
This is the **accepted version** of the journal article:

Luque, Jordi [et al.]. «Symptoms and fungi associated with declining mature grapevine plants in northeast Spain». *Journal of Plant Pathology*, Vol. 91, Num. 2 (July 2009), p. 381-390

This version is available at <https://ddd.uab.cat/record/324609>

under the terms of the license.

1 **SYMPTOMS AND FUNGI ASSOCIATED WITH DECLINING**
2 **MATURE GRAPEVINE PLANTS IN NORTHEAST SPAIN**

3

4 **J. Luque^{1,*}**

5 **S. Martos¹**

6 **A. Aroca²**

7 **R. Raposo²**

8 **and**

9 **F. Garcia-Figueres³**

10

11 Affiliations:

12

13 *(1) Institut de Recerca i Tecnologia Agroalimentàries (IRTA). Ctra. de Cabrils km 2, E-08348*
14 *Cabrils, Barcelona, Spain*

15 *(2) CIFOR, Instituto Nacional Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra.*
16 *de La Coruña km 7.5, E-28040 Madrid, Spain*

17 *(3) Laboratori de Sanitat Vegetal (DAR), Via Circulació Nord, Tram VI, Carrer 3, Zona*
18 *Franca, E-08040 Barcelona, Spain*

19

20 Running title: Grapevine decline and associated pathogenic fungi

21

22 **Corresponding author: J. Luque (Phone: +34 937507511; Fax: +34 937533954;*
23 *e-mail: jordi.luque@irta.es). Postal address: IRTA, Ctra. de Cabrils km 2, E-08348*
24 *Cabrils, Barcelona, Spain*

25

26 *Key words:* black dead arm, esca, eutypiose, grapevine decline, phytopathogenic fungi,
27 *Vitis vinifera*

28

29 **Summary**

30

31 A field survey was carried out in the Catalonia region of northeast Spain to
32 characterize the decline of mature grapevines. The relationships of both external and
33 internal symptoms of diseased plants and their associated mycoflora were studied.
34 Co-occurrence of different internal disease symptoms was frequent in Catalonia, since
35 44% of sampled plants had wood lesions commonly associated with at least two of the
36 following decline diseases: eutypiose, black dead arm or esca. The results obtained also
37 suggest that apoplexy might not be associated only with esca-affected plants, since 60%
38 of surveyed plants showing apoplexy were also affected by V-shaped necroses which
39 are commonly associated with eutypiose and black dead arm, and 20% were exclusively
40 affected by V-shaped necroses. An experiment was conducted to establish the
41 pathogenicity of most representative fungi isolated from the diseased tissues of
42 declining plants, by artificially inoculating 1-year-old plants of 'Macabeo' and
43 'Tempranillo' varieties. Pathogenicity of fungi, as indicated by vascular lesion
44 extension, was confirmed for most of the species tested, namely *Botryosphaeria*
45 *dothidea*, *Diplodia seriata*, *Eutypa lata*, *Neofusicoccum luteum*, *N. parvum* and
46 *Phaeomoniella chlamydospora*.

47

48 **Introduction**

49

50 The area of vineyards in Spain consists of about 1,2 Mha, thus making
51 Spain the leading country in grapevine culture in the world, the third in the
52 world in wine production, and the second in raisin production (data from OIV,
53 year 2005 [retrieved from Internet Oct. 15, 2008 at <http://www.oiv.org>];
54 Anonymous, 2006). Grapevines are widespread in Spain, where about 97% of
55 the total grapevine area is managed for wine production (Anonymous, 2006).
56 Although viticulture is an essential component of the agriculture sector in Spain,
57 grapevine declines and their associated pathogenic fungi are poorly known in
58 this country. In the last decade, studies on diseases and pathogenic mycoflora
59 associated to rootstocks (Aroca *et al.*, 2006), young vines (Armengol *et al.*, 2002;
60 Giménez-Jaime *et al.*, 2006), and mature vines (Armengol *et al.*, 2001a, b; Úrbez-
61 Torres *et al.*, 2006a) have been carried out in Spain, but further studies are
62 needed to increase the knowledge regarding these complex diseases.
63 Unfortunately, no quantitative data about the economic impact of these
64 declines on Spanish grapevine production have been calculated. Main decline
65 diseases of mature grapevine observed in Spain include esca, eutypiose, and
66 black dead arm (BDA), as reported by Armengol *et al.* (2001a, b) and Úrbez-
67 Torres *et al.* (2006a).

68

69 Esca is a complex disease where symptoms and their expression over
70 time are highly variable (Mugnai *et al.*, 1999; Surico *et al.*, 2006). Two main types
71 of esca episodes can be defined: the chronic esca and the acute syndrome, the
72 latter also known as apoplexy (Mugnai *et al.*, 1999). Briefly, foliar symptoms of
73 chronic esca are characterized by interveinal chlorosis or discolorations
74 (yellowish in white cultivars and reddish in red cultivars) that later coalesce in
75 large necrotic areas during summer. Vine apoplexy usually occurs in mid
76 summer, when leaves of affected plants wither rapidly in a few days (Mugnai *et*
77 *al.*, 1999). Despite of the external foliar symptoms of both esca types, several
78 types of wood degradation have been described for esca, mainly including i)
79 longitudinal brown streakings that appear as necrotic black spots in cross
80 sections, ii) pink-brown or dark red-brown necrotic areas, and iii) wood decay.

81 Many fungi have been reported to be involved in the esca syndrome; several
82 Basidiomycetes species are responsible for the wood decay, with species in the
83 genera *Fomitiporia*, *Fomitiporella*, and *Inocutis* (Fischer, 2006), while vascular
84 necroses are caused mainly by *Phaeomoniella chlamydospora* and several
85 *Phaeoacremonium* species (Surico *et al.*, 2006). Eutypiose, also known as Eutypa
86 dieback, is caused by the fungus *Eutypa lata* Carter (1988). The most recognized
87 symptom of this disease is the stunted appearance of shoots at the early growth
88 season, with small, cupped, and chlorotic leaves, and short internodes. Wood
89 internal symptoms include characteristic V-shaped necroses when cross sections

90 of affected arms and trunks are made. Additionally, external cankers developing
91 from old pruning wounds can be observed. BDA was first described by Lehoczky
92 (1974) who associated this disease with *Botryosphaeria stevensii*, but later
93 several other species of Botryosphaeriaceae have been associated with the
94 disease, including *B. dothidea*, *Diplodia seriata* and *Lasiodiplodia theobromae* as
95 the most frequently related fungi (Larignon *et al.*, 2001; van Niekerk *et al.*, 2006).
96 Wood symptoms of BDA include V-shaped necroses, similar to those caused by
97 *E. lata*, and longitudinal brown streakings along the affected tissues. Stunted
98 growth in early season has also been described occasionally for diseases caused
99 by Botryosphaeriaceae species (Castillo-Pando *et al.*, 2001; Taylor *et al.*, 2005),
100 thus resembling the symptoms caused by *E. lata*. BDA foliar symptoms are also a
101 matter of controversy; while Lehoczky (1974) reported a slight diffuse chlorosis
102 and an eventual later leaf wilting, Larignon and Dubos (2001) reported an early
103 red or yellow-orange patching (in red and white grape varieties, respectively)
104 that later develop large marginal and interveinal necroses. However, Lecomte *et*
105 *al.* (2005) and Surico *et al.* (2006) have shown and discussed the similarity
106 between these late BDA foliar symptoms and those typical of esca. Additional
107 more comprehensive information on the above diseases can be found in Carter
108 (1988; 1991), Larignon *et al.* (2001), Lecomte *et al.* (2005), Mugnai *et al.* (1999),
109 Surico *et al.* (2006) and van Niekerk *et al.* (2006).
110

111 The present study aims to characterize the grapevine decline of mature
112 grapevines in the northeast Spanish region of Catalonia, by 1) determining the
113 relationship of both external and internal symptoms of diseased plants with the
114 existing mycoflora, and 2) establishing the pathogenicity in grapevine of fungi
115 isolated from the diseased tissues of declining plants.

