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A ZOLL COUNTEREXAMPLE TO A GEODESIC
LENGTH CONJECTURE

FLORENT BALACHEFF1, CHRISTOPHER CROKE2,
AND MIKHAIL G. KATZ3

Abstract. We construct a counterexample to a conjectured in-
equality L ≤ 2D, relating the diameter D and the least length L
of a nontrivial closed geodesic, for a Riemannian metric on the 2-
sphere. The construction relies on Guillemin’s theorem concerning
the existence of Zoll surfaces integrating an arbitrary infinitesimal
odd deformation of the round metric. Thus the round metric is
not optimal for the ratio L/D.
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1. Zoll surfaces and Guillemin deformation

Given a Riemannian metric on the 2-sphere, we consider its diame-
ter D and the length L of its shortest nontrivial closed geodesic. The
first inequality relating the two invariants was obtained by the second-
mentioned author [Cr88], who proved the bound L ≤ 9D. The con-
stant in the inequality was successively improved by M. Maeda [Ma94],
A. Nabutovsky and R. Rotman [NR02], and S. Sabourau [Sa04]. The
best known bound is L ≤ 4D. Nabutovsky and Rotman conjectured
the inequality L ≤ 2D [NR02, Introduction], meaning that the round
metric of S2 is optimal for the relationship between these two invari-
ants. We give a few examples of surfaces satisfying the case of equal-
ity L = 2D:
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(1) a surface of revolution in R3 obtained from an ellipse with major
axis on the x-axis;

(2) a circular “pillow”, obtained by doubling the flat unit disk;
(3) a more general pillow obtained by doubling the region enclosed

by a closed curve of constant width in the plane;
(4) rotationally invariant Zoll surfaces.

The existence of such diverse examples may have led one to expect
that none of these metrics are optimal for the ratio L/D.

It turns out that a counterexample to the inequality L ≤ 2D may
be found among Zoll surfaces, namely surfaces all of whose geodesics
are closed, and whose prime geodesics all have equal length 2π. More
precisely, while the rotationally symmetric Zoll surfaces do satisfy (the
boundary case of equality of) the conjectured inequality, there exist
other families of Zoll surfaces such that L > 2D. Such surfaces can be
obtained as smooth variations of the round metric.

Let (S2, g0) be the 2-sphere endowed with the round metric. Denote
by a : S2 → S2 its antipodal map. Let C∞

odd(S
2,R) be the space

of smooth odd functions on S2, i.e. smooth real valued functions f
satisfying f ◦a = −f . The following existence theorem for Zoll surfaces
is due to V. Guillemin [Gu76].

Theorem 1.1 (Guillemin). For every f ∈ C∞
odd(S

2,R), there exists a

smooth one-parameter family gt = Ψf
t g0 of smooth Zoll metrics such

that Ψf
0 = 1, the conformal factor Ψf

t satisfies (dΨf
t /dt)|t=0 = f , and

all prime periodic geodesics of (S2, gt) have length 2π.

Note that this result is a converse to P. Funk’s theorem [Fu13], to
the effect that a smooth variation gt = Φtg0 of the round metric by
smooth Zoll metrics necessarily satisfies (dΦt/dt)|t=0 ∈ C∞

odd(S
2,R). A

survey of Zoll surfaces appeared in [Bes78, Chapter 4], see also [LM02].
We exploit such Guillemin deformations to show that the round met-

ric is not even a local maxinum of the ratio L/D among Zoll surfaces.
The precise statement of our result relies on the notion of a Y-like set.

Definition 1.2. A subset of the unit circle is called Y-like if it con-
tains a triple of vectors {u, v, w} such that there exist positive real
numbers a > 0, b > 0, c > 0 satisfying au + bv + cw = 0. A subset of
the unit tangent bundle US2 of S2 will be called Y-like if its intersection
with the unit tangent vectors at p is Y-like for every p ∈ S2.

Note that a subset of the unit circle is Y -like if and only if every
open semicircle contains an element of the set.

