġ(t)dt

= g(1)wn(1) −
∫ 1

0

(∫ 1

0
T (a1t)(u)ġ(t)dt

)
drn(u)

= g(1)wn(1) −
∫ 1

0
T (a(·)(g(1) − g(·)))(u)drn(u) =

∫ 1

0
T (ag)(u)drn(u)

= 1√
n

n∑
i=1

T (ag)(Tn,i)en,i = 1√
n

n∑
i=1

T (ag)(Un,i)en, j(i)

From the last expression we readily obtain E
∫ 1

0 g(s)dwn(s) = 0 and
E(

∫ 1
0 g(s)dwn(s))2 = ∫ 1

0 (T (ag))2du = ∫ 1
0 g2dV = ‖g‖2

V .
The same arguments apply to the integral with respect to w(V), and lead to∫ 1

0
g(t)dw(V)(t) =

∫ 1

0
T (ag)(u)dr(u).

This Wiener integral is a centred Gaussian variable with variance ‖T (ag)‖2 =
‖ag‖2 = ‖g‖2

V as stated.

Corollary 1.1 For each n, the mappings g �→ ∫ 1
0 g(V(t))dwn(t) and g �→∫ 1

0 g(V(t))dw(V)(t) are isometries between L2([0, 1], dλ) and centred random
variables in L2(�, dP).

The statement follows from the Lemma because differentiable functions are dense
in L2

V .
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Lemma 2 For g ∈ L2
V,

plimn→∞

∫ 1

0
g(t)dwn(t) =

∫ 1

0
g(t)dw(V)(t).

It suffices to verify the statement for g continuously differentiable. In that case,
after the computations made in the proof of Lemma 1, the required conclusion reads

plimn→∞
1√
n

n∑
i=1

T (ag)(Tn,i)en,i =
∫ 1

0
T (ag)(t)dr(t). (26)

Since the function T (ag) is in L2, given an arbitrary positive ε, we can write
T (ag) = G + �, with G bounded and continuous, and ‖�‖2 < ε.

The sectionally constant approximations to G and � defined by Gn(t) =
G(Tn,[nt]+1) and �n(t) = �(Tn,[nt]+1) are also introduced, so that the left-hand term
in Eq. 26 can be expressed by means of

∫ 1
0 (Gn(t) + �n(t))dr(t).

As in the proof of Lemma 1 we compute

E
(∫ 1

0
�n(t)dr(t)

)2

= E

(
1√
n

n∑
i=1

�(Un,i)en, j(i)

)2

= ‖�‖2

and

E
(∫ 1

0
�(t)dr(t)

)2

= ‖�‖2.

By applying the inequality (a + b + c)2 ≤ 3a2 + 3b 2 + 3c2, we derive the estimate:

E

(
1√
n

n∑
i=1

T (ag)(Tn,i)en,i −
∫ 1

0
T (ag)(t)dr(t)

)2

≤ 3E
(∫ 1

0
(Gn(t) − G(t))dr(t)

)2

+ 3E

(
1√
n

n∑
i=1

�(Tn,i)en,i

)2

+ 3E
(∫ 1

0
�(t)dr(t)

)2

≤ 3
∫ 1

0
E(Gn(t) − G(t))2dt + 6ε → 6ε as n → ∞

because of the continuity of G and the convergence to zero of the sequence
supi=1,2,...,n |Tn,i − i/(n + 1)|.

This bound for arbitrary ε establishes the required convergence in probability.

Lemma 3 The integral operator f �→∫ 1
0 γ (·, v) f (v)dv on L2([0, 1], dλ) with kernel γ

admits the orthonormal system of eigenfunctions

c0 = 1, cν(u) = √
2 cos 2πνu, sν(u) = √

2 sin 2πνu, (ν = 1, 2, . . . )

with eigenvalues 1
3 , 1

2(πν)2 ,
1

2(πν)2 .
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Consequently, the diagonalization

γ (u, v) = 1
3

+ 1
2

∞∑
ν=1

cν(u)cν(v) + sν(u)sν(v)

(πν)2 (27)

holds.

The Fourier coefficients of the function g(t) = (|t| − 1
2 )2 + 1

4 on (−1, 1) with
the Lebesgue Measure λ, with respect to the orthonormal system 1√

2
, cos πνt,

sin πνt, ν = 1, 2, 3, . . . are 1√
2

∫ 1
−1 g(t)dt =

√
2

3 ,
∫ 1
−1 g(t) cos πνtdt = 0 for ν odd,∫ 1

−1 g(t) cos 2πνtdt = 1
(πν)2 for ν = 1, 2, . . . , and

∫ 1
−1 g(t) sin πνtdt = 0 for all ν.