116

117 **Materials and methods**

118

119 *Field survey*

120

121 Seventy-nine vineyards known to be affected by decline diseases from previous
122 field surveys were visited between 2003 and 2005 in Catalonia, NE Spain. Field data
123 and plant samples were collected each year from May to August. Eighteen grapevine
124 varieties and three rootstocks were surveyed: the white varieties included Chardonnay,
125 Chenin Blanc, Garnatxa Peluda, Macabeo, Parellada, Sauvignon Blanc, White
126 Grenache, and Xarel·lo; the red varieties included Cabernet Sauvignon, Carignane,
127 Merlot, Pinot Noir, Red Grenache, Syrah, and Tempranillo; three unknown varieties and
128 three rootstocks (110R, 140Ru and SO4). A total of 192 vines showing decline
129 symptoms were surveyed from over 1500 total inspected plants (about 20 decline-
130 affected plants being examined per vineyard). Two to four affected plants per vineyard
131 were chosen for a careful symptom examination and wood sampling. Declining vines
132 were examined visually and the nature of the external symptoms was annotated and
133 attributed to known diseases: eutypiose, BDA or esca. Vines which showed stunted

134 shoot growth in late spring, and V-shaped wood necroses were classified as affected by
135 eutypiose/BDA during the field survey, since both diseases show similar symptoms
136 (Castillo-Pando *et al.*, 2001; Taylor *et al.*, 2005). BDA foliar symptoms occurring in
137 summer, as described by Larignon and Dubos (2001), were not considered as these
138 symptoms could be confused with those of esca (Lecomte *et al.*, 2005; Surico *et al.*,
139 2006). Vines with characteristic interveinal chloroses and necroses, wood decay and
140 vascular necroses different from V-shaped ones were classified as esca-affected plants.
141 Vines with sectorial necrosis and either one of the esca-associated wood necroses were
142 classified as affected by eutypiose/BDA and esca. Plants affected by apoplexy whether
143 partial (1 to several arms) or total (whole plant) were considered as a separate class
144 from the above diseases. Sections of trunks and arms, as well as the whole plant when
145 appropriate, were taken to the laboratory for further examination and to conduct fungal
146 isolations.

147

148 *Fungal isolation and identification*

149

150 Cross and longitudinal sections of diseased arms and trunks were carefully
151 examined and the type of wood necrosis was recorded. Four types of wood alteration
152 were considered: V-shaped necroses, irregular central necroses, black spots seen
153 in cross sections, and wood decay (see Figure 1, c to h). Pieces of each type of
154 necrosis (approximate size 10 cm in length) were obtained every 20 cm of affected arms
155 and trunks, and processed separately to isolate the fungi. Wood chips (about 5x5x5 mm;
156 minimum n=15 pieces per sample and necrosis type) were surface-sterilized (3-4 min in
157 70% ethanol), blotted on sterile filter paper to remove excessive ethanol, and plated

158 onto Potato Dextrose Agar (PDA, Difco Laboratories, Detroit, MI, USA) amended with
159 sulphate streptomycin (Sigma-Aldrich Co., St. Louis, MO, USA) at 100 units per ml
160 (Johnston and Booth, 1983). Plates were incubated at 25 °C in darkness to get pure
161 cultures. When necessary, sporulation was induced by incubating the fungal colonies in
162 water agar with sterilized grapevine wood chips at 25 °C and under near-UV
163 light/darkness for 12/12 hours. Representative isolates were maintained at 4 °C in sterile
164 distilled water tubes with mycelial plugs.

165

166 Isolated fungi were identified on the basis of morphological characters of
167 colonies and reproductive structures. Eventually, identification of isolates was
168 confirmed by analysing the DNA sequences from selected regions: the internal
169 transcribed spacers ITS1 and ITS2 flanking the 5.8s rRNA gene (ITS), and parts of the
170 translation elongation factor 1-alfa (EF1- α) and the β -tubulin genes when applicable.
171 Procedures of DNA extraction were done as described in Alves *et al.* (2004), and PCR
172 amplifications were done according to the methods described by Alves *et al.* (2004)
173 [ITS; for most of fungi], Phillips *et al.* (2005) [EF1- α ; for Botryosphaeriaceae species]
174 and Mostert *et al.* (2006) [β -tubulin; for *Phaeoacremonium* spp. and
175 Botryosphaeriaceae species]. DNA sequencing was done as described by Alves *et al.*
176 (2004). All regions were sequenced in both strands to clarify any nucleotide ambiguous
177 position. BLAST searches at GenBank showing high identites with reference sequences
178 (>97%) were used to confirm the identifications.

179

180 *Pathogenicity test*

181

182 Twenty-eight isolates representing 11 fungal taxa were chosen for the
183 pathogenicity trial, where several isolates (2 to 5) were selected for species which
184 showed to be more frequent after the field survey (Table 4). Artificial inoculations were
185 conducted in May 2004 on 1-year-old grapevine plants of 'Macabeo' (white) and
186 'Tempranillo' (red) cultivars grafted onto Richter 110 rootstocks. Plants were
187 maintained in 3 liter pots filled with a sand:peat mixture (6:1, v:v; Floratorf peat, from
188 Floragard, Oldenburg, Germany) and watered regularly in a greenhouse. Plants were
189 fertilised every two weeks with 10 ml of double-strength Hoagland-Aron's solution
190 (Hoagland and Arnon, 1950). The pathogenicity test was performed in a completely
191 randomized experimental design, with 18 inoculated plants per cultivar and isolate. A
192 superficial wound (15 x 5 mm, reaching into the xylem) was made on the stem of each
193 plant with a sterilized scalpel, 10 cm above the graft union. A mycelial plug (5 mm
194 diameter) obtained from the margin of a fungal colony was placed in the wound with
195 the mycelium facing the stem, and the wound was wrapped with Parafilm® (Pechiney
196 Plastic Packaging, Menasha, WI, USA). Control plants were inoculated with sterile
197 PDA plugs instead of the fungal inoculum.

