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Abstract. We classify new classes of centers and of isochronous centers
for polynomial differential systems in R2 of arbitrary odd degree d ≥ 7
that in complex notation z = x+ iy can be written as

ż = (λ+i)z+(zz)
d−7−2j

2 (Az5+jz2+j+Bz4+jz3+j+Cz3+jz4+j+Dz7+2j),

where j is either 0 or 1, λ ∈ R and A,B,C ∈ C. Note that if j = 0 and
d = 7 we obtain a special case of seventh polynomial differential systems
which can have a center at the origin, and if j = 1 and d = 9 we obtain
a special case of ninth polynomial differential systems which can have a
center at the origin.

1. Introduction and statement of the main results

In this paper we consider the polynomial differential systems in the real
(x, y)–plane that has a singular point at the origin with eigenvalues λ ± i
and that can be written as

(1) ż = (λ+i)z+(zz)
d−7−2j

2 (Az5+jz2+j+Bz4+jz3+j+Cz3+jz4+j+Dz7+2j),

where j is either 0 or 1, z = x+iy, d ≥ 7 is an arbitrary odd positive integer,
λ ∈ R and A,B,C ∈ C. When j = 0 we are considering the class of systems

ż = (λ+ i)z + (zz)
d−7
2 (Az5z2 +Bz4z3 + Cz3z4 +Dz7),

while when j = 1 we are considering the class of systems

ż = (λ+ i)z + (zz)
d−9
2 (Az6z3 +Bz5z4 + Cz4z5 +Dz9).

The vector field associated to this system is formed by the linear part (λ+i)z
and by a homogeneous polynomial of degree d formed by four monomials in
complex notation. The origin is either a weak focus or a center if λ = 0, see
for instance [1, 15].

For such systems we want to determine the conditions that ensure that
the origin of (1) is a center or an isochronous center. Of course these systems
for j = 0 and d = 7 coincide with a class of seventh polynomial differential
systems. So we call the class of polynomial differential systems (1) of odd
degree d ≥ 7 the generalized seventh systems. When j = 1 and d = 9 these
systems coincide with a class of ninth polynomial differential systems. So
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we call the class of polynomial differential systems (1) of odd degree d ≥ 9
the generalized ninth systems.

The problem of characterizing the centers and the isochronous centers
has attracted the attention of many authors. However there are very few
families of polynomial differential systems in which a complete classification
of centers or of isochronous centers has been done. Quadratic systems were
classified by Dulac in [6], Kapteyn in [10, 11], Bautin in [2], ŻoÃla̧dek in [19],
and Loud in [14], while the cubic systems with homogeneous nonlinearities
were classified by [13, 18, 20]. But we are very far to obtain a complete
classification of the centers for the polynomial differential systems of degree
3. As far as we know there were no results about centers and isochronous
centers for degrees 7 or 9.

The main result in this paper is the following one, which provides families
of centers and of isochronous centers of arbitrary high degree.

Theorem 1. For d ≥ 7 + 2j odd the following statements hold for system
(1).

(a) It has a center at the origin if and only if one of the following three
conditions holds.
(a.1) λ = b1 = (5 + j)A+ (3 + j)C = 0 if j = 0, 1,

(a.2) λ = b1 = Im(AC) = Re(A4D) = Re(C
4
D) = 0 if j = 0,

(a.3) λ = b1 = Im(AC) = Im(A5D) = Im(C
5
D) = 0 if j = 1.

Note that when condition (a.1) holds we have a Hamiltonian center
and when either condition (a.2) or condition (a.3) holds we have a
reversible center.

(b) It has an isochronous center at the origin if and only if one of the
following two conditions holds.

(b.1) λ = B = D = 0, C = A,
(b.2) λ = B = D = 0, C = (3− d)A/(d+ 1).

Note that if in Theorem 1 condition (a.1) holds and D = 0, then we have
a special center that also satisfies either condition (a.2) if j = 0, or condition
(a.3) if j = 1. This is a special center that is simultaneously Hamiltonian
and reversible.

The families of centers obtained in Theorem 1 were not known. Moreover
the families of isochronous centers were not known till now because they did
not appear in the well–known survey on the isochronous centers [3].

The paper is devoted to the proof of Theorem 1. To do it we have divided
the paper as follows. In Section 2 we introduce some preliminaries that will
be used later on. In Section 3 we provide the proof of Theorem 1(a), while
the proof of Theorem 1(b) is given in Section 4.
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2. Preliminaries

The proof of Theorem 1 needs the effective computation of the Liapunov
constants as well as of the period constants. We write

A = a1 + ia2, B = b1 + ib2, C = c1 + ic2, D = d1 + id2.

Writing system (1) in polar coordinates, i.e, doing the change of variables
r2 = zz and θ = arctan(Imz/Rez), it becomes

(2)
dr

dθ
=

λr + F (θ) rd

1 +G(θ) rd−1
,

where

F (θ) = (a1 + c1) cos(2θ)− (a2 − c2) sin(2θ) + b1+

d1 cos((8 + 2j)θ) + d2 sin((8 + 2j)θ),

G(θ) = (a2 + c2) cos(2θ) + (a1 − c1) sin(2θ) + b2

+ d2 cos((8 + 2j)θ)− d1 sin((8 + 2j)θ).

(3)

Since θ̇ = 1+G(θ)rd−1, sufficiently close to the origin θ̇ > 0. So if system
(1) has a center at the origin the same occurs for system (2).

The transformation (r, θ) 7→ (ρ, θ) defined by

ρ =
rd−1

1 +G(θ) rd−1

is a diffeomorphism from the region θ̇ > 0 into its image. If we write equation
(2) in the variable ρ, we obtain the following Abel differential equation

(4)

dρ

dθ
= (d− 1)G(θ)[λG(θ)− F (θ)]ρ3+

[(d− 1)(F (θ)− 2λG(θ))−G′(θ)]ρ2 + (d− 1)λρ
= A(θ)ρ3 +B(θ)ρ2 + Cρ.

These kind of differential equations appeared in the studies of Abel on the
theory of elliptic functions. For more details on Abel differential equations,
see [9], [4] or [8].

The solution ρ(θ, γ) of (4) satisfying that ρ(0, γ) = γ can be expanded in
a convergent power series of γ ≥ 0 sufficiently small. Thus

(5) ρ(θ, γ) = ρ1(θ)γ + ρ2(θ)γ
2 + ρ3(θ)γ

3 + . . .

with ρ1(θ) = 1 and ρk(0) = 0 for k ≥ 2. Let P : [0, γ0] → R be the
Poincaré map defined by P (γ) = ρ(2π, γ) and for a convenient γ0 > 0.
Then the values of ρk(2π) for k ≥ 2 controle the behavior of the Poincaré
map in a neighborhood of ρ = 0. Clearly system (1) has a center at the
origin if and only if ρ1(2π) = 1 and ρk(2π) = 0 for every k ≥ 2. Assuming
that ρ2(2π) = · · · = ρm−1(2π) = 0 we say that vm = ρm(2π) is the m-th
Liapunov or Liapunov–Abel constant of system (1). These constants were
also considered in the paper of Gasull, Guillamon and Mañosa [7].
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The set of coefficients for which all the Liapunov constants vanish is called
the center variety of the family of polynomial differential systems. By the
Hilbert Basis Theorem the center variety is an algebraic set. Necessary
conditions to have a center at the origin will be obtained by finding the
zeros of the Liapunov constants.