We will denote by ds0 the element of length for the round metric g0
on the sphere. The notion of an amply negative function is motivated
in Remark 2.4 below.
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Definition 1.3. An odd function f is called amply negative if the set
of unit tangent directions to great half-circles τ satisfying

∫
τ
fds0 < 0,

is a Y-like subset of US2.

Theorem 1.4. If f is an amply negative function then the smooth
variation {gt} = Ψf

t g0 of the round metric g0 by smooth Zoll metrics
satisfies L(gt) > 2D(gt) for sufficiently small t > 0.

Combined with the existence of amply negative functions proved in
Section 5, our theorem yields the desired counterexample.

These metrics also provide a counterexample to another conjecture
of Nabutovsky and Rotman [NR07, Conjecture 1, p. 13]. Their con-
jecture would imply that for every point p of a closed Riemannian
manifold (M, g), there is a nontrivial geodesic loop at p of length at
most 2D(g). Here a geodesic loop is a geodesic segment with identical
endpoints. This conjecture is easily seen to be true for non-simply-
connected manifolds, by exploiting non-contractible loops, cf. [Ka07].
In our examples, the shortest geodesic loop at every p has length 2π,
while the diameter is strictly smaller than π.

Sections 2 and 3 contain a proof of Theorem 1.4 modulo on the
existence of amply negative functions. The existence of the latter is
verified in Sections 4 and 5.

2. Amply negative odd functions

Our goal is to find amply negative functions f ∈ C∞
odd(S

2,R), such
that the corresponding Guillemin deformation gt of the standard round
metric g0 satisfies D(gt) < π for t small enough (while all geodesics
remain closed of length 2π). By the compactness of the unit tangent
circle bundle US2, we obtain the following lemma.

Lemma 2.1. For every amply negative function f there is a con-
stant ν(f) > 0 with the following property. For every (p, v) ∈ US2,
there is a great half-circle τ issuing from p ∈ S2, forming an acute
angle with v, and satisfying

∫
τ
fds0 < −ν(f).

Denote by L0 the length functional with respect to the round met-
ric g0. Given a geodesic segment γ of length L0(γ) < π, we denote by Pγ

the 1-parameter family of piecewise geodesic paths with the following
two properties:

• the path joins the endpoints of γ,
• the path consists of a pair of imbedded geodesic segments of
equal length.

Elements of Pγ are parametrized by the non-smooth midpoint of the
piecewise geodesic path, which traces out the equidistant great circle of
the two endpoints. We let SPγ ⊂ Pγ be the closed subfamily consisting
of the shorter paths, namely

SPγ = {τ ∈ Pγ|L0(τ) ≤ π} .
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If γ is a great semi-circle, define Pγ to be the circular family of great
half-circles joining the endpoints of γ, and the subfamily SPγ to be the
family of paths forming either an acute or a right angle with γ at the
endpoints. The following lemma is obvious but crucial.

Lemma 2.2. The family SPγ for a geodesic segment γ with L0(γ) = π
is the limit of the families SPγi for subarcs γi of γ of length tending
to π. In fact, if γi is any sequence of minimizing geodesic segments
converging to γ, then SPγi converges to SPγ.

Our main technical tool in the next section will be the following
result.

Lemma 2.3. If f is amply negative then there is an ϵ > 0 so that for
all geodesic segments γ with π−ϵ ≤ L0(γ) ≤ π, there is a path τ ∈ SPγ

with
∫
τ
fds0 < −ν(f).

Proof. If no such ϵ exists, then there is a sequence {γi} with L0(γi) < π
and L0(γi) → π such that all τ ∈ SPγi satisfy

∫
τ
fds0 ≥ −ν(f). There

is a convergent subsequence such that γ′
i(0) → γ′(0) with L0(γ) = π.

By Lemma 2.2, the family SPγi converges to SPγ. By the continuity
of f , for every τ ∈ SPγ we have

∫
τ
fds0 ≥ −ν(f), contradicting the

assumption that the function f is amply negative . □

Remark 2.4. Given a piecewise geodesic τ over which the integral
of f is negative, we will show in the next section that the length of τ
decreases under the Guillemin deformantion. If, in addition, the curve τ
has length at most π with respect to the metric g0, then the length with
respect to the metric gt will be shorter than π. That is why we need
to work with piecewise geodesics specifically in SPγ. In order to make
the continuity argument above work, one needs to find in each SPγ,
a curve τ over which f integrates negatively. This leads to the amply
negative condition we introduced.