198

199 Nine months after inoculation, the length of the internal vascular lesions was
200 recorded, by removing the bark from the stem and measuring the necrotic lesions
201 upwards and downwards from the site of inoculation. Surface sterilized wood pieces
202 taken from the stem necrotic tissues were plated on PDA to reisolate the inoculated
203 fungi and thus fulfill Koch's postulates. The length of necroses was used as an indicator
204 of the pathogenicity of fungi. Necrosis lengths were analyzed using ANOVA with the
205 aid of the SPSS v.10 statistical package (SPSS Inc., Chicago, IL, USA), with 'grapevine

206 variety' and 'isolate' as independent factors. After ANOVA, mean values of each
207 treatment (isolate) were compared against their respective controls with the Dunnett
208 two-tailed test. Additional ANOVA followed by Tukey's test were used to detect
209 differences among isolates within a given species.

210

211 **Results**

212

213 *Field survey*

214

215 A total of 192 diseased plants belonging to 18 different grapevine varieties and
216 three different rootstocks were visually analysed and sampled for laboratory analyses.
217 The most surveyed white varieties were the local cvs. 'Macabeo' (56 vines), 'Xarel·lo'
218 (24) and 'Parellada' (11), whereas the red varieties included 'Tempranillo' (30), 'Red
219 Grenache' (17), 'Cabernet Sauvignon' (14), and 'Carignane' (11). Frequencies for the
220 remaining varieties and rootstocks were never over 5 plants. According to the external
221 symptoms observed in the field, 58 % of the surveyed plants were diagnosed as affected
222 by eutypiose/BDA, 19 % of plants were affected by esca, and 14 % by apoplexy. The
223 remaining cases included dead plants (5 %), uncertain diagnoses (1 %), and plants
224 combining both eutypiose/BDA and esca symptoms on the same individual (3 %).

225

226 Internal symptoms appeared to be the result of multiple diseases and were
227 frequently co-occurrent, as shown in Table 1 and Figure 1.g, h. Forty-four percent of all
228 sampled plants (n=84) showed internal symptoms characteristic of each of the three
229 main grapevine diseases occurring in the same plant. Moreover, 38 % of plants with

230 typical external symptoms of eutypiose/BDA (n=42) also showed internal symptoms of
231 esca, 56 % of plants (n=21) with external symptoms of esca showed the typical V-
232 shaped necrosis of eutypiose/BDA as well as internal esca symptoms, and 60 % of the
233 apoplectic plants (n=16) showed internal symptoms of both eutypiose/BDA and esca
234 (Table 1). In 19 plants (10 % of total sampled plants), the internal symptoms did not
235 match with the external visual diagnosis of the disease. Two of these plants showing
236 external esca symptoms were free from any internal wood lesion, whereas the remaining
237 17 plants showed stunted growth externally but only esca symptoms internally.

238

239 Forty-five percent of the plants observed with external symptoms of
240 eutypiose/BDA showed at least two different kinds of internal lesions (Table 2).
241 Percentages of two or more concomitant internal symptoms for esca,
242 eutypiose/BDA+esca, and apoplectic plants were even higher, namely 80%, 100% and
243 81%, respectively (Table 2). In all, an average of 63% of surveyed plants (n=121)
244 showed at least two different types of internal lesions.

245

246 *Fungal isolation and identification*

247

248 Isolations were attempted from 657 samples with V-shaped necroses, 314 with
249 black spots, 297 with other necroses and 187 with wood decay. Isolations yielded 502
250 fungal isolates: 236 isolates from V-shaped necroses, 104 from black spots, 97 from
251 other necroses and 65 from wood decay (Table 3). Fungi were more frequently isolated
252 in arms than in trunks, as shown by the number of taxa isolated from each plant part and
253 the number of isolates per taxon.

254

255 *Diplodia seriata* and *E. lata* were predominantly isolated from the V-shaped
256 necroses, with 44.9 % and 23.3 % of the isolations made from arms and trunks,
257 respectively (Table 3). However, the remaining species of Botryosphaeriaceae
258 (*Neofusicoccum luteum*, *N. parvum*, *N. vitifusiforme*, *Dothiorella viticola*, and other
259 unidentified *Botryosphaeria* species) accounted for an additional 10.6 % of isolations
260 from arms and trunks. A small number of isolates of *E. lata* and *Botryosphaeriaceae*
261 species originated from other lesion types. *Phaeomoniella chlamydospora* was
262 predominantly isolated from the black spots, and was identified in 73.1 % of all the
263 isolations (Table 3). Several fungal species were associated with central necroses, with
264 no single species clearly predominant. The most frequently associated fungi to these
265 lesions were *Pa. chlamydospora* (24.7 %), *D. seriata* (20.6 %), *Pm. aleophilum*
266 (12.4 %), and *E. lata* (10.3 %). Additionally, about 10 more taxa were isolated from
267 central necroses, but with low frequencies (Table 3). *Fomitiporia mediterranea* was
268 predominant in the decayed wood, as was identified in 53.8 % of the isolations (Table
269 3). Low frequencies of other fungi (e.g. *D. seriata*, *E. lata* and *Pa. chlamydospora*)
270 were isolated from decayed wood.

271

272 *Pathogenicity test*

273

274 Control plants of both grapevine cultivars grew normally during the
275 experimental period. Wounds of control plants healed successfully although some
276 vascular discolourations were noticed (Table 4). Isolations from control plants yielded
277 no fungus. Only *N. luteum* and *N. parvum* caused the wilting of the plant in a variable

278 number of inoculated plants (Table 4). While *N. luteum* caused wilting of ten
279 'Tempranillo' plants and five 'Macabeo' plants, *N. parvum* caused a higher proportion
280 of wilted plants in 'Macabeo' than in 'Tempranillo'. No additional foliar symptoms
281 were observed among the remaining inoculated plants that could be related to a
282 potential pathogenic effect of the tested isolates.

283

284 ANOVA showed the significance of the factors 'isolate' and 'grapevine variety'
285 and their interaction (all $P<0.01$) on the necrosis lengths. In general, necrosis lengths
286 recorded on 'Tempranillo' for each inoculated isolate were longer than for their
287 equivalents in 'Macabeo' ($P<0.05$), but the differences between varieties were not
288 significant for isolates *Botryosphaeria dothidea* 353, *Cryptovalsa ampelina* 476, *D.*
289 *viticola* 412, *E. lata* 481, *F. mediterranea* I-62, and *N. parvum* 434 and 444,. However,
290 significant differences between isolates and their respective controls were more frequent
291 among the 'Macabeo' plants. This was probably due to the longer necrosis ($P<0.01$)
292 observed in the 'Tempranillo' control (1.4 cm), twice as long as those on 'Macabeo'.
293 The most severe lesions were caused by *N. parvum* (necroses up to 12.7 cm long in
294 'Macabeo' and 13.8 cm in 'Tempranillo') and *N. luteum* (8.6 cm and 8.2 cm,
295 respectively). Other fungi that caused significant lesions in plants of both grapevine
296 cultivars were *Pa. chlamydospora* (2.5 to 5.5 cm), *E. lata* (1.3 to 4.0 cm), *D. seriata*
297 (0.8 to 3.6 cm), and *B. dothidea* (3.2 cm in both cvs.) (Table 4). *Fomitiporia*
298 *mediterranea*, *Pm. aleophilum* and *C. ampelina* only caused significant necroses in
299 'Macabeo'; in general, mean lesion lengths for these fungi were never longer than 2 cm
300 in 'Macabeo' and 2.5 cm in 'Tempranillo' (Table 4). The isolates *D. seriata* 421, *F.*

301 *mediterranea* 356 and *Phomopsis* sp. 459 did not cause any significant lesion on any
302 cultivar.

