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Abstract 

Protein aggregation is a major obstacle in recombinant protein production as it 

reduces the yield of soluble polypeptides. Also, the formation of aggregates 

occurring in the soluble fraction is more common than formerly expected, and 

the prevalence of these entities might significantly affect the average quality of 

the soluble protein species. Usually, the formation of soluble aggregates 

remains unperceived, since analytical methods such as dynamic light scattering 

are not routinely applied as quality control procedures. We have developed a 

methodologically simple and fast procedure, based on microdialysis and image 

processing, that reveals the aggregation tendency of a given protein in a 

specific environment. Since we also show a good correlation between 

macroscopic aggregation and soluble aggregate formation, the microdialysis 

approach also permits to estimate the occurrence of soluble aggregates.  
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Introduction 

The conformational quality of recombinant proteins is an important matter of 

concern as it might dramatically influence the results of interactomic assays and 

other kind of proteomic studies 1. Despite the development of useful prospective 

algorithms 2, 3, the aggregation tendency of polypeptides obtained by 

recombinant DNA procedures remains uncertain before production. In addition, 

protein misfolding and aggregation are observed in all the microorganisms used 

for recombinant protein production 4. Bacteria, the most common protein 

production platform, often yields recombinant polypeptides totally or partially 

deposited as inclusion bodies 5. Although recent studies have shown that 

inclusion bodies might contain functional protein species suitable for in situ 

enzymatic reactions 6-12, protein production processes are in general aimed to 

soluble species. Therefore, inclusion bodies are separated by differential 

sedimentation and further discarded. However, protein species occurring in the 

soluble cell fraction can form soluble aggregates 11, namely oligomeric protein 

clusters with globular and fibril-like morphologies 13, 14. The formation of these 

structures, historically neglected, might compromise the average quality and 

biological activity of the soluble protein species 11, 14. Due to the small size of 

soluble aggregates 13, 14, their formation is unperceived and commonly 

unsuspected. Also, no quality controls are routinely applied in the context of 

recombinant protein production to monitor the conformational quality of the 

soluble protein fraction.   

We have here developed a methodologically simple analytical procedure that 

qualitatively determines the aggregation tendency of a given protein. Since 

intriguingly, protein deposition correlates with the size of soluble aggregates, we 

propose microdialysis as a routine screening method of both protein solubility 

and conformational quality of the soluble version under different experimental 

conditions.   
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Materials and methods 

Protein production and purification 

R9-GFP-H6 is a modular eGFP15 version of 30 kDa containing cationic peptides 

at both amino and carboxy ends, namely nine arginines (R9) and six histidines 

(H6) respectively. The chimerical gene was obtained by standard cloning 

procedures in which two complementary synthetic oligonucleotides from TIB 

MOLBIOL SL, encoding the R9 cationic peptide were inserted in a pET-21b(+)-

derived GFP-H6-encoding vector at the 5’ end of the gfp gene. Precise details 

of this construction will be given elsewhere. R9-GFP-H6 was produced in 

Rosetta BL21 (DE3) Escherichia coli cells under the control of the T7 promoter. 

NLSCtHis is a recombinant β-galactosidase derived from NLSCt 16 in which a 

his-tag was added at the C-terminal end of the NLSCt recombinant gene. This 

was achieved by inserting synthetic oligonucleotides from TIB MOLBIOL SL, 

coding for six histidines at the 3’ end of the NLSCt gene, in the pTNLSCt vector. 

NLSCtHis was produced in Escherichia coli BL21(DE3). Bovine serum albumin 

(BSA, ref 10735078001) was purchased from Roche. 

Bacteria were cultured in 750 ml of Luria-Bertani (LB) medium (10 g/l tryptone 

Scharlau 07-489, 10g/l sodium chloride Scharlau SO0227, 5 g/l yeast extract 

Scharlau 07-079) at 37 ºC in shaker flasks until an OD=0.5 was reached, and 

gene expression was then induced by adding 1 mM IPTG (Applichem 

A4773.0005). After 3 hours, cells were harvested by centrifugation (7,650 g for 

10 min at 4ºC), washed once in phosphate buffered saline (PBS) and stored at -

80ºC. The pellet was resuspended in buffer A (20 mM Tris-HCl pH 7.5, 150 mM 

NaCl, 20 mM Imidazole) and cells were disrupted by sonication according to 

standard procedures 17 in presence of a tablet of EDTA-free protease inhibitor 

cocktail (Complete, 11873580001 from Roche). The soluble cell fraction was 

separated from inclusion bodies by centrifugation at 14,841g, for 15 min at 4ºC. 

