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Cost and Scalability Improvements to the
Karhunen-Loéve Transform
for Remote-Sensing Image Coding

Ian Blanes, Student Member, IEEE, Joan Serra-Sagrista, Member, IEEE

Abstract—The Karhunen-Loéve Transform is widely used in
hyperspectral image compression because of its high spectral
decorrelation properties. However, its use entails a very high
computational cost. To overcome this computational cost and to
increase its scalability, in this paper we introduce a multi-level
clustering approach for the Karhunen-Loéve Transform.

As the set of different multi-level clustering structures is
very large, a two-stage process is used to carefully pick the
best members for each specific situation. First, several candi-
date structures are generated through local search and eigen-
thresholding methods, and then, candidates are further screened
to select the best clustering configuration.

Two multi-level clustering combinations are proposed for
hyperspectral image compression: one with the coding per-
formance of the Karhunen-Loéve Transform, but with much
lower computational requirements and increased scalability, and
another one that outperforms a lossy wavelet transform, as
spectral decorrelator, in quality, cost, and scalability.

Extensive experimental validation is performed, with images
from both the AVIRIS and Hyperion sets, and with JPEG2000,
3d-TCE, and CCSDS-IDC as image coders. Experiments also in-
clude classification-based results produced by k-means clustering
and RX anomaly detection.

Index Terms—Low-cost, Karhunen-Loéve Transform, hyper-
spectral data coding, progressive lossy-to-lossless and lossy com-
pression, component scalability.

I. INTRODUCTION

URRENT remote sensors gather very large amounts of

information: they capture images with sizes ranging from
a few megabytes to the gigabyte, and they produce lots of such
images, increasing the amount of information produced, which
is expensive to store, and slow to manipulate and transmit.
Image compression techniques are capable of substantially
reducing image sizes, decreasing costs and improving user
interaction with the information.

A common kind of images that remote sensors acquire are
hyperspectral images, those with a few hundreds of spectral
components. In hyperspectral images, each of these compo-
nents represents the light of a given wavelength range for
the same spatial location, such that components are highly
correlated, and redundancy exist between them. An appropriate
transform applied in the spectral domain removes this redun-
dancy, and improves compression performance.

This work was supported in part by the Spanish and Catalan Governments,
and by FEDER, under grants TIN2009-14426-C02-01, TIN2009-05737-E,
SGR2009-1224, and FPU2008. Computational resources used in this work
were partially provided by the Oliba Project of the Universitat Autonoma de
Barcelona.
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Figure 1. The NASA AVIRIS Low Altitude image coded with JPEG2000,

with and without spectral transforms.
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Figure 2. Spectral transform cost for an image of size 224 x 2048 x 512

(z X y X x). Lossy compression.

Common spectral transforms are the Discrete Wavelet
Transform (DWT) and the Karhunen-Loéve Transform (KLT).
Their use provides substantial compression improvements,
with the KLT yielding significantly better results [1]. However,
the better performance of the KLT comes at the price of an
increase of two orders of magnitude in computational cost,
and at the price of not being scalable, which is the ability
of reverting the transform partially. Fig. 1 shows an example
of the quality improvements produced by spectral transforms,
when used in combination with the JPEG2000 coding system
standard.

In this article, we propose a family of variations to the
KLT, which will bring computational costs and scalabilities
comparable to those of the DWT, but with almost the same
compression performance as the original KLT.

Computational costs are an important issue to take into
account; for example, on a theoretical 1 Gflops CPU, ap-
plying and removing a KLT transform on an image of size
224 x 2048 x 512 (z x y x x) takes more than 4 minutes.
In contrast, it only takes 6 seconds if a DWT is employed
as spectral transform. A cost comparison among the KLT, the
DWT, and our proposal, when used as spectral decorrelators
on an image of this size, is provided in Fig. 2.
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High computational costs are also an issue in the Progressive
Lossy-to-Lossless (PLL) scenario, in which the coder used
produces lossless encodings when enough bytes are allocated,
but, as opposed to a pure lossless method, it also provides
lower quality versions of the image when not enough bytes are
available. In PLL, the Reversible Karhunen-Loéve Transform
(RKLT) [2], an approximation of the KLT, has to be employed.
For the Reversible KLT, similar cost and scalability improve-
ments will also be shown, and in this case, the RKLT will be
compared to a common reversible wavelet, the Integer Wavelet
Transform (IWT).