303

304 Fungal species with multiple isolates being tested for pathogenicity showed
305 some variability on the lesion lengths they caused. Thus, a wide range was observed for
306 *N. parvum* (maximum mean values about 2-3 times greater than the minimum ones), *D.*
307 *seriata* (2-3 times), and *E. lata* (1.5-2 times), whereas less variation was observed for *C.*
308 *ampelina*, *F. mediterranea*, *Pa. chlamydospora* and *Pm. aleophilum* (Table 4). Only
309 significant differences among isolates in the necrosis lengths for *D. seriata* and *N.*
310 *parvum* were detected (Table 4).

311

312 Reisolations from the inoculated plants were successful for all of the inoculated
313 fungi, although percentages of positive reisolations were variable among the fungal
314 species (Table 4). In general, reisolations from 'Macabeo' plants were higher than those
315 from 'Tempranillo'. Additionally, reisolation percentages were generally higher for the
316 most virulent fungi (those causing longer necrosis, e.g. *Botryosphaeriaceae* species, and
317 *Pa. chlamydospora*) than those from weak pathogens (e.g. *C. ampelina* and *F.*
318 *mediterranea*).

319

320 **Discussion**

321

322 The results obtained during the field survey confirmed the occurrence of the
323 three main decline diseases of adult grapevine plants in Catalonia: eutypiose, BDA and
324 esca. External and internal symptoms of both eutypiose and BDA, recorded in May and

325 June, looked very similar and thus were not reliable to distinguish between these two
326 diseases, as it has been reported previously (Castillo-Pando *et al.*, 2001; Taylor *et al.*,
327 2005; Urbez-Torres *et al.*, 2006b). Eutypiose and BDA were only differentiated after
328 isolating the respective pathogens, *E. lata* and Botryosphaeriaceae spp, from the
329 diseased tissues. Additionally, observations of late symptoms of BDA as described by
330 Larignon *et al.* (2001) (including leaf chlorosis and necrosis, leaf fall, cluster wilting,
331 and the occurrence of a brown streaking of the wood under the bark) were occasionally
332 associated with plants affected by esca in this study. Thus, external symptom expression
333 of BDA-affected plants would need further investigation to clearly identify this disease.
334 Since BDA could be related with several species of Botryosphaeriaceae (Larignon *et al.*,
335 2001; Surico *et al.*, 2006; van Niekerk *et al.*, 2006), it would be also interesting to know
336 the pathogenic role of each botryosphaeriaceous fungus and the particular symptoms it
337 causes on adult plants.

338

339 Survey results also showed the high co-occurrence of internal symptoms
340 associated with eutypiose/BDA and esca in the same plant. This has been reported for
341 esca and eutypiose (Mugnai *et al.*, 1999), although we were not able to find any
342 quantitative example in previous literature. The occurrence of multiple lesion types in
343 the same plant in NE Spain, which were especially frequent in arms, may reflect
344 different events of infections through the pruning wounds. It is widely accepted that
345 most fungal pathogens associated with grapevine declines are airborne pathogens and
346 penetrate into the plant through the annual pruning of shoots (Carter, 1988; Mugnai *et*
347 *al.*, 1999; Surico *et al.*, 2006; van Niekerk *et al.*, 2006).

348

349 Apoplexy is characterized by the sudden wilting and death of vines or vine-parts
350 including clusters in midsummer. Apparent healthy leaves rapidly wilt and dry
351 basipetally in a few days (Mugnai *et al.*, 1999). Weather conditions are thought to
352 influence this phenomenon, since the apoplectic events often occur in hot summers,
353 when rainfall is followed by dry, hot weather (Mugnai *et al.*, 1999). Apoplexy has been
354 frequently described as a severe form of esca or specifically as an “acute esca
355 syndrome” (Larignon and Dubos, 1997; Mugnai *et al.*, 1999; Graniti *et al.*, 2000;
356 Surico, 2001; Surico *et al.*, 2006). However, the results obtained in this study suggest
357 that apoplectic events might not be restricted only to esca-affected plants, since a
358 significant percentage of surveyed plants showing apoplexy (60 %; n=15) were also
359 affected by V-shaped necroses, which are commonly associated with eutypiose and
360 BDA (Carter, 1988; van Niekerk *et al.*, 2006). Moreover, 20 % of apoplectic plants
361 (n=5) had V-shaped necroses but no black spots, central necroses or wood decay, which
362 are usually associated with esca. Mugnai *et al.* (1999) reported that both *D. seriata* and
363 *E. lata*, often isolated from V-shaped necroses, are frequently isolated from esca-
364 affected plants, which supports our field observations. In this study, cross sections of
365 arms and trunks of apoplectic vines showed a great percentage of dead, non-functional
366 tissues. No quantitative data were recorded on the type and extension of these internal
367 lesions. Further research is then needed to establish whether wood deterioration is
368 related with apoplexy. Additionally, water relationships of apoplectic plants should be
369 studied to establish whether water stress could be related to apoplexy.

370

371 Fungal isolations of diseased wood showing a particular symptom indicated a
372 general relationship between the lesion type and the isolated fungi. Thus, *D. seriata* and

373 *E. lata* were mainly isolated from V-shaped necroses, *Pa. chlamydospora* from black
374 spots, and *F. mediterranea* from decayed wood. Fungi isolated from central necroses
375 included several species, such as *D. seriata*, *Pa. chlamydospora* and *Pm. aleophilum*. In
376 general, these results are in accordance with previous reports (Mugnai *et al.*, 1996;
377 Larignon and Dubos, 1997; Mugnai *et al.*, 1999; Serra, 1999). However, some regional
378 differences are observed in the distribution of some of these pathogens when comparing
379 our data with those obtained in neighbouring regions. In France, Larignon and Dubos
380 (1997) isolated *E. lata* more frequently than any Botryosphaeriaceous fungi from
381 V-shaped necrosis, whereas our study and a previous one (Armengol *et al.*, 2001a)
382 showed a greater incidence of *D. seriata* than *E. lata* in Spanish vineyards. Úrbez-
383 Torres *et al.* (2006b) also showed this for California. It is suggested that *E. lata* is
384 probably less abundant in dryer Mediterranean climate countries as compared to other
385 cooler and rainy regions, since *E. lata* dispersion is enhanced when mean annual rainfall
386 exceeds 350 mm (Carter, 1991; Mugnai *et al.*, 1999).