3. Diameter of Guillemin deformation

Let Ψf be the conformal factor of the Guillemin deformation, as in
Theorem 1.1 above. Thus, the metric gt = Ψf

t g0 is Zoll, while Ψf
0 = 1

and (dΨf
t /dt)|t=0 = f . Consider the arclength parametrisation τ(s) of

a path τ ⊂ S2 for the round metric g0.

Lemma 3.1. The energy Et(τ) of a path τ ⊂ S2 for the metric gt
satisfies

dEt

dt

∣∣∣∣
t=0

=

∫
τ

f ◦ τ ds0.
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Proof. We have

d

dt
Et(τ) =

d

dt

∫ L0(τ)

0

gt(τ
′(s), τ ′(s))ds

=
d

dt

∫
τ

Ψf
t ◦ τ ds0

=

∫
τ

(
d
dt
Ψf

t

)
◦ τ ds0

=

∫
τ

f ◦ τ ds0

at t = 0. □

Proposition 3.2. If f is amply negative, then the associated Guillemin
deformation gt = Ψf

t g0 as in Theorem 1.1 satisfies D(gt) < π for all
sufficiently small t > 0.

Proof. Denote by Lt and dt the length and the distance with respect to
the metric gt. Let ϵ > 0 be chosen as in Lemma 2.3, and letAϵ ⊂ S2×S2

be the set of nearly antipodal pairs, defined by setting

Aϵ =
{
(p, q) ∈ S2 × S2

∣∣d0(p, q) ≥ π − ϵ
}

By continuity, there is a δ > 0 such that whenever 0 < t < δ, we have

(3.1) dt(p, q) < π for all (p, q) ̸∈ Aϵ.

Now let (p, q) ∈ Aϵ, and γ a minimizing geodesic joining them. Let

N(γ) =

{
τ ∈ SPγ

∣∣∣∣∫
τ

fds0 ≤ −ν(f)

}
,

and let N = {τ ∈ N(γ)|π− ϵ ≤ L0(γ) ≤ π}. By Lemma 2.3, whenever

π − ϵ ≤ L0(γ) ≤ π,

the set N(γ) is non-empty. Furthermore, the sets N and N(γ) are
compact. Now for small t > 0, define a continuous function F : N ×
R → R by setting F (τ, t) = dEt(τ)

dt
. By Lemma 3.1 and the definition

of N , we have F (τ, 0) ≤ −ν(f). Hence by the compactness of N and
the continuity of F there is a real δ′ > 0 so that for all 0 ≤ t ≤ δ′ and
all τ ∈ N , we have F (τ, t) < −1

2
ν(f). Therefore the energy given by

the expression ∫ L0(τ)

0

gt(τ
′(s), τ ′(s))ds0

is strictly decreasing in t. Hence for 0 < t ≤ δ′, it is strictly smaller
than the quantity ∫ L0(τ)

0

g0(τ
′(s), τ ′(s))ds0 = L0(τ).
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In particular, we obtain for 0 < t ≤ δ′,

Lt(τ) =

∫ L0(τ)

0

√
gt(τ ′(s), τ ′(s))ds0

≤ L0(τ)
1
2

(∫ L0(τ)

0

gt(τ
′(s), τ ′(s))ds0

) 1
2

< L0(τ).

Thus for each pair (p, q) ∈ Aϵ and every 0 < t ≤ δ′, there is a path τ
from p to q with Lt(τ) < L0(τ) ≤ π. Hence distt(p, q) < π. Combined
with (3.1), this yields the diameter bound D(gt) < π whenever 0 < t <
min{δ, δ′}, proving the proposition as well as Theorem 1.4. □

4. Fine sets and their properties

Recall that an open hemisphere is an open ball of radius π/2 centered
at any point of the unit sphere. The construction of amply negative
functions in Section 5 exploits fine sets, in the following sense.