Several improvements on the computational cost of KLT
are found in the literature, starting with the Discrete Cosine
Transform (DCT), which was introduced as a low-cost alter-
native to the KLT [3]. The cost reduction stems from the
additional assumption of a first-order Markov model. While
still widely used in image coding, the DCT performs poorly
as spectral decorrelator. Later, the fast Approximate Karhunen-
Loéve Transform (AKLT) was introduced [4]. It is based on
linear perturbation theory and uses the DCT as the related
problem. It was also further improved as the AKLT, [5], which
extends the AKLT with second order perturbations.

Other strategies for cost reduction try to reduce transform
training costs, which amount approximately to one fifth of
the total cost. In [1], it is proposed to compute the empirical
covariance matrix from a small sample of the whole input,
and a subsampling factor of 1% is shown to be adequate
for hyperspectral images. This strategy is compatible with
our proposal, and will be discussed later. Another strategy
to reduce training computational costs is to train once the
KLT for a training set of images [6], and afterwards employ
the already trained transform for all images, although, with
this strategy, the transform is not specifically trained for each
image and its coding performance is worse.

On the other hand, the RKLT is a recent subject, and there
are few improvements that alleviate its cost. In [7], a recursive
clustered structure is used to reduce the computational cost of
the RKLT in lossless coding of electroencephalograms, and
in [8] RKLT is used for lossless compression of Magnetic
Resonance Imaging (MRI) images. Similarly, we developed a
multi-level clustered KLT structure for PLL [9]. This structure
yields greater savings, and leads to the family of structures
discussed in this work.

Two are the objectives of this paper: to reduce the compu-
tational cost of the KLT to an acceptable level, and to add
component scalability to the transform, both for lossy and
PLL image coding. To that purpose, the family of multi-level
KLT clustering structures has been analyzed, and a procedure
to pick appropriate transforms has been devised. In addition,
very extensive experimental testing has been performed for a
wide range of hyperspectral images, image coders, and quality
measures.

We should end this discussion by saying that our proposal
for reducing the computational cost of the KLT may still be
too high for its practical use for onboard compression. As
noted in [10], most image coding algorithms have excessive
complexity for onboard compression, and lossless predictive
compression methods are preferred. However, for on-the-

ground compression, our proposal provides very competi-
tive computational cost, improved component scalability, and
yields high coding and classification-based performance.

This article is organized as follows. Section II introduces the
proposed family of variations of the KLT. Then, Section III
describes a procedure to select notable elements of the pro-
posed family and describes how to measure their suitability.
Section IV contains the experimental results. Section V draws
some conclusions.

II. LOW-COST SCALABLE KARHUNEN-LOEVE
TRANSFORM

The KLT is a linear transform, constrained to provide
stochastic independence for centered Gaussian sources, and,
in this sense, optimality. This comes at the price of having to
apply a different transform for each set of sources.

Let X be a matrix that has N rows, one for each source,
and M columns, one for each sample. Then, Y, the outcome
after applying the transform, is computed as

Y = KLTy, (X) = QT X, (1)

where ©x = ;XX7T is the covariance matrix of X,
and () is the orthogonal matrix obtained from the Singu-
lar Value Decomposition (SVD) of Lx = QAQ~! (A =
diag(MA1,...,AN), A1 > A2 > ... > Ay). Note that sources
must be manually centered around zero if they do not have
Zero mean.

Once the transform matrix has been generated (or trained),
the KLT application consists only of a matrix multiplication.
If a lossy transform is desired, then the multiplication can be
naturally applied using fixed-precision numbers. But, if exact
recovery is needed, then additional precautions must be taken.
The problems arise from the matrix multiplication, which
is not exactly reversible because of the small imprecisions
caused by the use of floating-point arithmetic. This situation
can be resolved by decomposing the matrix multiplication into
reversible lifting steps, which can be later applied and reversed
without loss [11].