387

388 Most of the species tested for pathogenicity showed significant longer necrotic
389 lesions than those in the 'Macabeo' and 'Tempranillo' controls. Only *N. huteum* and *N.*
390 *parvum* caused the wilting of inoculated plants but no external disease symptoms were
391 recorded for any other fungus-plant combination during the experimental period. Some
392 influencing factors have been suggested to explain this phenomenon, which include a
393 short experimental period, and other unsuitable experimental conditions such as the use
394 of young, potted plants, and the inoculation of fungi into green, non-lignified plant
395 tissues. Moreover, pathogenicity tests in this study were done using mycelium instead
396 of spores as inoculum sources, which does not correspond to natural conditions for

397 fungal infection. Additionally, it has been reported that some fungi (e.g. *F. mediterranea*) are only able to colonize grapevine tissues previously damaged by other
398 fungi (Larignon and Dubos, 1997). An unsuitable combination of the above factors
400 could lead to the unsuccessful fungal colonization of the inoculated plant tissues, as seen
401 on the low recovery of some fungi (e.g. *C. ampelina*, *F. mediterranea*) and the short,
402 non-significant necroses recorded occasionally in the pathogenicity test. Lack of foliar
403 symptom expression in artificially inoculated plants with known grapevine pathogens
404 has been reported occasionally (Larignon and Dubos, 1997; Mugnai *et al.*, 1999). Since
405 foliar symptom expression often fails to occur in artificial inoculations, pathogenicity
406 and virulence of fungi have been often concluded from the analysis of the necrotic
407 lesions caused by fungi in the plant vascular tissues, as reported in previous works
408 (Mugnai *et al.*, 1999; Van Niekerk *et al.*, 2004; Surico *et al.*, 2006).

409

410 Pathogenicity has been previously reported for several Botryosphaeriaceae
411 species (van Niekerk *et al.*, 2004; Taylor *et al.*, 2005; van Niekerk *et al.*, 2006), *E. lata*
412 (Carter *et al.*, 1985; Carter, 1991; Pérès *et al.*, 1999; Sosnowski *et al.*, 2007), *F. mediterranea* (Sparapano *et al.*, 2001), and *Pm. aleophilum* and *Pa. chlamydospora*
413 (Adalat *et al.*, 2000; Eskalen *et al.*, 2001; Sparapano *et al.*, 2001; Halleen *et al.*, 2007).
414 *Neofusicoccum luteum* and *N. parvum* were the most virulent pathogens tested in our
415 study. While *N. parvum* was proven to be a virulent pathogen by van Niekerk *et al.*
416 (2004), pathogenicity of *N. luteum* seems controversial. Van Niekerk *et al.* (2004)
417 considered this species as a low virulent pathogen since it caused no significant
418 necroses on inoculated mature canes of 'Chardonnay' and 'Cabernet Sauvignon'
419 varieties in South Africa. However, in our study *N. luteum* was clearly pathogenic.

421 Pathogenicity of *D. seriata* has been also disputed, as summarized by Úrbez-Torres *et*
422 *al.* (2006b); it has been considered weakly pathogenic in Portugal (Phillips, 2002), but a
423 virulent pathogen in Chile (Auger *et al.*, 2004), Australia (Castillo-Pando *et al.*, 2001)
424 and South Africa (van Niekerk *et al.*, 2004). Additionally, Taylor *et al.* (2005) observed
425 no significant vascular lesions caused by this fungus on inoculated grapevine cuttings in
426 Australia. In our study, field observations of diseased tissues and the results obtained in
427 the pathogenicity test would suggest that *D. seriata* is pathogenic. Additionally, the
428 range observed in necrosis lengths also suggests variability in pathogen
429 virulence. This is in accordance with previous reports (Larignon *et al.*, 2001; van
430 Niekerk *et al.*, 2004).

431

432 *Eutypa lata* is a widely-known pathogen of grapevine (Carter, 1988; Carter,
433 1991; Dubos, 1996). In our study, all five isolates tested for pathogenicity on 'Macabeo'
434 plants caused significant necrosis while those in 'Tempranillo' were significant only in
435 three isolates (401, 411 and 427). These findings may indicate variability in pathogen
436 virulence but more isolates should be tested to confirm this hypothesis. Variability in
437 virulence of *E. lata* has been shown previously (Péros *et al.*, 1999; Sosnowski *et al.*,
438 2007). Pathogenicity of *Pa. chlamydospora* was also confirmed in this study, although
439 no foliar symptoms were observed during the experimental period. Foliar symptom
440 expression due to *Pa. chlamydospora* only have been observed after long inoculation
441 periods (2-3 years) in mature plants artificially inoculated with this pathogen
442 (Sparapano *et al.*, 2001). Foliar symptoms of esca have been reproduced on Thompson
443 Seedless vines 6 months after inoculation with *Pm. aleophilum* and *Pa. chlamydospora*
444 (W. D. Gubler, *pers. comm.*). The remaining species tested in our study were considered

445 non-pathogenic (*Phomopsis* sp. taxon 1) or weakly pathogenic (*C. ampelina*, *F.*
446 *mediterranea* and *Pm. aleophilum*) from the necroses they caused. However, pathogenic
447 effects have been observed for the latter two species (Adalat *et al.*, 2000; Eskalen *et al.*,
448 2001; Sparapano *et al.*, 2001).

449

450 Concomitant fungal pathogens occur in the same grapevine, each one causing a
451 particular wood lesion. This may lead to complex relationships among these pathogens
452 and the host plant. This study has shown that co-occurrence of internal disease
453 symptoms and their associated fungi are frequent in NE Spain, and that the relationships
454 between visual external symptoms and inferred internal lesions often are misleading.
455 This makes field diagnosis of the diseases difficult when only the external symptoms
456 are considered.

457

458

459 **Acknowledgements**

460

461 This research study was financed by the “Instituto Nacional de Investigación y
462 Tecnología Agraria y Alimentaria” (INIA) under project RTA03-058-C2-1. Soledad
463 Martos was supported by the “Departament d’Educació i Universitats de la Generalitat
464 de Catalunya” (Regional Government of Catalonia, Spain) and the European Social
465 Fund. The authors would like to thank V. Barnés and O. Jurado for their continuous
466 help in the laboratory work; and W. D. Gubler (University of California, Davis, CA,
467 USA) for his helpful comments on an early version of the manuscript.

468

469

470 **References**

471

472 Adalat K., Whiting C., Rooney S., Gubler W.D., 2000. Pathogenicity of three species of
473 *Phaeoacremonium* spp. on grapevine in California. *Phytopathologia
474 Mediterranea* **39**: 92-99.

475 Alves A., Correia A., Luque J., Phillips A., 2004. *Botryosphaeria corticola*, sp. nov. on
476 *Quercus* species, with notes and description of *Botryosphaeria stevensii* and its
477 anamorph, *Diplodia mutila*. *Mycologia* **96**: 598-613.

478 Anonymous, 2006. Anuario de estadística agroalimentaria 2004. Ministerio de
479 Agricultura, Pesca y Alimentación, Madrid, Spain (ISBN 978-84-491-0712-2).

480 Armengol J., Vicent A., García-Jiménez J., 2002. El decaimiento y muerte de vides
481 jóvenes (enfermedad de Petri) en España. *Phytoma España* **138**: 91-93.