We note that the centre manifold, i.e., the space of systems (1) with
a centre at the origin is invariant with respect to the action group C∗ of
changes of variables z → ξz :

A → ξ(d−9−2j)/2ξ̄(d−7−2j)/2ξ5+j ξ̄2+jA, B → ξ(d−9−2j)/2ξ̄(d−7−2j)/2ξ4+j ξ̄3+jB,

C → ξ(d−9−2j)/2ξ̄(d−7−2j)/2ξ3+j ξ̄4+jC, D → ξ(d−9−2j)/2ξ̄(d−7−2j)/2ξ̄7+2jD.

(6)

To show the sufficiency of the found conditions we look for the existence
of a local analytic first integral defined in a neighborhood of the origin, or we
will show that system (1) is reversible. We recall that system (1) is reversible
with respect to a straight line if it is invariant under the change of variables
w = eiγz, τ = −t for some γ real. For system (1) we have the following
result whose proof can be found in [5].

Lemma 2. System (1) is reversible if and only if A = −Ae2iγ, B = −B,

C = −Ce−2iγ and D = −De−(8+2j)iγ for some γ ∈ R. Furthermore in this
situation the origin of system (1) is a center.

Once we have proven the existence of the so–called center variety of sys-
tem (1) we also want to compute which of the centers are isochronous. In
that case, let z = 0 be a center (that is, we assume that we are under the
hypothesis that guarantee that z = 0 is a center) and let V be a neigh-
borhood of z = 0 covered with periodic orbits surrounding z = 0. We can
define a function, the period function of z = 0 by associating to every point
z of V the minimal period of the periodic orbit passing through z. The
center z = 0 of system (1) is isochronous if the period of all integral curves
in V \ {0} is constant.

If we take the equation of θ′ = dθ/dt and we apply the change of variables
in (2) we obtain

T =

∫ 2π

0

dθ

θ′
=

∫ 2π

0

1

1 +G(θ)r(θ)d−1
dθ

=

∫ 2π

0
(1−G(θ)ρ(θ)) dθ = 2π −

∫ 2π

0
G(θ)ρ(θ) dθ,

where ρ(θ) =
∑

j≥1

ρj(θ)γ
j is given in (5) and ρj(θ) are the terms giving rise to

the Liapunov–Abel constants ρj(2π). Then system (1) has an isochronous
center at the origin if it is a center and satisfies

∫ 2π

0
G(θ)%(θ) dθ =

∑

j≥1

(∫ 2π

0
G(θ)ρj(θ) dθ

)
γj = 0,
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that is, if

(7) T =

∫ 2π

0

dθ

θ′
= 2π −

∑

j≥1

Tjγ
j = 2π,

with

(8) Tj =

∫ 2π

0
G(θ)ρj(θ) dθ = 0, for j ≥ 1.

The constants Tj will be called the period Abel constants.

3. Proof of Theorem 1(a)

We divide the proof of Theorem 1(a) into different parts.

3.1. Sufficient conditions for a center. In this subsection we will see
that conditions (a.1), (a.2) and (a.3) are sufficient to have a center at the
origin. For this we will prove that system (1) under one of these conditions
either has a first integral defined in a neighborhood of zero, or is reversible.

Under conditions (a.1) if we rescale system (1) by |z|d−7−2j it becomes

ż = iz|z|7+2j−d +Az5+j z̄2+j + ib2z
4+jz3+j − (5 + j)Ā

3 + j
z3+j z̄4+j +Dz̄7+2j

= i
∂H

∂z̄
,

where for d ≥ 7 + 2j odd we have

H =
2

9 + 2j − d
|z|9+2j−d − i

A

3 + j
z5+j z̄3+j +

b2
4 + j

z4+jz4+j + i
Ā

3 + j
z3+j z̄5+j

− i

8 + 2j
(Dz̄8+2j − D̄z8+2j) for d 6= 9 + 2j

and

H = log |z|2 − i
A

3 + j
z5+j z̄3+j +

b2
4 + j

z4+jz4+j + i
Ā

3 + j
z3+j z̄5+j

− i

8 + 2j
(Dz̄8+2j − D̄z8+2j) for d = 9 + 2j.

Note that the integral exp(H) for d = 9+2j and H for d ≥ 7+2j odd (with
d 6= 9 + 2j), are real and well defined at the origin. Therefore the origin is
a Hamiltonian center.

From conditions (a.2) and (a.3), we have that
(9)

B = −B̄,
Ā

A
=

C

C̄
,

(
Ā

A

)4+j

= (−1)1+j
(
D

D̄

)
,

(
C̄

C

)4+j

= (−1)1+j
(
D̄

D

)
.
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Now let θ1, θ2 and θ3 such that eiθ1 = −Ā/A, eiθ2 = −C̄/C and eiθ3 =
−D̄/D. Then by (9) we obtain

(10) θ1 = −θ2(mod. 2π) and θ2 =
1

4 + j
θ3(mod. 2π).

Now take γ = −θ1/2. Using (10) we have

e2iγ = e−iθ1 = −A

Ā
, e−2iγ = eiθ1 = e−iθ2 = −C

C̄
,

and

e−(8+2j)iγ = ei(4+j)θ1 = e−i(4+j)θ2 = e−iθ3 = −D

D̄
,

which clearly implies that system (1) under condition (a.2), or (a.3) is re-
versible and thus it has a center at the origin.

3.2. Necessary conditions for a center. In this subsection we will see
that conditions (a.1), (a.2) and (a.3) are necessary to have a center at the
origin. For this we first compute the Liapunov constants up to some or-
der and then show that the zeros of those Liapunov constants provide the
conditions either (a.1), or (a.2), or (a.3).

Proposition 3. Let j = 0. The Liapunov constants of system (1), with
d ≥ 7 odd, are

V1 = e2π(d−1)λ

V2 = b1,
V3 = −Im(AC),
V4 = 0,
V5 = 0,

V6 = Re
(
(5A+ 3C)D[(d− 4)A+ (d+ 2)C][(d− 9)A+ (d+ 7)C]

[(3d− 7)A+ (3d+ 1)C]
)
,

V7 = Im
(
(5A+ 3C)BD[A− C][(55d2 − 400d+ 657)A2

+ (110d2 − 220d− 514)AC + (55d2 + 180d+ 77)C
2
]
)
,

We remark that Vk ≡ ρk(2π) (mod. {V1, V2, . . . , Vk−1}) for k = 1, . . . , 8 and
also modulo a positive constant.

Proof. Solving ρ′1(θ) = (d − 1)λρ1(θ) and evaluating at θ = 2π we obtain

v1 = ρ1(2π) = e2π(d−1)λ. Then V1 = e2π(d−1)λ. In order to have a center at
the origin ρ1(2π) = 1, so in what follows we take λ = 0.