Originally, two lifting decomposition strategies were pro-
posed, the TERM and the SERM [2], where the latter trades
an increase of factorization time for less application costs.
Another variant was proposed in [12], where the quantization
noise introduced by the lifting steps was reduced substantially,
but with higher computational costs. We call this latter one the
3TERM.

A. Multi-level clustering

Three are the main sources for the computational cost of
the KLT: the covariance matrix calculation, and the forward
and reverse application of the transform. The three operations
have an effective computational complexity of O(n?), where
n is the number of spectral components. With this in mind, a
divide and conquer approach seems appropriate, as for each
division, the total cost is halved. Therefore, dividing a large
transform into multiple clusters (or spectral tiles), and applying
smaller transforms, yields significant reductions on all three
cost sources.
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Figure 3. Example of a multi-level clustering KLT structure. This structure
decorrelates 15 spectral components with 3 levels of clustering.

s 50 +
m
Z 404
) _—
x 30 ) ke Multi-Level
Z e — — pwT
n < - ingle-

20 4 ﬁ/./ Single-Level

10 4L ‘ \ \

0 0.5 1 15 2
Bitrate (bpppb)
Figure 4.  Comparison of compression performance for several spectral

transforms: full KLT, DWT, Single-Level KLT with 56 clusters, and multi-
level KLT with 56 clusters on the first level and successive levels with half
the number of clusters. Image is AVIRIS Yellowstone (Sc 0).

A drawback of this simple approach is that it only pro-
vides local decorrelation within each cluster. However, global
decorrelation can be achieved by applying additional transform
stages, where only the “most important” parts are further
decorrelated. This scheme is depicted in Fig. 3. We know
from [9] that using a homogeneous multi-level KLT structure,
where half of each cluster is forwarded to the next stage, is a
good start. In Fig. 4, the benefits of a homogeneous multi-level
structure can be observed. Nevertheless, as will be seen later,
other structures can be used obtaining further cost reductions.

To define a specific multi-level clustering KLT structure,
the notation C = {Cievel indes} 18 used. C; is the set of
clusters in level | of the structure C. For each cluster, let
Size(c; ;) be the size of the cluster, and Th(c; ;) the num-
ber of elements in said cluster that proceed to the next
level. As an example, Fig. 3 scheme is defined by the
set C = {c11,¢1.2,¢1,3,C21,C2,2,C31}, with, for instance,
SiZG(Cl’g) =5 and Th(CQ}l) = 2.

Due to the large number of possible structures, choosing a
specific multi-level structure from all the possible ones is not
a trivial problem. For example, for as few as 16 components,
the total number of possible structures' is 8.77 - 1026, More-
over, structure parts cannot be selected independently, as the
performance of parts of one level depends on the configuration
of the parts of the previous level.

How to select a structure as a whole for each specific
situation is addressed in Section III, while how to select

'Multi-level clustering structures for m components can be counted with
g(n) = 1+ Z?;; f(n,t)g(t), where f(n,t) is the number of one-level
clustering configurations of n components that forward ¢ components to the
next level.
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Figure 5. Comparison of the different eigen-thresholding methods. KLT
applied on a cluster of 28 components of the AVIRIS image Moffett Field.

individual structure parts is addressed here.

The structure specification can be divided into two kinds of
problems: determine the size of each cluster in the structure,
and, for each cluster, set the threshold on how many compo-
nents are forwarded to the next stage.

For the first problem, cluster size determination, a local
search may be reasonable, as the number of possible cluster
sizes for one level is relatively small. Moreover, search cost
can be reduced if some constraints are added to cluster sizes,
such as homogeneity within a level.