Consequently

γ (u, v) = g(u − v) = 1
3

+
∞∑

ν=1

1
(πν)2 cos 2πν(u − v)

and the statement follows. ��

Proof of Theorem 1 The diagonalization in Lemma 3 implies that Qn can be written
as the random series expansion with positive terms

1
3
w2

n(1) + 1
2

∞∑
ν=1

1
(πν)2

[(∫ 1

0
cν(V(t))dwn(t)

)2

+
(∫ 1

0
sν(V(t))dwn(t)

)2]
.

The partial sums of that series converge in probability to Qn because the expec-
tation of each squared integral is one and hence the expectation of the remainder
1
2

∑∞
ν=m+1

1
π2ν2

[( ∫ 1
0 cν ◦ Vdwn

)2 + ( ∫ 1
0 sν ◦ Vdwn

)2] is
∑∞

ν=m+1
1

π2ν2 and tends to zero
uniformly in n as m goes to infinity. A similar argument shows that the series in
Eq. 12 also converges in probability.

On the other hand, each integral in the expansion converges in probability to the
integral of the same function with respect to w(V), by Lemma 2. This implies that the
partial sums of the series with limit Qn converge in probability to the corresponding
partial sums of Eq. 12, and this suffices to establish (i).

The proofs of the remaining items are plain. The result in (iii) has been shown in
Cabaña and Cabaña (2001). ��

7.2 On Theorems 2 and 3

The discussion before the statement of Theorem 2 implies its validity. As for the
proof of Theorem 3, the conclusions of Theorem 1 and the arguments in the lemmas
preceding its proof apply with no essential changes.
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8 Appendix. Legendre Polynomials Expansion of γ (u, v) = (|u − v| − 1
2

)2 + 1
4

Theorem 4 The function γ (u, v) = (|u − v| − 1
2 )2 + 1

4 admits the expansion in modi-
fied Legendre polynomials

γ (u, v) = 1
3 + 1

30 p1(u)p1(v) +
∞∑
j=2

[
pj(u)pj(v)

(2 j−1)(2 j+3)
− pj−1(u)pj+1(v)+pj+1(u)pj−1(v)

(4 j+2)
√

(2 j−1)(2 j+3)

]
.

In order to verify this, let us recall some well known properties of the Legendre
polynomials: The following relations hold for all n:

Pn(1) = 1,

(n + 1)xPn(x) − (n + 1)Pn+1(x)=(1 − x2)P′
n(x)=−nxPn(x) + nPn−1(x)

(the right-hand term has to be interpreted as zero for n = 0), and for m �= n:

∫ 1

x
Pm(y)Pn(y)dy = (1 − x2)[Pn(x)P′

m(x) − Pm(x)P′
n(x)]

m(m + 1) − n(n + 1)
.

From these relations we obtain the following properties of the modified Legendre
polynomials pj(u) = √

2 j + 1Pj(2u − 1):

pj(1) = √
2 j + 1,

( j + 1)(2u − 1)
pj(u)√
2 j + 1

− ( j + 1)
pj+1(u)√

2 j + 3
= 2u(1 − u)

p′
j(u)√

2 j + 1
(28)

− j(2u − 1)
pj(u)√
2 j + 1

+ j
pj−1(u)√

2 j − 1
= 2u(1 − u)

p′
j(u)√

2 j + 1
(29)

and the particular case of the integral formula for m = j, n = 0:

∫ 1

u
pj(s)ds = u(1 − u)p′

j(u)

j( j + 1)
. (30)

Now multiply Eq. 28 by j, Eq. 29 by j + 1 and add the resulting equations to get

j( j + 1)

[
pj−1(u)√

2 j − 1
− pj+1(u)√

2 j + 3

]
= 2

√
2 j + 1u(1 − u)p′

j(u), (31)

and also subtract the same equations to obtain the recurrence

(2 j + 1)(2u − 1)
pj(u)√
2 j + 1

= ( j + 1)
pj+1(u)√

2 j + 3
+ j

pj−1(u)√
2 j − 1

. (32)
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For the proof of the Theorem, we establish separately three particular results,
namely

j = 0 :
∫ 1

0
γ (u, v)dv = 1

3
,

j = 1 :
∫ 1

0
γ (u, v)p1(v) = 1

30
p1(u) − p3(u)

10
√

21
,

j = 2 :
∫ 1

0
γ (u, v)p2(v)dv = p2(u)

21
− p4(u)

14
√

45
.

and the general case, for j > 2,

∫ 1

0
γ (u, v)pj(v)dv = pj(u)

(2 j − 1)(2 j + 3)
− pj−2(u)

(4 j − 2)
√

(2 j − 3)(2 j + 1)

− pj+2(u)

(4 j + 6)
√

(2 j + 1)(2 j + 5)
.