Definition 4.1. A spherical pointset X is called fine if the following
three conditions are satisfied:

(1) no triple of X is collinear;
(2) no triple of great circles pp′, where p, p′ ∈ X, is concurrent other

than at points of X (as well as their antipodal points);
(3) every open hemisphere contains at least 3 of the points of X.

Note that the non-collinearity implies, in particular, that X contains
no pair of antipodal points. Meanwhile, condition (3) implies that at
every point of the sphere, there is a Y-like set of tangent directions
leading to points of X.

To see that fine sets exist, start with the set of 4 vertices of the regular
inscribed tetrahedron. This gives a set with at least one point in every
open hemisphere. We replace each point of the tetrahedron by a generic
triple of nearby points. The non-collinearity and non-concurrency fol-
low from genericity, and property (3) follows by construction.

Definition 4.2. Given a fine pointset X, choose ϵ(X) > 0 such that:

(1) the closed ϵ(X) balls centered at the points of X ∪ −X are
disjoint;

(2) there are at least 3 points of X in B(p, π/2−ϵ(X)) for every p ∈
S2.

We note that property (3) of fineness along with standard compact-
ness arguments shows that such a positive ϵ(X) exists.

Lemma 4.3. Let X be a fine set and choose ϵ(X) as above. Let Σ the
set of unit vectors in US2 tangent to geodesic segments τ of length π
satisfying the following two conditions:
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• τ(0, π) ∩ −X = ∅;
• τ(ϵ(X), π − ϵ(X)) ∩X ̸= ∅.

Then Σ is Y-like.

Proof. Fix a unit vector v at p ∈ S2 and let γ be the corresponding
geodesic segment of length π. We need to find a w ∈ Σ at p making
an acute angle with v. Let H be the (closed) hemisphere obtained
as the union of the τ ∈ SPγ. Then by assumption there are at least
three points of X (call them p1, p2, and p3) in the interior of H and at a
distance greater than ϵ(X) from the boundary ofH hence the endpoints
of γ. Hence there are at least 3 geodesic segment τ1, τ2, and τ3 in the
interior of SPγ passing through the points pi, i = 1, 2, 3. If two of these
paths coincide (say τ1 = τ2) then τ1 passes through p1 and p2 so the
initial point p of γ is not in X and τ1 avoids −X (by condition 1 of
being fine). If all of these paths are pairwise distinct and also pass
through points of −X (say −p4,−p5, and −p6 respectively) then the
initial point p of γ would lie on the 3 great circles p1p4, p2p5, p3p6
which contradicts either condition 2 (if p /∈ X ∪ −X) or condition 1
(if p ∈ X ∪ −X). Thus we see that there is a τ in the interior of SPγ

containing an element of X at least ϵ(X) from the endpoints, and no
element of −X in its interior. The tangent vector of τ is the w we
seek. □

5. Existence of amply negative functions

The goal of this section is to prove the following proposition.

Proposition 5.1. There exist amply negative functions.

We will costruct such functions by defining odd functions that ap-
proximate the sum of ±δ (Dirac delta) functions centered at points
of −X and X for a fine set X. For our approximate δ functions we
take for each p ∈ S2 the smooth function δϵp with support included in
the ball B(p, ϵ) with

δϵp(q) = exp(1/ϵ) · exp
(

1

d(p, q)− ϵ

)
for q ∈ B(p, ϵ).
We will use the following (nearly obvious) lemma.

Lemma 5.2. if γ is a diameter of B(p, ϵ) (i.e. geodesic through the cen-
ter of length 2ϵ) and τ is any geodesic segment in B(p, ϵ) then

∫
τ
δϵp ≤∫

γ
δϵp with equality holding if and only if τ is also a diameter.

Proof. To see this (since δϵp ≥ 0) we can assume (by extending τ if
needed) that τ runs from a boundary point to a boundary point and
has length 2l < 2ϵ. Since for t ≤ l we have d(p, τ(t)) ≥ ϵ−t = d(p, γ(t))
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we have∫
τ

δϵp = 2

∫ l

0

δϵp(τ(t))dt ≤ 2

∫ l

0

δϵp(γ(t)) < 2

∫ ϵ

0

δϵp(γ(t)) =

∫
γ

δϵp.