The second problem, deciding how many components are
forwarded to the next stage, can be effectively linked to eigen-
thresholding methods, which try to determine the amount of
components to retain after a KLT, precisely our situation. The
set of different eigen-thresholding methods is very large. The
ones found to be more relevant to this research are:

Scree test [13]. It is a subjective test based on the visual
inspection of a plot of the eigenvalues. The threshold is set
where the viewer determines there is the change of trend (i.e.,
the “elbow” of the plot).

Average Eigenvalue (AE). Components  with  above-
average eigenvalues are selected. Usually only the first
component is selected, on occasions two.

Empirical Indicator Function (EIF) [14]. Malinowski
discovered a simple function (Eq. 2) that predicted the correct
number of factors in his chemical experiments. It yields
results very similar to the scree test. It might be a good
automated replacement.

EIF = argmin
j=0..N

2

The following methods were also examined, but had to
be discarded due to more efficient alternatives, sensitivity
to non-Gaussian noise, or inability to operate on zero-mean
data: Energy Percentage (EP), Parallel Analysis (PA) [15],
Akaike Information Criterion (AIE) [16], Minimum Descrip-
tion Length (MDL) [17], [18], and Harsanyi-Farrand-Chang
(HFC) [19].

Fig. 5 provides an illustrative comparison of the different
eigen-thresholding methods. The figure depicts the energy ac-
cumulation for an example cluster after a KLT transform, and
indicates, according to each method, how many components
should be forwarded to the next level.

In the relevant eigen-thresholding methods, two clear trends
are observed. The first trend corresponds to the AE method,
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Figure 6. Effects of image subsampling for covariance calculation. The
AVIRIS image Jasper Ridge has been compressed at different bitrates with
JPEG2000 on lossy mode.

where one component is selected most of the times, and, on
rare occasions, two components are selected. The other trend
corresponds to the scree test and EIF. The scree test has the
disadvantage that human intervention is required every time a
threshold needs to be determined.

B. Subsampling

Image subsampling in the KLT has been known to substan-
tially reduce the training cost of the KLT [1]. The aim is to use
only a small sample of the image spatial locations to compute
the covariance matrix. Subsampling factors of p = 0.01
(1%) are known to provide almost the same compression
performance results on unclustered transforms.

For clustered transforms, image subsampling in the KLT
training also provides substantial cost reduction. It simply
needs to be applied in each of the clusters, since with clustered
transforms the number of spatial samples does not change.

We have reproduced the experiments in [1], and also found
p = 0.01 to be an adequate subsampling factor for the multi-
level clustering KLT approach. However, as shown in Fig. 6,
this factor is bitrate-dependent and could be further decreased
for low bitrates. For hyperspectral images, a p factor of 0.01
effectively reduces the cost to a small fraction, and leaves
application and removal as the main sources of cost.

III. STRATEGY FOR CANDIDATE SELECTION

In this section we formulate how to select which cluster
combinations to explore from all the possible ones, and how
to evaluate their suitability.

Strong similarities have been observed on the performance
of each multi-level clustered KLT structure across the different
imagery used. Fig. 7 shows how the images used in the
next section have similar behaviors. While the energy at each
component is not equal for the three different images, peaks
have the same width, which is a key aspect that allows result
extrapolation.

Two strategies for structure selection are proposed. Both
strategies produce various candidate structures for each spe-
cific situation; further screening leads to the selection of very
effective transforms. The idea behind both strategies is to
examine each cluster size, from 4 to 28, and forward as
many components as the various eigen-thresholding methods
suggest, producing a list of different candidate structures.

Hyperion Agricultural
———~ AVIRIS Lunar Lake
AVIRIS Yellowstone

Energy

—TT T
24 48 72 96 120 144 168 192 216
Component

Figure 7. Energy accumulation for two AVIRIS and one Hyperion images.
One level of clustering is applied, with 16 clusters, each of 14 components.

To reduce the solution space (i.e., candidate list) three
constraints are added. First, a constraint of cluster size ho-
mogeneity has been added to each clustering level:

V1,17, Size(c;) = Size(c ;).