Substituting (5) into (4) we get that the functions ρk(θ) must satisfy

(11)

ρ′2 = Bρ21,
ρ′3 = Aρ31 + 2Bρ1ρ2,
ρ′4 = 3Aρ21ρ2 +B(ρ22 + 2ρ1ρ3),
ρ′5 = 3A(ρ1ρ

2
2 + ρ21ρ3) + 2B(ρ2ρ3 + ρ1ρ4),

ρ′6 = A(ρ32 + 6ρ1ρ2ρ3 + 3ρ21ρ4) +B(ρ23 + 2ρ2ρ4 + 2ρ1ρ5),
ρ′7 = 3A(ρ22ρ3 + ρ1ρ

2
3 + 2ρ1ρ2ρ4 + ρ21ρ5) + 2B(ρ3ρ4 + ρ2ρ5 + ρ1ρ6),
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where we have omitted that all the functions depend on θ. Note that all
these differential equations can be solved recursively doing an integral be-
tween 0 and θ, and recalling that ρk(0) = 0 for k ≥ 2. We have done all
the computations of this paper with the help of the algebraic manipulator
mathematica. These computations are not difficult but sometimes are long
and tedious.

Solving the equation ρ′2 = Bρ21 we get that ρ2(2π) = 2π(d − 1)b1. Then
V2 = b1. From now on we take b1 = 0.

Now we compute the solution ρ3(θ) of ρ′3 = Aρ31 + 2Bρ1ρ2, and we get
that ρ3(2π) = 2π(1− d) Im(AC). Then V3 = −Im(AC).

Computing the solution ρk(θ) for k = 4, 5 from the differential equation
for ρk(θ), we get ρk(θ) and in particular we obtain that Vk = 0, being Vk

equal to ρk(2π) when ρ2(2π) = ρ3(2π) = 0 for k = 4, 5.

Solving the differential equation for ρ6(θ) we get ρ6(θ) and in particular
we obtain from the expression of v6 = ρ6(2π) the value of V6 given in the
statement of Proposition 3 modulo ρ2(2π) = ρ3(2π) = 0 and a positive
constant. More precisely we can check that if we multiply v6 by −768/((d−
1)π) then

v6 =V6 + 2V3

(
(1551 + 783d− 687d2 + 81d3)a2(a2d2 − a1d1)+

(−354 + 860d+ 142d2 − 72d3)d2(a2c2 + a1c1)+

(−181− 117d+ 85d2 + 21d3)c22d2

(−517− 261d+ 229d2 − 27d3)d2a
2
1+

(543 + 351d− 255d2 − 63d3)c1(d2c1 − c2d1)+

(177− 430d− 71d2 + 36d3)d1(c2a1 − 5a2c1)
)
.

We compute the solution ρ7(θ) from the differential equation for ρ7(θ), we
get ρ7(θ), and in particular we obtain the expression for v7 = ρ7(2π) given
in the statement of Proposition 3 modulo ρ2(2π) = ρ3(2π) = ρ6(2π) = 0
and a positive constant. The computation of V7 is done in the same way as
V6. This completes the proof of the proposition. ¤

Proposition 4. Let j = 0. For d ≥ 7 odd if V1 = 1, Vk = 0 for k = 2, . . . , 7,
then one of the following conditions holds.

(a.1) λ = b1 = 5A+ 3C = 0,

(a.2) λ = b1 = Im(AC) = Re(A4D) = Re(C
4
D) = 0,

(c.3) λ = B = C = 0, d = 9 and Re(A4D) 6= 0,
(c.4) λ = B = (d − 9)A + (d + 7)C̄ = 0, d 6= 9 and condition (a.2) does

not hold,
(c.5) λ = B = (d− 4)A+ (d+2)C̄ = 0 and condition (a.2) does not hold,
(c.6) λ = B = (3d − 7)A + (3d + 1)C̄ = 0 and condition (a.2) does not

hold.
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Proof. From the fact that V1 = 1 we get that λ = 0. The condition V2 = 0
implies that b1 = 0. Furthermore to do V3 = 0 we will consider two different
cases: C = 0 and C 6= 0. In this last case we have that A = µC̄ with µ ∈ R.

Case 1: C = 0. Therefore

V6 = 5(d− 4)(d− 9)(3d− 7)Re(A4D).

In view of the factors of V6 and since d ≥ 7 odd, we need to consider two
different subcases.

Subcase 1.1: Re(A4D) = 0. Then we are under the hypotheses of condi-
tion (a.2).

Subcase 1.2: Re(A4D) 6= 0 and d = 9. We have

V7 = 7560 Im(BDA4) = 7560 b2Re(A
4D).

To have V7 = 0 we must impose b2 = 0, that is, B = 0. In this case we are
under the hypotheses of condition (c.3).

Case 2: A = µC̄, µ ∈ R and C 6= 0. Then

V6 = (5µ+3)((d−4)µ+d+2)((d−9)µ+d+7)((3d−7)µ+3d+1)Re(C̄4D).

In view of the factors of V6 we need to consider five different subcases.

Subcase 2.1: µ = −3/5. So we are under the hypotheses of condition
(a.1).

Subcase 2.2: Re(C
4
D) = 0. Therefore we are under the hypotheses of

condition (a.2).

Subcase 2.3: µ = −(d+ 2)/(d− 4), Re(C
4
D) 6= 0. Since b1 = 0, we have

V7 = −1008(d− 1)3(d+ 11)

(d− 4)4
b2Re(C

4
D).

Then, since d ≥ 7 odd, we get that V7 = 0 if and only if b2 = 0, that is
B = 0. In this case we are under the hypothesis of condition (c.5).

Subcase 2.4: µ = −(d+7)/(d−9), Re(C
4
D) 6= 0 and d 6= 9. Since b1 = 0,

we have

V7 =
24192(d− 1)3(d+ 31)

(d− 9)4
b2Re(C

4
D).

Then, since d ≥ 7 odd with d 6= 9, we get that V7 = 0 if and only if b2 = 0,
that is B = 0. In this case we are under the hypothesis of condition (c.4).

Subcase 2.5: µ = −(3d + 1)/(3d − 7), Re(C
4
D) 6= 0. Since b1 = 0, we

have

V7 =
9984(d− 1)3(13 + 3d)

(3d− 7)4
b2Re(C

4
D).

Then, since d ≥ 7 odd, we get that V7 = 0 if and only if b2 = 0, that is
B = 0. In this case we are under the hypothesis of condition (c.6). This
completes the proof of Proposition 4. ¤
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Now we show that conditions (c.k) with k = 3, . . . , 6 do not provide a
center at the origin.

Proposition 5. Let j = 0. Condition (c.3) does not provide a center at the
origin.

Proof. System (1) with d = 9, λ = B = C = 0 and Re(A4D) 6= 0 becomes

(12) ż = iz + zz̄(Az5z̄2 +Dz̄7).