482 Armengol J., Vicent A., Torné L., García-Figueres F., García-Jiménez J., 2001a. Fungi
483 associated with esca and grapevine declines in Spain: A three-year survey.
484 *Phytopathologia Mediterranea* **40 (suppl.)**: S325-S329.

485 Armengol J., Vicent A., Torné L., García-Figueres F., García-Jiménez J., 2001b.
486 Hongos asociados a decaimientos y afecciones de madera en vid en diversas zonas
487 españolas. *Boletín de Sanidad Vegetal, Plagas* **27**: 137-153.

488 Aroca A., García-Figueres F., Bracamonte L., Luque J., Raposo R., 2006. A survey of
489 trunk disease pathogens within rootstocks of grapevines in Spain. *European
490 Journal of Plant Pathology* **115**: 195-202.

491 Auger J., Esterio M., Ricke G., Pérez I., 2004. Black dead arm and basal canker of *Vitis*
492 *vinifera* cv. Red globe caused by *Botryosphaeria obtusa* in Chile. *Plant Disease*
493 **88**: 1286.

494 Carter M.V., 1988. Eutypa dieback. In: R. C. Pearson, A. C. Goheen (eds.).
495 Compendium of grape diseases, pp. 32-33. APS Press, St. Paul (MN), USA.

496 Carter M.V., 1991. The status of *Eutypa lata* as a pathogen. *Phytopathological Papers*
497 no. 32. CAB International, Oxon, UK.

498 Carter M.V., Bolay A., English H., Rumbos I.C., 1985. Variation in the pathogenicity of
499 *Eutypa lata* (= *E. armeniacae*). *Australian Journal of Botany* **33**: 361-366.

500 Castillo-Pando M., Somers A., Green C.D., Priest M., Sriskanthades M., 2001. Fungi
501 associated with dieback of Semillon grapevines in the Hunter Valley of New
502 South Wales. *Australasian Plant Pathology* **30**: 59-63.

503 Dubos B., 1996. L'eutypiose de la vigne, *Eutypa lata* (Pers. : Fr.) Tul. *Comptes Rendus*
504 *de l'Academie d'Agriculture de France* **82**: 21-30.

505 Eskalen A., Gubler W.D., Khan A., 2001. Rootstock susceptibility to *Phaeomoniella*
506 *chlamydospora* and *Phaeoacremonium* spp. *Phytopathologia Mediterranea* **40**
507 (suppl.): S433-S438.

508 Fischer M., 2006. Biodiversity and geographic distribution of Basidiomycetes causing
509 esca-associated white rot in grapevine: a worldwide perspective. *Phytopathologia*
510 *Mediterranea* **45 (suppl.)**: S30-S42.

511 Giménez-Jaime A., Aroca A., Raposo R., García-Jiménez J., Armengol J., 2006.
512 Occurrence of fungal pathogens associated with grapevine nurseries and the
513 decline of young vines in Spain. *Journal of Phytopathology* **154**: 598-602.

514 Graniti A., Surico G., Mugnai L., 2000. Esca of grapevine: a disease complex or a
515 complex of diseases?. *Phytopathologia Mediterranea* **39**: 16-20.

516 Halleen F., Mostert L., Crous P.W., 2007. Pathogenicity testing of lesser known
517 vascular fungi of grapevines. *Australasian Plant Pathology* **36**: 277-285.

518 Hoagland D.R., Arnon D.I., 1950. The water culture method for growing plants without
519 soil. California Agricultural Experiment Station, Circular no. 347. University of
520 California, Berkeley, (CA), USA.

521 Johnston A., Booth C. (eds.), 1983. Plant Pathologist's Pocketbook. 2nd Ed. CAB,
522 Slough, UK.

523 Larignon P., Dubos B., 1997. Fungi associated with esca disease in grapevine.
524 *European Journal of Plant Pathology* **103**: 147-157.

525 Larignon P., Dubos B., 2001. Le black dead arm. Maladie nouvelle à ne pas confondre
526 avec l'esca. *Phytoma - La Défense des Végétaux* **538**: 26-29.

527 Larignon P., Fulchic R., Cere L., Dubos B., 2001. Observation on black dead arm in
528 French vineyards. *Phytopathologia Mediterranea* **40 (suppl.)**: S336-S342.

529 Lecomte P., Leyo M., Louvet G., Corio-Costet M.F., Gaudillère J.P., Blancard D., 2005.
530 Le Black Dead Arm, genèse des symptômes. *Phytoma - La Défense des Végétaux*
531 **587**: 29-37.

532 Lehoczky J., 1974. Black dead-arm disease of grapevine caused by *Botryosphaeria*
533 *stevensii* infection. *Acta Phytopathologica Academiae Scientiarum Hungaricae* **9**:
534 319-327.

535 Mostert L., Groenewald J.Z., Summerbell R.C., Gams W., Crous P.W., 2006.
536 Taxonomy and pathology of *Togninia (Diaporthales)* and its *Phaeoacremonium*
537 anamorphs. *Studies in Mycology* **54**: 1-115.

538 Mugnai L., Graniti A., Surico G., 1999. Esca (black measles) and brown wood-
539 streaking: two old and elusive diseases of grapevines. *Plant Disease* **83**: 404-418.

540 Mugnai L., Surico G., Esposito A., 1996. Micoflora associata al mal dell'esca della vite
541 in Toscana. *Informatore Fitopatologico* **46**: 49-55.

542 Péros J.-P., Jamaux-Despréaux I., Berger G., Gerba D., 1999. The potential importance
543 of diversity in *Eutypa lata* and co-colonising fungi in explaining variation in
544 development of grapevine dieback. *Mycological Research* **103**: 1385-1390.

545 Phillips A.J.L., 2002. *Botryosphaeria* species associated with diseases of grapevines in
546 Portugal. *Phytopathologia Mediterranea* **41**: 3-18.

547 Phillips A., Alves A., Correia A., Luque J., 2005. Two new species of *Botryosphaeria*
548 with brown, 1-septate ascospores and *Dothiorella* anamorphs. *Mycologia* **97**: 513-
549 529.

550 Serra S., 1999. Relazione tra sintomatologia fogliare, alterazioni e micoflora del legno
551 in viti affette da mal dell'esca ed eutipiosi. *Informatore Fitopatologico* **49**: 30-34.

552 Sosnowski M.R., Lardner R., Wicks T.J., Scott E.S., 2007. The influence of grapevine
553 cultivar and isolate of *Eutypa lata* on wood and foliar symptoms. *Plant Disease*
554 **91**: 924-931.

555 Sparapano L., Bruno G., Graniti A., 2001. Three-year observation of grapevines cross-
556 inoculated with esca-associated fungi. *Phytopathologia Mediterranea* **40 (suppl.)**:
557 S376-S386.

558 Surico G., 2001. Towards commonly agreed answers to some basic questions on esca.
559 *Phytopathologia Mediterranea* **40 (suppl.)**: S487-S490.

560 Surico G., Mugnai L., Marchi G., 2006. Older and more recent observations on esca: a
561 critical overview. *Phytopathologia Mediterranea* **45 (suppl.)**: S68-S86.