Second, non-regular structures where the cluster number does
not divide the number of components are not examined, as
they can be easily adapted from regular structures, using one
cluster with fewer components. And third, structures with more
than one cluster on the top level are discarded, as early results
showed huge quality penalties.

As described below, strategies differ on whether a dynamic
eigen-thresholding method is used or not:

o Given the previous restrictions, if thresholds are known

a priori, the result is a fully static structure, where the
whole structure can be chosen before it is applied, and
does not vary with different images.
To define static structures, we set the same threshold
value for each cluster of a level, based on the average
output of either the EIF or the AE methods for a training
image. As all the clusters in a level have the same size
and threshold, static structures can be identified with a list
of L elements, corresponding to the number of clusters
of each level, their sizes and their thresholds:

[(#Cl, Size(cy), Th(cl)), A
(#Cp,1,Size(c, 1), Th(cp 1)), (#Ci, Size(cr), o)} ,

where ¢; is any cluster of level [.
For example, the structure [(2,5,3),(1,6,0)] has two
clusters of 5 components on the first level. From each
cluster of the first level, 3 components are forwarded to
the second level, where the structure only has one cluster
of 6 components.
This notation has the property that two structures with
the same prefix in its notation also share the same stages
until that point, which is useful to enumerate the possible
structures for a corpus of images. In Fig. 8, a tree is
shown, where each leaf is a different clustering structure,
and each structure is identified by the sequence of integers
corresponding to its path from the root to the leaf.

e On the other hand, a dynamic structure is produced if
either AE or EIF are used to set the threshold individually
for each cluster on the fly, and without any training.
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Figure 8. A tree represents all the possible static structures for a specific

corpus. This is a piece of the tree for hyperspectral images of 224 components.

Only structures with all clusters of the same size for all
levels are selected (as opposed to static structures, where
sizes are allowed to vary between levels). After the first
level of clusters, a thresholding method is used, and then,
in the next level, enough clusters are allocated to treat all
the forwarded components. This scheme is repeated until
there is just one cluster in the top level.

Two convenient tweaks are applied to the parameters.
First, to guarantee a decreasing number of clusters at
each level, thresholds are limited to half the number of
components of a cluster. Second, if the number of clusters
does not divide the number of forwarded components,
then, additional components are selected, starting with
those with more energy among all the clusters in that
level.

Following the strategies described in this section, a list of
candidate structures for hyperspectral images has been built.
For static structures, the whole tree, partially depicted in Fig. 8,
has been manually expanded, generating more than 200 nodes,
and 68 valid structures. As for dynamic structures, there are
8 sub-strategies to create one candidate structure for a given
image, that differ on thresholding method (AE, EIF) and
cluster size (4,7,14,28).

Once a list of candidate structures has been generated, each
candidate needs to be tested against the others to determine
the most suitable one. The suitability of a structure will be
determined by three criteria: quality, cost, and scalability. Each
criterion will be evaluated as follows:

o Quality is evaluated with the Signal-to-Noise Ratio”
(SNR) produced by the tested structure in relation to the
SNR produced by the full KLT transform. In Progres-
sive Lossy-to-Lossless scenario, the relative difference
of Compression-Ratio (CR) for lossless compression will
also be considered.

e Cost is calculated counting the total floating-point oper-
ations required to apply and remove a transform. Table I
provides operation counts for one cluster, for the lossy
case, and for the three lossless approximations. The total
cost of a transform, for N components applied to M
spatial locations, can be computed, as shown in Eq. 3, by
adding each cluster cost, and the cost of the additional

2As defined by SNR = 1010%10(%)‘

Table 11

TECHNICAL NAMES FOR AVIRIS AND HYPERION IMAGES USED.