□

We are now ready to define our functions.

Definition 5.3. For ϵ(X) > ϵ > 0 set

f ϵ
X =

∑
pi∈X

(δϵ−pi
− δϵpi)

Note that f ϵ
X is a smooth odd function. We will now prove that for

sufficiently small ϵ > 0 the function f ϵ
X is amply negative .

Lemma 5.4. For every v ∈ US2 there is an ϵ(v) with ϵ(X) > ϵ(v) > 0
and an open neighborhood U(v) of v in US2 (note that the base point
also varies) such that for all w ∈ U(v) there is a geodesic segment τ
of length π whose initial tangent vector makes an acute angle with w
(hence it starts at the base point of w) and∫

τ

f ϵ
X < 0

for all ϵ(v) > ϵ > 0.

Note that the ϵ(v) > 0 we find in the proof below will tend to 0
as the base point of v tends to X (while not being in X). This turns
out not to be a problem since by the compactness of US2 a finite
number U(vi) cover US2 and hence we can take any ϵ less than the
smallest of the ϵ(vi) and have that f ϵ

X is amply negative. This therefore
proves Proposition 5.1.

Proof of Lemma 5.4. To prove the lemma, we consider two cases. First
assume that the base point of v is not inX∪−X. Let τ (whose existence
is promised in Lemma 4.3) be a geodesic segment of length π making
an acute angle with v that misses −X and passes through at least
one p ∈ X that has distance greater than ϵ(X) from its endpoints. Thus
we can choose ϵ(v) so small that τ misses B(q, 2ϵ(v)) for all q ∈ −X.
Now for w in a small enough neighborhood U of v, let τ̄ be the geodesic
segment of length π through the base point of w and p. For small
enough U , τ̄ will still miss all the B(q, ϵ(v)) for q ∈ −X while τ̄ will
make an acute angle with w. Thus, for ϵ(v) ≥ ϵ > 0, we have f ϵ

X ≤ 0
along τ̄ and is negative near p so we see

∫
τ̄
f ϵ
X < 0.

In the second case the basepoint p0 of v is in X ∪ −X. We will
assume p0 ∈ −X since the other case is the same (by reversing orien-
tation of all geodesics). Note that any τ making an acute angle with v
which intersects X in its interior cannot also intersect −X in its inte-
rior by property 1 of a fine set. So there are two (in fact three) geodesic
segments τ1 and τ2 in the interior of SPγ that pass through a p1 and
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a p2 respectively and no element of −X in its interior and such that p1
and p2 have distance greater than ϵ(X) from p0 and −p0. Now we
choose ϵ(v) > 0 so small that for all q ∈ −X and q ̸= p0, B(q, 2ϵ(v))
miss both τ1 and τ2. Again for w in a small neighborhood U of v let τ̄1
(resp τ̄2) be the geodesic segment of length π starting at the basepoint
of w and passing through p1 (resp. p2).

If U is small enough we can assume both that τi make acute angles
with w and that for all q ∈ −X with q ̸= p0, τ̄1 and τ̄2 miss B(q, ϵ(v)).
Along τ̄1 (resp. τ̄2) we have, for ϵ(v) ≥ ϵ > 0, f ϵ

X ≤ 0 except on

τ̄1 ∩B(p0, ϵ)

(respectively, on τ̄2 ∩ B(p0, ϵ)). Both τ̄1 ∩ B(p0, ϵ) and τ̄2 ∩ B(p0, ϵ)
cannot be diameters since that would put p0, p1 and p2 on the same
great circle (namely the one through p0 and the base point of w).
So assume τ̄1 ∩ B(p0, ϵ) is not a diameter. Then since we know on
the other hand that τ̄1 ∩ B(p1, ϵ) is a diameter, Lemma 5.4 tells us
that

∫
τ̄1
f ϵ
X < 0. □
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