Now if we make the change z → w = ξz with ξ = Ā3/16/A5/16 and use (6),
then we have that system (12) can be written as

(13) ẇ = iw + ww̄(w5w̄2 + D̃w̄7), D̃ =
DA3/2

Ā5/2
∈ C,

with the condition Re(D̃) 6= 0. We write D̃ = d̃1 + id̃2. For system (13) (in
view of Proposition 3) we have that V2 = · · · = V7 = 0. Now using ρ1, . . . , ρ7
computed in the proof of Proposition 3 and using that

ρ′8 = 3A(ρ2ρ
2
3 + ρ22ρ4 + 2ρ1ρ3ρ4 + 2ρ1ρ2ρ5 + ρ21ρ6)

+B(ρ24 + 2ρ3ρ5 + 2ρ2ρ6 + 2ρ1ρ7),
(14)

we get that

V8 = d̃1(295|D̃|2 − 252),

which V8 ≡ ρ8(2π) (mod. {V1, V2, . . . , V7}), and also modulo a positive con-

stant. Therefore, in order that V8 = 0, since d̃1 6= 0, we need to impose
that

|D̃|2 = 252

295
, that is d̃1 =

√
252

295
cos(ψ), d̃2 =

√
252

295
sin(ψ),

with ψ ∈ [0, 2π) \ {π/2, 3π/2}. Therefore condition (c.3) becomes

(c.3)’ λ = B = C = 0, D̃ =
√

252
295e

iψ, ψ ∈ [0, 2π) \ {π/2, 3π/2}.
Now (13) becomes

ẇ = iw + ww̄

(
w5w̄2 +

√
252

295
eiψw̄7

)
, ψ ∈ [0, 2π) \ {π/2, 3π/2}.

For this system and using that

ρ′9 = A(ρ33 + 6ρ2ρ3ρ4 + 3ρ1ρ
2
4 + 3ρ22ρ5 + 6ρ1ρ3ρ5 + 6ρ1ρ2ρ6 + 3ρ21ρ7)

+ 2B(ρ4ρ5 + ρ3ρ6 + ρ2ρ7 + ρ1ρ8),

ρ′10 = 3A(ρ23ρ4 + ρ2ρ
2
4 + 2ρ2ρ3ρ5 + 2ρ1ρ4ρ5 + ρ22ρ6 + 2ρ1ρ3ρ6 + 2ρ1ρ2ρ7

+ ρ21ρ8) +B(ρ25 + 2ρ4ρ6 + 2ρ3ρ7 + 2ρ2ρ8 + 2ρ1ρ9),

(15)

we get that V9 = 0 and V10 = cos(ψ), where Vk ≡ ρk(2π) (mod. {V1, V2, . . . , Vk−1})
for k = 9, 10, and also modulo a positive constant. However by hypothesis
we have that cos(ψ) 6= 0 and thus V10 6= 0. This implies that system (12)
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does not have a center at the origin and consequently condition (c.3) does
not provide a center. ¤

Proposition 6. Let j = 0. Condition either (c.4), or (c.5), or (c.6) does
not provide a center at the origin.

Proof. System (1) with λ = B = 0, C = Ā/µ (where µ is defined in the
Case 2 of the proof of Proposition 4) and Re(A4D) 6= 0 becomes

(16) ż = iz + (zz̄)
d−7
2 (Az5z̄2 +

1

µ
Āz3z̄4 +Dz̄7).

Now if we make the change z → w = ξz with ξ = A
(d−3)/(4(d−1))

/A(d+1)/(4(d−1))

and use (6), then we have that system (16) can be written as

(17) ẇ = iw + (ww̄)
d−7
2 (w5w̄2 +

1

µ
w3w̄4 + D̃w̄7), D̃ =

DA3/2

Ā5/2
∈ C,

with the condition Re(D̃) 6= 0. We write D̃ = d̃1 + id̃2. For system (17) (in
view of Proposition 3) we have that V2 = · · · = V7 = 0. Now using ρ1, . . . , ρ7
computed in Proposition 3 and using that ρ8 satisfies (14) we get that

V8 = d̃1(R
1
d +R2

d|D̃|2)
with R1

d and R2
d equal to

R1
d =





16128(d− 1)2 if (c.4) holds,

6048(d− 1)2 if (c.5) holds,

16896(d− 1)2 if (c.6) holds,

and

R2
d =





5d4 − 190d3 − 6180d2 − 51730d− 136465 if (c.4) holds,

55d4 + 110d3 − 4305d2 − 16780d− 16340 if (c.5) holds,

−1215d4 − 6030d3 + 7140d2 + 6590d+ 1195 if (c.6) holds.

We want to make V8 = 0. Since d̃1 6= 0 we get that |D̃|2 = −R1
d/R

2
d. Since

R1
d > 0 we have to restrict to the values of d for which R2

d < 0. Therefore,
in order that V8 = 0 we need to impose that

D̃ =

√
R1

d

−R2
d

eiψ, ψ ∈ [0, 2π) \ {π/2, 3π/2},

with some restrictions on d such that R2
d < 0. Therefore conditions (c.4),

(c.5) and (c.6) become

(c.4)’ λ = B = (d − 9)A + (d + 7)C̄ = 0, D̃ =
√
R1

d/(−R2
d)e

iψ, ψ ∈
[0, 2π) \ {π/2, 3π/2} and d ∈ {7, 9, . . . , 61};

(c.5)’ λ = B = (d − 4)A + (d + 2)C̄ = 0, D̃ =
√
R1

d/(−R2
d)e

iψ, ψ ∈
[0, 2π) \ {π/2, 3π/2} and d ∈ {7, 9};
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(c.6)’ λ = B = (3d − 7)A + (3d + 1)C̄ = 0, D̃ =
√
R1

d/(−R2
d)e

iψ, ψ ∈
[0, 2π) \ {π/2, 3π/2} and d ≥ 7 odd;

respectively. Now (17) becomes

(18) ẇ = iw + (ww̄)
d−7
2

(
w5w̄2 +

1

µ
w3w̄4 +

√
R1

d

−R2
d

eiψw̄7

)
,

with ψ ∈ [0, 2π) \ {π/2, 3π/2} and the corresponding restrictions on the
values of d given above. From (18) using the equations for ρ9 and ρ10 in
(15) we get that V9 = 0 and V10 = cos(ψ). However by hypothesis we have
that cos(ψ) 6= 0 and thus V10 6= 0. This implies that system (16) does not
have a center at the origin and consequently conditions either (c.4), or (c.5),
or (c.6) does not provide a center. ¤

Proposition 7. Let j = 1. The Liapunov constants of system (1), with
d ≥ 9 odd, are

V1 = e2π(d−1)λ

V2 = b1,
V3 = −Im(AC),
V4 = 0,
V5 = 0,
V6 = 0,

V7 = −Im
(
(3A+ 2C̄)D[(d− 2)A+ dC̄][(d− 11)A+ (d+ 9)C̄]

[(d− 5)A+ (d+ 3)C̄][(d− 3)A+ (d+ 1)C̄]
)

V8 = Re
(
(3A+ 2C)BD[A− C][(25d3 − 284d2 + 974d− 1023)A3

+ (75d3 − 434d2 + 162d+ 1121)A2C̄
+ (75d3 − 16d2 − 674d− 309)AC̄

+ (25d3 + 134d2 + 138d+ 11)C̄3]
)
,

We remark that Vk ≡ ρk(2π) (mod. {V1, V2, . . . , Vk−1}), for k = 1, . . . , 8 and
also modulo a positive constant.