[ Name

Technical Name

Size (x X y X 2)

AVIRIS Cuprite

f970619t01p02_r02

614 x 2206 x 224

AVIRIS Jasper Ridge

£970403t01p02_r03

614 x 2586 x 224

AVIRIS Low Altitude

£960705t01p02_r05

614 X 3689 x 224

AVIRIS Lunar Lake

£970623t01p02_r07

614 x 1431 x 224

AVIRIS Moffett Field

£970620t01p02_r03

614 x 2031 x 224

AVIRIS Yellowstone (Sc 0)

£060925t01p00_r12_sc00

677 x 512 x 224

AVIRIS Yellowstone (Sc 11)

f060925t01p00_r12_sc11

677 x 512 x 224

Hyperion Agricultural

EO1H0280342002068110PX

256 x 2905 x 224

Hyperion Coastal

EO1H0140342002050110PY

256 x 2905 x 224

Hyperion Coral Reef

EO1H0830742003120110PW

256 x 3127 x 224

Hyperion Tornado

EO1H0150332002121112PF

256 x 3352 x 224

Hyperion Urban

EO1H0440342002212110PY

256 x 2905 x 224

stage to guarantee zero-mean.

TotalCost(C) = 3M N + Z ClusterCost(c)  (3)
ceC

o Scalability has been evaluated measuring the dependen-
cies to decode only one component. In other words, the
number of components required for the inverse transform.
As the KLT is not scalable at all, clusters must be com-
pletely reversed to recover one of its components. Also,
clusters with dependencies first need their dependencies
reversed.

Each candidate structure has been evaluated according to
the previously set criteria, and results of each are discussed in
the next section.

IV. EXPERIMENTAL RESULTS

Two sets of hyperspectral imagery have been used to pro-
duce experimental coding results. One is the AVIRIS corpus,
frequently used in image coding [21], and the other is the
corpus from the space-borne Hyperion sensor of the EO-1
program [22]. Images of both sets are signed and have 16 bits
per sample. The spectral size of the Hyperion images is 242
components, but the last 18 are uncalibrated, and have been
discarded, thus matching the spectral size of 224 components
of the AVIRIS images. AVIRIS images have been cropped to
a size of 224 x 512 x 512 (z x y x x), while Hyperion images
have not been cropped, and have a fixed width of 256 columns
and a variable height ranging from 2905 to 3352 rows. For
readability, images are referenced by their short name, and
full technical names and details are provided in Table II.

The multi-level clustered versions of the KLT and RKLT
are only proposed as a spectral transform, one of the cod-
ing stages of a coding process, hence, to properly measure
their appropriateness as spectral transforms, the compression
performance of the whole coding process has to be assessed.
The coders selected for this purpose are: JPEG2000 [23], 3d-
TCE [24], and TER [25], an improved version of Consultative
Committee for Space Data Systems (CCSDS) recommendation
for Image Data Compression [26]. The first one is a standard-
ized multipurpose image coder, which includes support for
arbitrary spectral transforms. 3d-TCE is an embedded tarp-
based coder, with a performance similar to JPEG2000. And the
last one, TER, enhances the CCSDS recommendation, highly
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Table T
DETAIL OF CLUSTER COST (IN FLOPS). p IS THE SUBSAMPLING FACTOR, n = Size(c) IS THE NUMBER OF COMPONENTS OF THE CLUSTER, AND M IS
THE NUMBER OF SPATIAL LOCATIONS OF THE ORIGINAL IMAGE. SVD COST IS FROM [20], AND TERM/SERM APPLICATION COSTS ARE FROM [2]

KLT Variant
Stage Lossy KLT RKLT TERM ‘ RKLT SERM RKLT 3TERM
Covariance Matrix pM(n? +n +4)
Singular Value Decomposition ~ 9n3
Factorization - n3—%2+%—1 %—an—i—%’l—l %4—’12—2—%—&-5
Apply or Remove (done twice) | M(2n%2 —n) | M(2n? + 2n — 3) M@©2n? +n—1) M (3n? — 3)

focused on satellite image compression, with volumetric rate-
distortion, quality scalability, and other features. All three
coders are able to perform both lossy and PLL encodings.

Implementations chosen to perform the experiments are:
Kakadu for JPEG2000 [27], QccPack for 3d-TCE [28], TER
for CCSDS-IDC [29], and our own open-source implementa-
tion of the clustered KLT [30].