562 Taylor A., Hardy G.E.St.J., Wood P., Burgess T., 2005. Identification and pathogenicity
563 of *Botryosphaeria* species associated with grapevine decline in Western Australia.
564 *Australasian Plant Pathology* **34**: 187-195.

565 Úrbez-Torres J.R., Gubler W.D., Peláez H., Santiago Y., Martín C., Moreno C., 2006a.
566 Occurrence of *Botryosphaeria obtusa*, *B. dothidea*, and *B. parva* associated with
567 grapevine trunk diseases in Castilla y Leon region, Spain. *Plant Disease* **90**: 835.

568 Úrbez-Torres J.R., Leavitt G.M., Voegel T.M., Gubler W.D., 2006b. Identification and
569 distribution of *Botryosphaeria* spp. associated with grapevine cankers in
570 California. *Plant Disease* **90**: 1490-1503.

571 Van Niekerk J.M., Crous P.W., Groenewald J.Z., Fourie P.H., Halleen F., 2004. DNA
572 phylogeny, morphology and pathogenicity of *Botryosphaeria* species on
573 grapevines. *Mycologia* **96**: 781-798.

574 Van Niekerk J.M., Fourie P.H., Halleen F., Crous P.W., 2006. *Botryosphaeria* spp. as
575 grapevine trunk disease pathogens. *Phytopathologia Mediterranea* **45 (suppl.)**:
576 S43-S54.

577

578 *Table 1.* Percentages of declining grapevine plants showing different internal symptoms for a
579 given external symptomatology.

580

External symptoms	Internal symptoms
<i>Number of plants</i>	
Eutypiose/BDA	40 % V-shaped necrosis
111 plants	22 % Black spots, central necroses, wood decay
	38 % V-shaped necrosis, black spots, central necroses, wood decay
Esca	7 % V-shaped necrosis
37 plants	37 % Black spots, central necroses, wood decay
	56 % V-shaped necrosis, black spots, central necroses, wood decay
Eutypiose/BDA + Esca	100 % V-shaped necrosis, black spots, central necroses, wood decay
5 plants	
Apoplexy	20 % V-shaped necrosis
26 plants	20 % Black spots, central necroses, wood decay
	60 % V-shaped necrosis, black spots, wood decay

581

582

583 *Table 2.* Percentages of declining grapevine plants showing different lesion types.

584

External symptoms ²	Number of different internal lesion types ¹				
	0	1	2	3	4
Eutypiose / BDA	2	53	30	12	3
Esca	3	16	52	24	5
Eutypiose / BDA + Esca	0	0	20	80	0
Apoplexy	0	19	46	19	16

585 ¹: Sum of row percentages = 100. Lesion types may include one or more of the following
 586 internal symptoms in the same plant: V-shaped necrosis, irregularly-shaped necrosis around the
 587 pith, black spots, wood decay.

588 ²: Summary of observed external symptoms: *Eutypiose*: stunted appearance of shoots at the
 589 early growth season, with small, cupped, and chlorotic leaves, and short internodes.
 590 *Esca*: interveinal chlorosis or discolorations (yellowish in white cultivars and reddish in
 591 red cultivars) eventually with leaf marginal or interveinal necrosis. *Apoplexy*: drastic leaf
 592 withering, whether partial (1 to several arms) or total (whole plant).

593

594 Table 3. Number of fungi isolated from wood lesions of declining grapevines.

Plant part	Species	Lesion type ¹				Total
		V-shaped necroses	Black spots	Central necroses	Wood decay	
Arms	<i>Acremonium</i> sp.	0	0	1	1	2
	<i>Botryosphaeria dothidea</i>	0	0	1	0	1
	<i>Cryptovalsa ampelina</i>	0	0	1	0	1
	<i>Cylindrocarpon liriodendri</i>	0	0	1	0	1
	<i>Diplodia seriata</i>	91	8	17	5	121
	<i>Dothiorella viticola</i>	1	0	0	0	1
	<i>Eutypa lata</i>	47	1	8	3	59
	<i>Eutypa leptoplaca</i>	1	0	0	0	1
	<i>Eutypella vitis</i>	1	0	0	0	1
	<i>Fomitiporia mediterranea</i>	3	1	2	19	25
	<i>Fusarium</i> spp.	3	0	3	1	7
	<i>Neofusicoccum parvum</i>	11	1	3	0	15
	<i>Phaeoacremonium aleophilum</i>	2	4	11	1	18
	<i>Phaeoacremonium viticola</i>	0	0	1	0	1
	<i>Phaeoacremonium</i> sp.	1	0	0	0	1
	<i>Phaeomoniella chlamydospora</i>	11	61	19	4	95
	<i>Phoma</i> -like sp.	1	2	0	0	3
Trunk	<i>Phomopsis</i> spp.	7	0	0	0	7
	<i>Stereum hirsutum</i>	0	1	0	0	1
	Unidentified <i>Botryosphaeriaceae</i>	6	0	1	0	7
	Unidentified <i>Diatrypaceae</i>	1	0	1	1	3
	Unidentified species	8	6	6	2	22
	<i>Acremonium</i> sp.	0	1	0	0	1
	<i>Botryosphaeria dothidea</i>	0	1	0	0	1
	<i>Cryptovalsa ampelina</i>	3	0	0	1	4
	<i>Cylindrocarpon liriodendri</i>	0	0	1	0	1
	<i>Diplodia seriata</i>	15	0	3	3	21
	<i>Eutypa lata</i>	8	1	2	2	13
	<i>Fomitiporia mediterranea</i>	0	0	3	16	19
	<i>Fusarium</i> spp.	1	0	3	0	4
	<i>Neofusicoccum luteum</i>	1	0	0	0	1
	<i>Neofusicoccum parvum</i>	5	1	0	0	6
	<i>Neofusicoccum vitifusiforme</i>	1	0	0	0	1
	<i>Phaeoacremonium aleophilum</i>	1	0	1	0	2
	<i>Phaeoacremonium</i> sp.	1	0	0	0	1
	<i>Phaeomoniella chlamydospora</i>	4	15	5	4	28
	<i>Phomopsis</i> spp.	0	0	1	0	1
	Unidentified <i>Botryosphaeriaceae</i>	1	0	1	0	2
	Unidentified species	0	0	1	2	3
Totals		236	104	97	65	502

595 1: Numbers of lesions examined for isolations: V-shaped necroses: n=657; black spots: n=314;

596 central necroses: n=297; wood decay: 187.