Proof. Proceeding in the same way as in the proof of Proposition 3 we readily
get V1, V2 and V3 in the statement in the proposition.

Computing the solution ρk(θ) from the differential equation for ρk(θ), we
get ρk(θ) and in particular we obtain that Vk = 0, being Vk equal to ρk(2π)
when ρ2(2π) = ρk−1(2π) = 0 for k = 4, 5, 6.

Solving the differential equation for ρ7(θ) we get ρ7(θ) and in particular
we obtain from the expression of v7 = ρ7(2π) the value of V7 given in the
statement of Proposition 7 modulo ρ2(2π) = · · · = ρ6(2π) = 0 and a positive
constant. More precisely we can check that if we multiply v7 by 640/((d −
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1)π) then

v7 =V7 − V3

(
− 56a2d2a

2
1d

4 + 26c2d2a
2
1d

4 − 216a2d2c
2
1d

4 + 66c2d2c
2
1d

4+

56a32d2d
4 − 11c32d2d

4 + 48a2c
2
2d2d

4 − 78a22c2d2d
4 − 182a2d2a1c1d

4+

72c2d2a1c1d
4 + 14a31d1d

4 + 44c31d1d
4 + 72a1c

2
1d1d

4 − 84a22a1d1d
4−

24c22a1d1d
4 + 78a2c2a1d1d

4 − 234a22c1d1d
4 − 44c22c1d1d

4 + 52a21c1d1d
4+

168a2c2c1d1d
4 + 768a2d2a

2
1d

3 − 172c2d2a
2
1d

3 − 54a2d2c
2
1d

3+

450c2d2c
2
1d

3 − 768a32d2d
3 − 75c32d2d

3 + 12a2c
2
2d2d

3 + 516a22c2d2d
3+

1204a2d2a1c1d
3 + 18c2d2a1c1d

3 − 192a31d1d
3 + 300c31d1d

3+

18a1c
2
1d1d

3 + 1152a22a1d1d
3 − 6c22a1d1d

3 − 516a2c2a1d1d
3+

1548a22c1d1d
3 − 300c22c1d1d

3 − 344a21c1d1d
3 + 42a2c2c1d1d

3−
2640a2d2a

2
1d

2 − 144c2d2a
2
1d

2 + 4482a2d2c
2
1d

2 − 234c2d2c
2
1d

2+

2640a32d2d
2 + 39c32d2d

2 − 996a2c
2
2d2d

2 + 432a22c2d2d
2+

1008a2d2a1c1d
2 − 1494c2d2a1c1d

2 + 660a31d1d
2 − 156c31d1d

2−
1494a1c

2
1d1d

2 − 3960a22a1d1d
2 + 498c22a1d1d

2 − 432a2c2a1d1d
2+

1296a22c1d1d
2 + 156c22c1d1d

2 − 288a21c1d1d
2 − 3486a2c2c1d1d

2+

832a2d2a
2
1d+ 1292c2d2a

2
1d+ 54a2d2c

2
1d− 2034c2d2c

2
1d− 832a32d2d+

339c32d2d− 12a2c
2
2d2d− 3876a22c2d2d− 9044a2d2a1c1d−

18c2d2a1c1d− 208a31d1d− 1356c31d1d− 18a1c
2
1d1d+ 1248a22a1d1d+

6c22a1d1d+ 3876a2c2a1d1d− 11628a22c1d1d+ 1356c22c1d1d+

2584a21c1d1d− 42a2c2c1d1d+ 4296a2d2a
2
1 − 202c2d2a

2
1 − 4266a2d2c

2
1−

648c2d2c
2
1 − 4296a32d2 + 108c32d2 + 948a2c

2
2d2 + 606a22c2d2+

1414a2d2a1c1 + 1422c2d2a1c1 − 1074a31d1 − 432c31d1 + 1422a1c
2
1d1+

6444a22a1d1 − 474c22a1d1 − 606a2c2a1d1 + 1818a22c1d1 + 432c22c1d1−

404a21c1d1 + 3318a2c2c1d1
)
.

We compute the solution ρ8(θ) from the differential equation for ρ8(θ)
(see (14)), we get ρ8(θ), and in particular we obtain the expression for v8 =
ρ8(2π) given in the statement of Proposition 7 modulo ρ2(2π) = ρ3(2π) =
ρ6(2π) = ρ7(2π) = 0 and a positive constant. The computation of V8 is done
in the same way as V7. This completes the proof of the proposition. ¤

Proposition 8. Let j = 1. For d ≥ 9 odd if V1 = 1, and Vk = 0 for
f = 2, . . . , 8, then one of the following conditions holds.

(a.1) λ = b1 = 3A+ 2C = 0,

(a.3) λ = b1 = Im(AC) = Im(A5D) = Im(C
5
D) = 0,
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(d.3) λ = B = C = 0, d = 11 and Im(A5D) 6= 0,
(d.4) λ = B = (d− 11)A+ (d+ 9)C̄ = 0, d 6= 11 and condition (a.3) does

not hold, does not hold,
(d.5) λ = B = (d− 2)A+ dC̄ = 0 and condition (a.3) does not hold,
(d.6) λ = B = (d− 3)A+ (d+1)C̄ = 0 and condition (a.3) does not hold,
(d.7) λ = B = (d− 5)A+ (d+3)C̄ = 0 and condition (a.3) does not hold,

Proof. From the fact that V1 = 1 we get that λ = 0. The condition V2 = 0
implies that b1 = 0. Furthermore to make V3 = 0 we will consider two
different cases: C = 0 and C 6= 0. In this last case we have that A = µC̄,
with µ ∈ R.

Case 1: C = 0. Then

V7 = 3(d− 2)(d− 11)(d− 5)(d− 3)Im(A5D).

In view of the factors of V7 and since d ≥ 9 odd, we need to consider two
different subcases.

Subcase 1.1: Im(A5D) = 0. Therefore we are under the hypotheses of
condition (a.3).

Subcase 1.2: Im(A5D) 6= 0 and d = 11. In this case, we have

V8 = 25806 b2Im(A5D).

To have V8 = 0 we must impose b2 = 0, that is, B = 0. In this case we are
under the hypotheses of condition (d.3).

Case 2: A = µC̄, µ ∈ R. So
V7 =(3µ+ 2)Im(C

5
D)[((d− 2)µ+ d)((d− 11)µ+ d+ 9)((d− 5)µ+ d+ 3)]

[(d− 3)µ+ d+ 1].

In view of the factors in V7 we need to consider six different subcases.