Candidate multi-level clustered KLT structures are evalu-
ated, as spectral transforms, in comparison to the original KLT,
and also to wavelets. The wavelet transforms used as spectral
transforms are the Cohen-Daubechies-Feauveau (CDF) 9/7 for
lossy coding, and the CDF 5/3 for PLL, both of them applied
with 5 levels.

The remaining of this section is organized as follows: first
the results for candidate multi-level KLT structures are dis-
cussed; then, Rate-Distortion (R-D) evolutions and CRs are an-
alyzed for the best structures; and finally, some classification-
based results are reported.

All the candidate structures have been tested in order to
assess their properties. In Table III, results in relation to
the KLT for the candidate structures are presented, and for
each structure, measures of the three criteria proposed in
the previous section are listed, for both lossy and PLL. As
can be seen, dynamic thresholds provide the greater cost
reductions and better scalabilities, while having a moderate
quality penalty. On the other hand, static thresholds guar-
antee stable quality with still good computational savings.
The most remarkable structures on the candidate list are the
one with static thresholding with the following configuration:
[(32,7,2),(4,16,6),(2,12,4),(1,8,0)], and the dynamic one
based on AE and a cluster size of 4 (AE size 4). The former
achieves almost the same quality as the full KLT, while
keeping cost lower than previous approaches, and still with a
decent scalability. And the latter outperforms a lossy wavelet
transform in all criteria, and is very competitive against
lossless wavelets. Note that a static structure, due to its nature,
might also be more amenable to hardware implementations.

From the AVIRIS corpus, Yellowstone images were ac-
quired in 2006 and calibrated with a different scaling fac-
tor [31]. For these Yellowstone images, there is a slightly bet-
ter static structure: [(32,7,3), (8,12,5),(2,20,7), (1,14,0)],
which is capable of obtaining higher qualities with a small cost
increase. However, for other images tested, this last structure
performs similarly to the other structures, while it has a higher
cost.

Further analysis of the performance of the two first struc-
tures follows. For brevity, from now on, they will be referred

(a) Static

(b) Dynamic for the AVIRIS im-
age Cuprite

Figure 9. Best structures of multi-level KLT clustering for hyperspectral
images according to the procedure described in Section III.
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Figure 10. Costs of the selected structures for an image of size 224 x 2048 x
512 (z X y X x). p=0.01.

as static and dynamic. Details on each structure organization
and costs can be found in Fig. 9 and Fig. 10, respectively.

Quality-evolution plots of the two selected structures are
shown in Fig. 11. Proposed structures perform well, both in
lossy and PLL, on all the images tested. Also, no significant
changes are appreciated whether JPEG2000, TCE or CCSDS-
IDC is used. As expected, the static structure yields almost the
same performance as the original transform, besides, on very
low bitrates it performs even better, due to the reduced amount
of side information required by the smaller KLT matrices.
On the Hyperion images, the reduction of side information
is not so relevant, as the proportion of side information to
the spatial size is lower, and still results are similar. Also as
expected, the dynamic structure consistently outperforms the
wavelet transform as spectral decorrelator in all the scenarios
tested.

Lossless compression rates are reported on Table IV, where
it can be observed that little impact is produced by the use
of the static clustered approach (usually bitstream sizes differ
less than 0.1 bpppb). On the other hand, a dynamic cluster
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approach produces larger bitstreams, which have CRs between
the RKLT and the IWT. Still, results are close to the ones of
the RKLT for the dynamic structure. Note that the proposed
transforms are also suitable to operate in near-lossless mode,
where the peak absolute error is bounded, if a scheme similar
to the ones proposed in [32], [33] is employed.

As for classification based results, two very common un-
supervised classification techniques are used: k-means clus-
tering [34], and Reed Xiaoli (RX) anomaly detection [35].
In this case, k-means has been configured to produce 10
clusters with spectral angle as distance function; for RX a
confidence coefficient of v = 99% has been set, and results are
reported using Preservation of Classification (POC). Fig. 12
reports the performance of both classifiers when tested on
images that have been compressed and uncompressed with
PLL procedures. It is important to note that, for k-means,
classes are more or less homogeneous in size, but for RX,
the class that represents anomalies is very small. Therefore, a
1% drop on POC for k-means is very acceptable while it is
not for RX.