Upon filtration through 0.22 µm-filters, R9-GFP-H6 was purified by 

chromatography in Ni2+ columns (HiTrap Chelating HP 1 ml, 17-0408-01 GE 

Healthcare) in an AKTA FPLC. Positive pooled fractions in elution buffer (Tris-

HCl 20 mM pH 7.5, 150 mM NaCl, 500 mM Imidazole) were collected, 

quantified by Bradford’s procedure and stored at 4ºC. 

 

Microdialysis 
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Several drops (20 µl each) of model proteins at 0.1 mg/ml in elution buffer were 

deposited on VSWP02500 Millipore membrane filters floating on 25 ml of each 

of the buffers described in Table 1, for 30 min. Dialyzed drops were collected 

and centrifuged, and the soluble fractions were used in dynamic light scattering 

(DLS) analysis.  

 

In situ determination of fluorescence and total protein amounts 

After removal of dialyzed protein membranes were further air dried. Aggregated 

R9-GFP-H6 deposited on them was determined by measuring direct 

fluorescence in a Versa Doc Imaging System 4000MP (BioRad) or after 

Coomasie or Ponceau staining, by using the GS-800 Calibrated Densitometer 

(BioRad). Data was obtained in triplicate as relative density units/mm2 using the 

Quantity One program. 

 

Dynamic light scattering 

Volume size distributions of aggregates in the soluble fraction were measured 

using a DLS analyzer at the wavelength of 633 nm, combined with non-invasive 

backscatter technology (NIBS) (Zetasizer Nano ZS,Malvern Instruments 

Limited, Malvern, U.K.). Particle size dispersions of R9GFPH6 in different 

buffers were measured at 22 ºC after centrifugation (at 11,148 g for 15 min).  

 

Statistical analysis 

Linear regression analyses were performed by using the SigmaPlot software 

(ver 10.0), from which the obtained confidence levels (p) are shown. 
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Results and discussion 

In our routine laboratory practice, we had commonly noted protein deposition on 

membrane filters when performing drop microdialysis, and we wondered if this 

fact could be related with the extent of protein aggregation in a given buffer. To 

evaluate this possibility, we explored the potential connection between protein 

deposition and aggregation by using an aggregation prone fluorescent protein 

(R9-GFP-H6) as a model. For that, upon production in E. coli, drops of freshly 

purified R9-GFP-H6 were microdialyzed (Figure 1A) against six different buffers 

commonly used for protein storage and handling (Table 1). The dialyzed 

material was centrifuged at 14,841 g and the protein remaining in the soluble 

fraction was quantified to determine the extent of aggregation, which ranged 

from undetectable levels to essentially 100 % of the total protein (Table 1). This 

indicated that buffer composition dramatically influences R9-GFP-H6 solubility 

in an extremely wide range, and pointed out buffer selection as a critical issue 

regarding solubility of aggregation-prone proteins. Interestingly, the low salt 

buffers 1 and 3 were the most convenient to keep R9-GFP-H6 in a soluble 

status.  

To test the value of microdialysis as a convenient screening method for protein 

aggregation, the amounts of R9-GFP-H6 protein deposited on the membrane 

dialysis were determined indirectly by fluorescence emission, and directly by 

Coomassie-blue and Ponceau staining methods (Figure 1A). The visual 

appearance on the unstained and stained membranes was highly consistent in 

different aliquots of the same protein sample but dissimilar when comparing 

different buffers (Figure 1B). Fluorescence emission and Coomassie-blue 

staining values correlated, at acceptable levels of confidence, with the fraction 

of insoluble R9-GFP-H6 (p= 0.0518 and p= 0.0576 respectively) found in the 

respective buffers (Table 2). In fact, fluorescence emission and Coomassie-blue 

staining data evolved in parallel in different samples showing a good lineal 

correlation between them (p= 0.0136, not shown). This indicated a sufficient 

robustness in the determination of protein amounts deposited on the filters. 