Subcase 2.1: µ = −2/3. In this case we are under the hypotheses of
condition (a.1).

Subcase 2.2: Im(C
5
D) = 0. We are under the hypotheses of condition

(a.3).

Subcase 2.3: µ = −d/(d− 2) and Im(C
5
D) 6= 0. Since b1 = 0, we have

V8 =
176(d− 1)4(d+ 4)

(d− 2)5
b2Im(C

5
D).

Then, since d ≥ 11 odd, we get that V8 = 0 if and only if b2 = 0, that is
B = 0. Hence we are under the hypothesis of condition (d.5).

Subcase 2.4: µ = −(d+ 9)/(d− 11), Im(C
5
D) 6= 0 and d 6= 11. Therefore

since b1 = 0, we have

V8 = −137632(d− 1)4(d+ 49)

(d− 11)5
b2Im(C

5
D).
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Then, since d ≥ 9 odd, d 6= 11, we get that V8 = 0 if and only if b2 = 0, that
is B = 0. Then we are under the hypothesis of condition (d.4).

Subcase 2.5: µ = −(d+ 3)/(d− 5), Im(C
5
D) 6= 0. Since b1 = 0, we have

V8 =
2048(d− 1)4(d+ 19)

(d− 5)5
b2Im(C

5
D).

Then, since d ≥ 9 odd, we get that V8 = 0 if and only if b2 = 0, that is
B = 0. In this case we are under the hypothesis of condition (d.7).

Subcase 2.6: µ = −(d+ 1)/(d− 3), Im(C
5
D) 6= 0. Since b1 = 0, we have

V8 = −288(d− 1)4(d+ 9)

(d− 3)5
b2Im(C

5
D).

Then, since d ≥ 9 odd, we get that V8 = 0 if and only if b2 = 0, that is
B = 0. In this case we are under the hypothesis of condition (d.6). ¤

Now we show that conditions (d.k) with k = 3, . . . , 7 do not provide a
center at the origin.

Proposition 9. Let j = 1. Condition (d.3) does not provide a center at the
origin.

Proof. System (1) with d = 11, λ = B = C = 0 and Im(A5D) 6= 0 becomes

(19) ż = iz + zz̄(Az6z̄3 +Dz̄9).

Now if we make the change z → w = ξz with ξ = Ā1/5/A3/10 and using (6)
then we have that system (19) can be written as

(20) ẇ = iw + ww̄(w6w̄3 + D̃w̄9), D̃ =
DA2

Ā3
∈ C,

with the condition Im(D̃) 6= 0. For system (20) (in view of Proposition 7)
we have that V1 = · · · = V8 = 0. Now using ρ1, . . . , ρ8 computed in the
proof of Proposition 7 and using (15) we get that

V9 = d̃2(9|D̃|2 − 8),

which V9 ≡ ρ9(2π) (mod. {V2, . . . , V8}), and also modulo a positive constant.
Therefore, in order that V9 = 0 we also need to impose that

D̃ =
2
√
2

3
eiψ, ψ ∈ (0, 2π) \ {π}.

So condition (d.3) becomes

(d.3)’ λ = B = C = 0, D̃ =
2
√
2

3
eiψ with ψ ∈ (0, 2π) \ {π} and d = 11.

Now (20) becomes

ẇ = iw + ww̄

(
w6w̄3 +

2
√
2

3
eiψw̄9

)
, ψ ∈ (0, 2π) \ {π}.
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For this system and using that ρ10 was computed in (15) and using also

ρ′11 = 3A(ρ3ρ
2
4 + ρ23ρ5 + 2ρ2ρ4ρ5 + ρ1ρ

2
5 + 2ρ2ρ3ρ6 + 2ρ1ρ4ρ6 + ρ22ρ7

+ 2ρ1ρ3ρ7 + 2ρ1ρ2ρ8 + ρ21ρ9) + 2B(ρ1ρ10 + ρ5ρ6 + ρ4ρ7 + ρ3ρ8 + ρ2ρ9),

(21)

we get that V10 = 0 and V11 = sin(ψ), with Vk ≡ ρk(2π) (mod. {V2, . . . , Vk−1})
for k = 10, 11, and also modulo a positive constant. However by hypothesis
we have that sin(ψ) 6= 0 and thus V11 6= 0. Consequently condition (d.3)
does not provide a center. ¤

Proposition 10. Let j = 1. Condition either (d.4), or (d.5), or (d.6), or
(d.7) does not provide a center at the origin.

Proof. System (1) with λ = B = 0, A = µC̄ (where µ is defined in the case
2 in the proof of Proposition 8 and Im(A5D) 6= 0 becomes

(22) ż = iz + (zz̄)
d−9
2 (µC̄z6z̄3 + Cz4z̄5 +Dz̄9).

Now if we make the change z → w = ξz with ξ = C(d−3)/(4(d−1))/C̄(d+1)/(4(d−1))

and use (6) then we have that system (22) can be written as

(23) ẇ = iw + (ww̄)
d−9
2 (µw6w̄3 + w4w̄5 + D̃w̄9), D̃ =

DC̄2

C3
∈ C,

with the condition Im(D̃) 6= 0. For system (23) (in view of Proposition 7)
we have that V2 = · · · = V8 = 0. Now using ρ1, . . . , ρ8 computed in the
proof of Proposition 3 and using that ρ9 satisfies (14) we get that

V9 = d̃2(R
1
d +R2

d|D̃|2),
with R1

d and R2
d equal to

R1
d =





7680(d− 1)2 if we are in condition (d.4),

−420(d− 1)2 if we are in condition (d.5),

0 if we are in condition (d.6),

33600(d− 1)2 if we are in condition (d.7),

and

R2
d =





d4 − 116d3 + 942d2 + 16060d− 150887 if we are in condition (d.4),

28d4 + 46d3 − 651d2 + 456d− 524 if we are in condition (d.5),

1 if we are in condition (d.6),

73d4 − 1412d3 − 5466d2 + 124060d− 352775 if we are in condition (d.7).

We want to make V9 = 0. Then since d̃2 6= 0, we have that V9 6= 0 if
condition (d.6) is satisfied. Therefore condition (d.6) does not provide a
center.
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For conditions (d.4), (d.5) and (d.7) we have that V9 = 0 implies |D̃|2 =
−R1

d/R
2
d. Since R1

d > 0 in conditions (d.4) and (d.7) while R1
d < 0 in condi-

tion (d.5), we must restrict the values of d for which R2
d < 0 in conditions

(d.4) and (d.7) and R2
d > 0 in condition (d.5). Therefore

D̃ =

√
R1

d

−R2
d

eiψ, ψ ∈ (0, 2π) \ {π},

and with the restriction on d explained above. So conditions (d.4), (d.5)
and (d.7) become

(d.4)’ λ = B = 0, (d − 11)A + (d + 9)C̄ = 0, D̃ =
√
R1

d/(−R2
d)e

iψ, ψ ∈
(0, 2π) \ {π} and d ∈ {11, 13, . . . , 105};