The particular formulas are obtained by direct integration, taking into account
that p0(u) = 1, p1(u) = √

3(2u − 1), p2(u) = √
5(6u2 − 6u + 1), p3(u) = √

7(20u3 −
30u2 + 12u − 1) and p4(u) = 3(70u4 − 140u3 + 90u2 − 20u + 1). We omit the details.

The left-hand term of this general expression vanish for u = 1, since γ (1, v)

reduces to a polynomial of degree 2. As for the right-hand term, it is easily verified by
replacing pj(1) by its value

√
2 j + 1, that also vanishes for u = 1. Therefore, in order

to establish this general formula it suffices to verify the equality of the derivatives of
both terms.

Using again that pj is orthogonal to the polynomials of degree 2, it follows that the
integral

∫ 1
0 γ (u, v)pj(v)dv reduces to − ∫ 1

0 |u − v|pj(v)dv, that is,

∫ u

0
(v − u)p − j(v)dv +

∫ 1

u
(u − v)pj(v)dv = 2

∫ 1

u
(u − v)pj(v)dv,

with derivative

2
∫ 1

u
pj(v)dv = 2u(1 − u)p′

j(u)

j( j + 1)

as follows from Eq. 30.
The identity to be verified is therefore

2u(1 − u)p′
j(u)

j( j + 1)
= p′

j(u)

(2 j − 1)(2 j + 3)
− p′

j−2(u)

(4 j − 2)
√

(2 j − 3)(2 j + 1)

− p′
j+2(u)

(4 j + 6)
√

(2 j + 1)(2 j + 5)
,



Methodol Comput Appl Probab

which, after multiplying by
√

2 j + 1u(1 − u), applying Eq. 31, rearranging, reducing
coefficients and abbreviating pj = √

2 j + 1qj, leads to the equivalent equation

u(1 − u)qj−1(u) − u(1 − u)qj+1(u)

= 3 j2 − j − 6
4(2 j + 3)(2 j − 3)

qj−1(u) − 3 j2 + 7 j − 2
4(2 j + 5)(2 j − 1)

qj+1(u)

− ( j − 2)( j − 1)

4(2 j − 1)(2 j − 3)
q j−3(u) + ( j + 2)( j + 3)

4(2 j + 3)(2 j + 5)
qj+3(u). (33)

Apply now Eq. 32 to replace ( j+2)( j+3)

4(2 j+3)(2 j+5)
qj+3(u) by (u2 − u + 1/4)qj+1(u) −

( j+1)(2u−1)

4(2 j+3)
qj(u) − ( j+2)2

4(2 j+3)(2 j+5)
qj+1(u). This transforms Eq. 33 into

u(1 − u)qj−1(u) = − j + 1
4(2 j + 3)(2 j − 1)

qj+1(u) + 3 j2 − j − 6
4(2 j + 3)(2 j − 3)

qj−1(u)

− ( j − 2)( j − 1)

4(2 j−1)(2 j − 3)
q j−3(u) − ( j + 1)(2u −1)

4(2 j + 3)
qj(u).

The next two steps use again the recurrence Eq. 32: in the first one we replace
( j + 1)qj+1(u) by (2 j + 1)(2u − 1)qj(u) − jqj−1(u), and in the second one, jqj(u) by
(2 j − 1)(2u − 1)qj−1 − ( j − 1)qj−2(u). The equivalent identities to be verified, ob-
tained after reducing the coefficients, are respectively

u(1 − u)qj−1(u) = − j(2u − 1)

4(2 j − 1)
qj(u)

+ 3 j2 − 6 j + 2
4(2 j − 1)(2 j − 3)

qj−1(u) − ( j − 2)( j − 1)

4(2 j − 1)(2 j − 3)
qj−3(u)

and

( j − 1)qj−1(u) = (2 j − 3)(2u − 1)qj−2(u) − ( j − 2)qj−3(u)

and this last one is Eq. 32 for j − 2 instead of j.
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