However, protein amounts determined by Ponceau staining resulted less 

reliable as indicators of protein aggregation (p= 0.3521, Table 2), indicating that 
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in our hands, Ponceau measurements are less quantitative regarding protein 

amounts.  

The good correlation between protein amounts deposited on the filters 

(determined by Coomassie blue staining) and the aggregation propensity was 

confirmed by using two additional (non fluorescent) proteins structurally differing 

from GFP, namely the extensively engineered E. coli β-galactosidase 

NLSCtHis, an structurally complex tetrameric protein (p= 0.0113), and a wild 

type commercial BSA, an essentially soluble protein (p= 0.0418, Table 2). This 

fact prompts to consider microdialysis as a reliable method for the fast 

screening of protein solubility, as its applicability is irrespective of the nature of 

the tested protein.  

At this stage, we wondered if the occurrence of macroscopic aggregation could 

be linked to the formation of soluble aggregates, a possibility that, as far as we 

know, had not been so far explored. In this regard, we explored by DLS the 

eventual presence of soluble R9-GFP-H6 and NLSCtHis oligomers and their 

size. Solutions of R9-GFP-H6 recurrently showed major peaks at between 20 

and 30 nm and in some cases, micro-aggregates of between 100 and 250 nm 

(Figure 2 A). While sizes of the smaller R9-GFP-H6 particles did not correlate 

with the extend of protein aggregation (p= 0.2094, Table 2), the sizes of the 

large particle population (> 100 nm) showed good correlation with the extent of 

R9-GFP-H6 in the insoluble fraction (p= 0.0086, Table 2) and therefore, also 

with Coomassie blue staining and fluorescence emission data (p= 0.0212 and 

p= 0.0422 respectively, not shown). The prevalence of the 20-30 nm particles is 

due to a self organized clustering of R9-GFP-H6 driven by the hanging R9 

peptides (Vazquez and coauthors, accepted for publication), while the larger 

particles seem to represent an evolving population of protoaggregates.   

On the other hand, soluble NLSCtHis peaks at around 15 nm, the size of the β-

galactosidase tetramer (Figure 2B). Larger particles of between 100 and 1000 

nm are observed in some buffers (Figure 2B), their size showing good 

correlation with the extent of protein aggregation (p= 0.0395, Table 2). The 

coincidence between size of soluble aggregates and the extent of insoluble 

protein aggregation suggest that the soluble supramolecular entities are 

intermediates in the protein aggregation process, leading to protein deposition 

as insoluble protein clusters. 
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In the context of the growing concerns about recombinant protein quality 1, 18, 

simple analytical approaches for the routine screening of protein aggregation 

tendency would be highly convenient. As the performance of microdialysis and 

further protein determination represented up around 90 min in full, and these 

simple procedures can be applied in parallel to a high number of samples, 

microdialysis is proposed here as a novel high-throughput, simple and fast 

prospective method appropriate for the comparative screening and monitoring 

of protein aggregation tendency, and indirectly, of the conformational quality of 

the residual population of soluble protein represented by the occurrence of 

soluble aggregates 14.    
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Figure 1  

Schematic representation of the micro-dialysis procedure, shown as a 

sequential pattern (A). The soluble protein present in the dialyzed samples (ds) 

was analyzed by dynamic light scattering for comparison with fluorescence 

emission and protein amounts determined on the filters (Table 2). Images of 

micro-dialysis membranes showing the deposited R9-GFP-H6 protein dissolved 

in 3 different buffers (namely 1, 4 and 6; see Table 1 for composition) (B). Six 

replicas were processed in each filter. In V, direct visualization of untreated 

filters; in CBS, pictures of filter sections after Coomassie-blue staining; in DU 

(densitometric units), smaller sections of the same stained filters processed 

through the Quantity one image software. 

 

Figure 2. Aggregate size distributions of soluble R9-GFP-H6 (A) and NLSCtHis 

(B) in different buffers (Table 1) measured by DLS. Plots obtained in buffers 1 

(red), 4 (green) and 6 (blue) are shown as representative examples. 
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