(d.5)’ λ = B = 0, (d−2)A+dC̄ = 0, D̃ =
√
R1

d/(−R2
d)e

iψ, ψ ∈ (0, 2π)\{π}
and d ≥ 9 odd;

(d.7)’ λ = B = 0, (d − 5)A + (d + 3)C̄ = 0, D̃ =
√
R1

d/(−R2
d)e

iψ, ψ ∈
(0, 2π) \ {π} and d ∈ {7, 9, . . . , 19};

respectively. Now (23) becomes

(24) ẇ = iw + (ww̄)
d−9
2

(
µw6w̄3 + w4w̄5 +

√
R1

d

−R2
d

eiψw̄9

)
,

with ψ ∈ (0, 2π)\{π} and the corresponding restrictions on the parameter d
given above. From (24) using the equations for ρ10 and ρ11 of (15) and (21),
we get that V10 = 0 and V11 = sin(ψ). However by hypothesis we have that
sin(ψ) 6= 0 and thus V11 6= 0. This implies that system (24) does not have
a center at the origin and consequently condition either (d.4), or (d.5), or
(d.7) does not provide a center. ¤

4. Proof of Theorem 1(b)

We divide the proof of Theorem 1(b) in two different parts.

4.1. Sufficient conditions for an isochronous center. In this subsec-
tion we will see that conditions (b.1) and (b.2) are sufficient to have an
isochronous center. For this we will prove that under conditions (b.1), or
(b.2) equation (7) holds.

Since in the assumptions (b.1), or (b.2), we can assume that A 6= 0 (oth-
erwise we will obtain a linear center), we can make the change of variables

(25) ω = ξz where ξ =

(
A

d−3

Ad+1

)1/(4(d−1)

,

and system (1) with hypothesis (b.1) becomes

(26) w′ = iw + (ww̄)(d−7−2j)/2(w5+jw2+j + w3+jw4+j).
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Rewriting (26) in polar coordinates we obtain

r′ = 2rd cos(2θ) and θ′ = 1.

and clearly (7) holds.

Now system (1) with hypothesis (b.2) becomes

w′ = iw + (ww̄)(d−7−2j)/2
(
w5+jw2+j +

3− d

d+ 1
w3+jw4+j

)
.

In polar coordinates it has the form

(27) r′ =
4

d+ 1
rd cos(2θ) and θ′ = 1 +

2(d− 1)

d+ 1
rd−1 sin(2θ).

Therefore

dr

dθ
=

4rd cos(2θ)

d+ 1 + 2(d− 1)rd−1 sin(2θ)
with r(0) = r0.

Then integrating it and since r(θ) ≥ 0 for any θ we get that
(28)

r(θ) =

(−2(d− 1) sin(2θ) +
√
(d+ 1)2r2−2d

0 + 4(d− 1)2 sin2(2θ)

d+ 1

)1/(1−d)

Note that√
(d+ 1)2r2−2d

0 + 4(d− 1)2 sin2(2θ) ≥ |2(d− 1) sin(2θ)|
and thus r(θ) given in (28) is positive. Therefore, introducing (28) into (27)
we have that

(29)

∫ 2π

0

dθ

θ′
=

∫ 2π

0

(
1− 2(d− 1) sin(2θ)√

(d+ 1)2r2−2d
0 + 4(d− 1)2 sin2(2θ)

)
dθ = 2π,

since the function 2(d−1) sin(2θ)/
√
(d+ 1)2r2−2d

0 + 4(d− 1)2 sin2(2θ) is odd
in θ.

4.2. Necessary conditions for an isochronous center. In this subsec-
tion we will see that conditions (b.1), or (b.2) are necessary to have an
isochronous center. For this we will first compute the period constants up
to some order and then show that the zeros of those period constants are
precisely conditions (b.1), or (b.2).

We note that since ρ1(θ) = 1, then from (3) and (8) we have T1 = 2πb2.
Since from the conditions to be a center we have that b1 = 0 from now on
we will assume that B = 0.

Now we compute T2, using ρ2(θ) computed in the proof of Proposition 3
and equations (3) and (8), we get

T2 = 4(d− 3)|A|2 + 16Re(AC)− 4(d+ 1)|C|2 − (d+ 7)|D|2,
up to a non–zero constant. We distinguish two different cases.



18 J. LLIBRE AND C. VALLS

Case 1: A = 0. Then T2 becomes

T2 = −(
4(d+ 1)|C|2 + (d+ 7)|D|2).

In order that T2 = 0 we must impose C = D = 0. Then A = B = C =
D = 0, and the system (1) becomes linear. Therefore we do not consider
this case.

Case 2: A 6= 0. Since from V2 = 0 we have that Im(AC) = 0, we get that
C = µA with µ ∈ R. We will consider two different subcases.

Subcase 2.1: µ = −(5 + j)/(3 + j). Therefore C = −(5 + j)A/(3 + j) and
we are under the hypothesis (a.1). Then T2 becomes

T2 = −(d+ 7)

9

(
64|A|2 + 9|D|2).

Since A 6= 0, we get that T2 6= 0. Therefore this case does not provide an
isochronous center.

Subcase 2.2: µ ∈ R \ {−(5 + j)/(3 + j)}. Now C = µA and we are under
the conditions either (a.2) or (a.3). We consider two different subcases.

Subcase 2.2.1: j = 0. By the change of variables in (25) we can rewrite
system (1) as

w′ = iw + (ww)(d−7)/2[w5w2 + µw3w4 + D̃w7], D̃ =
DA3/2

A
5/2

.

Since we are in assumptions (a.2) we have that Re(A4D) = 0. Therefore

d̃1 = Re(D̃) = Re

(
DA3/2

A
5/2

)
=

1

|A|5Re(A
4D) = 0.

In what follows we denote d̃2 simply by d2. Computing Tk for k = 2, 3, 4, 5
we get

T2 = 4(d− 3) + 16µ− 4(d+ 1)µ2 − (d+ 7)d22,

T3 = 0,

T4 = 225d3µ4 + 1425d2µ4 − 1089dµ4 − 2289µ4 + 360d3µ3 − 1952d2µ3−
8040dµ3 + 7328µ3 − 90d3µ2 − 3570d2µ2 − 4608d22µ

2 + 19242dµ2+
9890µ2 − 360d3µ+ 1952d2µ+ 4552dµ− 43264µ− 135d3+
2145d2 + 12800d22 − 14665d+ 28335,

T5 = −d2
(− 1260µ3d4 − 3060µ2d4 − 2340µd4 − 540d4 − 5678µ3d3+

6450µ2d3 + 20078µd3 + 7950d3 − 3231µ4d2 + 1114µ3d2+
43608µ2d2 − 36666µd2 − 48025d2 + 42390µ4d− 658µ3d−
156222µ2d− 58830µd+ 202120d+ 42921µ4 − 183598µ3−
192000d22 + 69120d22µ

2 + 64104µ2 + 409918µ− 340545
)
,

where the period constant Tk has been computed modulo the constants
Tl = 0 for l = 2, . . . , k − 1 and modulo a non–zero constant.
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The period constants T2, T4 and T5 are polynomials in the variables d, d2
and µ. We want to study the zeros (d, d2, µ) of T2, T4 and T5 with d ≥ 7 an
odd positive integer. For doing that we consider the resultant of T2 and T4

with respect to µ. This resultant is a polynomial f1 in the variables d and
d2. After we consider the resultant of T2 and T5 with respect to µ. This
resultant is a polynomial f2 in the variables d and d2. The polynomials f1
and f2 have in common the factors d2. We define the polynomials g1 and
g2 as the polynomials f1 and f2 omitting the common factor d2. Then we
consider the resultant of g1 and g2 with respect to d2. This resultant is a
polynomial h in the variable d. It easy to check that the unique positive
odd integer root ≥ 7 of the polynomial h is d = 17. In short the common
zeros (d, d1, µ) of T2, T4 and T5 must have either d2 = 0, or d = 17.