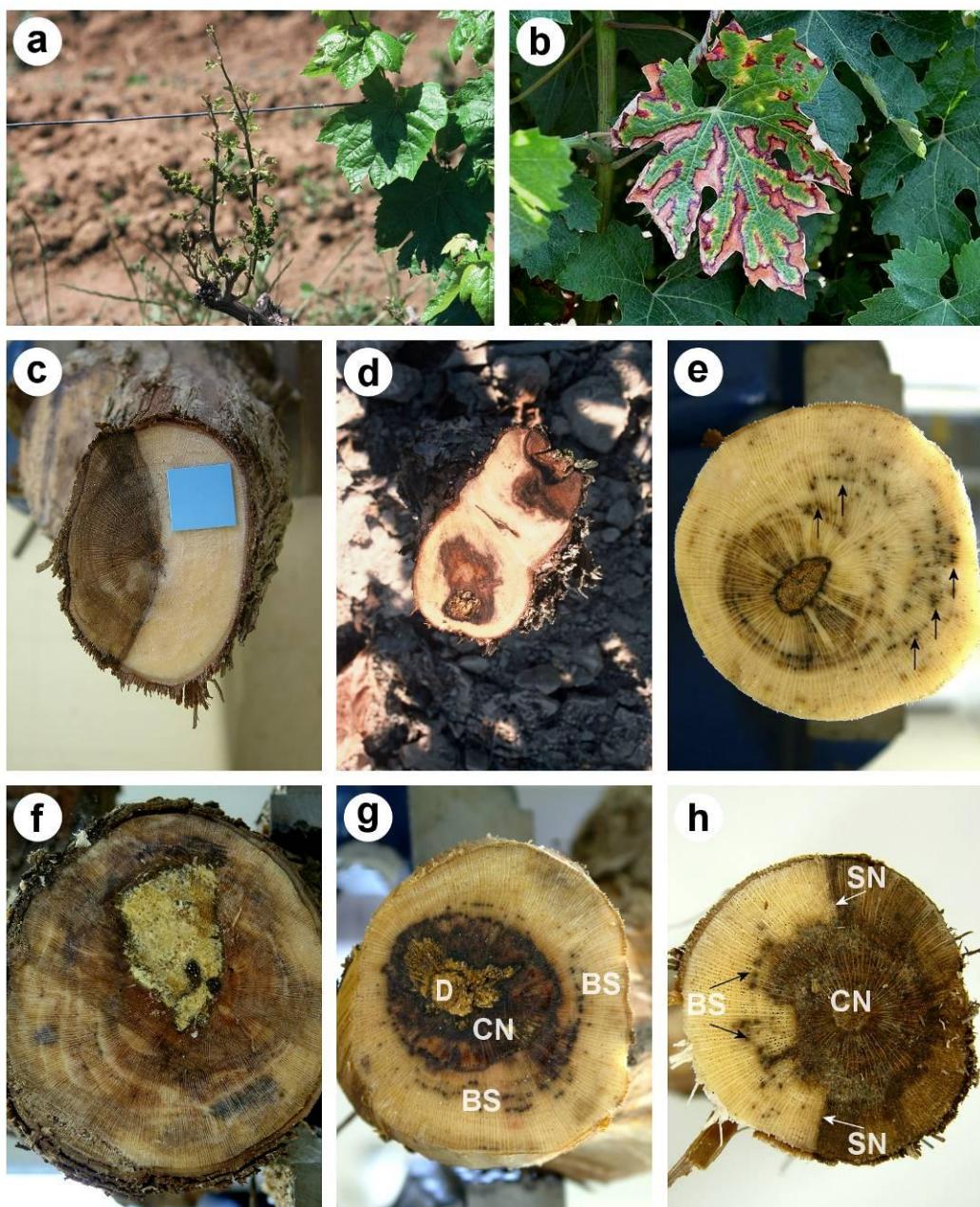
597

598 *Table 4.* Number of wilted plants, length of vascular necroses and percentage of mycelium
 599 recovery in grapevine plants (n=18) cvs. 'Macabeo' and 'Tempranillo' inoculated with selected
 600 fungi isolated from declining grapevines.

601

Species	Isolate	Macabeo			Tempranillo		
		Wilted plants	Necrosis (cm) ¹	% Myc. recovery	Wilted plants	Necrosis (cm) ¹	% Myc. recovery
<i>Botryosphaeria dothidea</i>	353	0	3.2	100	0	3.2	100
<i>Diplodia seriata</i> ²	398	0	2.4 a	100	0	3.5 a	67
<i>D. seriata</i>	421	0	0.8 c	83	0	1.9 b	28
<i>D. seriata</i>	I-29	0	1.6 b	94	0	3.0 ab	78
<i>D. seriata</i>	I-50	0	1.5 b	100	0	3.6 a	83
<i>Dothiorella viticola</i>	412	0	1.7	61	0	2.1	39
<i>Cryptovalsa ampelina</i>	413	0	1.5	50	0	2.5	39
<i>C. ampelina</i>	476	0	1.7	28	0	2.0	17
<i>Eutypa lata</i>	401	0	1.7	100	0	2.9	67
<i>E. lata</i>	411	0	1.9	94	0	4.0	50
<i>E. lata</i>	427	0	1.3	83	0	3.6	61
<i>E. lata</i>	438	0	1.4	100	0	2.3	50
<i>E. lata</i>	481	0	2.0	88	0	2.2	39
<i>Fomitiporia mediterranea</i>	356	0	0.7	33	0	1.5	11
<i>F. mediterranea</i>	452	0	1.4	33	0	2.5	22
<i>F. mediterranea</i>	I-62	0	1.1	18	0	1.4	17
<i>Neofusicoccum luteum</i>	519	5	8.6	100	10	8.2	100
<i>Neofusicoccum parvum</i> ²	387	0	4.0 c	94	0	5.6 b	100
<i>N. parvum</i>	396	5	10.8 a	100	1	13.8 a	78
<i>N. parvum</i>	434	5	12.7 a	100	0	11.6 a	100
<i>N. parvum</i>	444	1	6.7 b	100	0	6.9 b	94
<i>Phaeoacremonium aleophilum</i>	449	0	1.1	67	0	2.4	83
<i>Pm. aleophilum</i>	477	0	1.2	83	0	2.2	100
<i>Pm. aleophilum</i>	I-10	0	1.4	89	0	1.9	94
<i>Phaeomoniella chlamydospora</i>	454	0	2.5	89	0	4.5	67
<i>Pa. chlamydospora</i>	I-8	0	2.5	78	0	5.3	89
<i>Pa. chlamydospora</i>	I-64	0	2.5	83	0	5.5	89
<i>Phomopsis taxon 1</i>	459	0	1.0	89	0	1.8	89
Control		0	0.7	0	0	1.4	0

602 ¹: Values in bold characters are significantly different from the corresponding control mean
 603 value according to the two-tailed Dunnett's test.


604 ²: Mean values of necrosis lengths for *D. seriata* and *N. parvum* followed by different letters are
 605 different according to the Tukey's test (P<0.05) within each species.

606 *Figure 1.* Most habitual symptoms associated with grapevine declines: a) Reduced growth, and
607 small, chlorotic leaves. b) Foliar symptoms of esca in a red grape cultivar, characterised by the
608 interveinal necroses and chloroses. c) V-shaped necrosis. d) Irregularly-shaped necrosis around
609 the pith (central necrosis). e) Black spots (shown by arrows), corresponding to vascular
610 necroses. f) Wood decay, characterised by a yellowish soft tissue. g and h) Co-occurrence of
611 internal symptoms; BS, black spots, CN, central necrosis, D, wood decay, SN, V-shaped
612 necrosis. Symptoms a) and c) are usually associated with eutypiose and black dead arm,
613 whereas symptoms b) and d) to f) are associated to esca.

614

615 Figure 1

616

617

618

619

(low resolution image, for reviewing purposes only)