Assume d2 = 0. Then T2 = 4(1− µ)(d− 3 + (d+ 1)µ) and T2 divides T4

and T5. So d2 = 0 and either µ = 1 or µ = (3 − d)/(d + 1) vanish T2, T4

and T5. The case d2 = 0 and µ = 1 corresponds to the condition (b.1) of
Theorem 1. The case d2 = 0 and µ = (3 − d)/(d + 1) corresponds to the
condition (b.2) of Theorem 1. Hence these two conditions are necessary for
having an isochronous center.

Assume d = 17 and d2 6= 0. Then

T2 = −8
(
3d22 + 9µ2 − 2µ− 7

)
,

T4 = −128
(− 11691µ4 − 8400µ3 + 36d22µ

2 + 8882µ2+
9144µ− 100d22 + 2065

)
.

Doing the resultant of T2 and T4 with respect to d1 we obtain the polynomial

1048576(m− 1)2(3m+ 1)2(9m+ 7)2(1311m+ 785)2.

Substituting d = 17 and µ for every one of the four roots of the previous
polynomial in T2, T4 and T5 we get three polynomials in the variable d2.
Taking into account that d2 6= 0, the unique set of the three polynomials
which have a common root is the set corresponding to d = 17 and µ = −1/3.
The common roots are d2 = ±4/3. But computing T6 and evaluating it at
(d, µ, d2) = (17,−1/3,±4/3), it is not zero. Consequently there are no more
candidates for isochronous centers. This completes the proof of Theorem
1(b) when j = 0.

Subcase 2.2.2: j = 1. By the change of variables in (25) we can rewrite
system (1) as

w′ = iw + (ww)(d−9)/2[w6w3 + µw4w5 + D̃w9], D̃ =
DA2

A
3 .

Since we are in the assumptions of condition (a.3) we have that Im(A5D) =
0. Therefore,

d̃2 = Im(D̃) =
1

|A|6 Im(DA5) = 0.
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In what follows we write d2 instead of d̃2. Computing Tk for k = 2, 3, 4, 5, 6
we get

T2 = −dd21 − 9d21 − 5dµ2 − 5µ2 + 5d+ 20µ− 15,

T3 = 0,

T4 = 27d3µ4 + 177d2µ4 − 247dµ4 − 397µ4 + 45d3µ3 − 221d2µ3−
1005dµ3 + 1341µ3 − 9d3µ2 − 453d2µ2 − 800d21µ

2 + 2541dµ2+
1081µ2 − 45d3µ+ 221d2µ+ 661dµ− 5877µ− 18d3 + 276d2+
1800d21 − 1950d+ 3852,

T5 = 0,

T6 = −2374168320d2µ6 + 4737709440dµ6 + 7111877760µ6−
6700703760d2µ5 + 66277756320dµ5 + 107348472d2d1µ

5−
466924920dd1µ

5 − 574273392d1µ
5 + 35034275760µ5−

442707480d2µ4 + 14809132800d21µ
4 + 88626216560dµ4+

542685528d2d1µ
4 − 4269915188dd1µ

4 − 2086113260d1µ
4−

153716853880µ4 + 2592000d4µ3 − 19615500d3µ3−
1062415200d31µ

3 + 10512799420d2µ3 + 106010745600d21µ
3−

104962054740dµ3 − 3087315d5d1µ
3 − 14482314d4d1µ

3+
102619440d3d1µ

3 − 378249256d2d1µ
3 − 514482969dd1µ

3+
16954862694d1µ

3 − 161533242780µ3 + 2592000d4µ2+
2057529600d41µ

2 − 44829000d3µ2 − 7823939200d31µ
2+

5429876520d2µ2 + 142752174400d21µ
2 − 151547440440dµ2−

8139285d5d1µ
2 + 18386676d4d1µ

2 + 185103072d3d1µ
2−

2136073170d2d1µ
2 + 16421485773dd1µ

2 − 7595804986d1µ
2+

331097668120µ2 − 2592000d4µ+ 19615500d3µ+ 2390434200d31µ−
3752713660d2µ− 45284356800d21µ+ 37737977620dµ−
7016625d5d1µ+ 65002014d4d1µ− 225114120d3d1µ+
205365160d2d1µ+ 2781415637dd1µ− 37108488186d1µ+
96344767260µ− 2592000d4 − 4629441600d41 + 44829000d3+
17603863200d31 − 2672382720d2 − 106303896000d21+
59129835240d− 1964655d5d1 + 32133024d4d1 − 264687192d3d1+
1861002066d2d1 − 14052617733dd1 + 30430025010d1−
154338492240,

where the period constant Tk has been computed modulo the constants
Tl = 0 for l = 2, . . . , k − 1 and modulo a non–zero constant.

The period constants T2, T4 and T6 are polynomials in the variables d, d1
and µ. We want to study the zeros (d, d1, µ) of T2, T4 and T6 with d ≥ 7 an
odd positive integer. For doing that we consider the resultant of T2 and T4

with respect to µ. This resultant is a polynomial f1 in the variables d and
d1. After we consider the resultant of T2 and T5 with respect to µ. This
resultant is a polynomial f2 in the variables d and d1. The polynomials f1
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and f2 have in common the factors d1. We define the polynomials g1 and
g2 as the polynomials f1 and f2 omitting the common factor d1. Then we
consider the resultant of g1 and g2 with respect to d1. This resultant is a
polynomial h in the variable d. It easy to check that the the polynomial
h has no odd positive integers roots d ≥ 7. In short the common zeros
(d, d1, µ) of T2, T4 and T6 must have either d1 = 0.

Assume d1 = 0. Then T2 = 5(1− µ)(d− 3 + (d+ 1)µ) and T2 divides T4

and T5. So d1 = 0 and either µ = 1 or µ = (3 − d)/(d + 1) vanish T2, T4

and T5. The case d1 = 0 and µ = 1 corresponds to the condition (b.1) of
Theorem 1. The case d1 = 0 and µ = (3 − d)/(d + 1) corresponds to the
condition (b.2) of Theorem 1. Hence these two conditions are necessary for
having an isochronous center. This completes the proof of Theorem 1(b)
when j = 1.
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