On tests for both classification techniques, the RKLT and
its clustered variants perform similarly, except on one sample
on the RX results, where the RKLT produces a compression
artifact that the RX detector marks as anomaly. Nonetheless,
this artifact is produced at a bitrate where the RX performance
is already not acceptable. On the other hand, the IWT yields
lower classification performance than the RKLT for the same
bitrate.

In Fig 13, a visual comparison shows the different perfor-
mance of a RX anomaly detector depending of the transform
used. In order to produce visually appreciable results, the
RX detector result is not thresholded and images are highly
compressed. While all the techniques used introduced several
artifacts on the RX results, these are more noticeable with the
use of the dynamic structure or the IWT.

RX anomalies are usually computed after a KLT, and since
the transform is a shared part in image coding and RX
anomaly detection, [36] propose to improve the preservation
of anomalies by simultaneously detecting anomalies while the
image is coded with a KLT. In that context, if the evaluation
of the proposed transforms for RX anomaly detection proved
positive, a similar scheme could be set up to perform both
coding and detection.

V. CONCLUSIONS

In this paper, we investigate how to reduce the computa-
tional cost of the KLT to acceptable terms through the use of
multi-level clusterings. Clustered versions of the KLT provide
a good solution, as they require much less computational
resources than the KLT, they maintain its coding performance
if applied over multiple levels, and are compatible with the
use of subsampling in the covariance calculation, a technique
that virtually removes transform training costs. With the pro-
posed approaches, significant gains are achieved on the KLT
training, and on the forward and inverse application of the
transform. Besides, clustered transforms have also quite good
scalabilities.
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(b) Lossy coding of the AVIRIS image Moffett Field with TER
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Figure 11. R-D evolution of the proposed structures for various techniques
and images.

Our objective has been to find suitable multi-level clustering
structures, among all the possible clustering combinations, that
had low resource consumption, and yielded similar coding
performances as the KLT. However, as the set of possible
clusterings is very large, some strategy to select candidate
members is necessary, and to that purpose, eigen-thresholding
methods are useful. Eigen-thresholding methods, which are
used to discard noise components in a principal component
analysis, are here employed to help determine the number of
forwarded components between levels of clusters. Among the
eigen-thresholding methods examined, EIF and AE are the
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Table III
DETAILED RESULTS FOR STATIC AND DYNAMIC STRUCTURES. CODING METHOD 1S JPEG2000. ASNR IS THE AVERAGE OF THE SNR DIFFERENCE WITH
THE FULL TRANSFORM. IT IS SAMPLED AT 0.1k BPPPB FOR k£ = 1..20, AND IS MEASURED IN DB. ASIZE IS THE INCREASE OF SIZE FOR LOSSLESS
BITSTREAMS. COST ONLY INCLUDES TRAINING, APPLICATION AND REMOVAL OF THE SPECTRAL TRANSFORM, AND IS IN GFLOPS. A CONSTANT

SUBSAMPLING FACTOR OF p = 0.01 HAS BEEN USED FOR ALL KLT TRANSFORMS.

AVIRIS Cuprite:

Reference Transforms
Lossy PLL Both
Transform ASNR (min/max) Cost ASNR (min/max) ASize Cost Scalability (min/max)
Full KLT Transform 0.00 ( 0.00 / 0.00) 52.9 0.00 ( 0.00 / 0.00) 0.00% | 79.3 224.0 (224 /224)
Half Cluster [9] —0.02 (—0.12 / 40.06) 6.3 | —0.02 (—0.11 / 4+0.03) | —0.56% 9.7 42.0 (42 /1 42)
DWT (5 levels) —3.22 (—5.72 /| —2.23) 1.6 - - 36.0 (32 / 38)
IWT (5 levels) - — —3.23 (—6.17 / —1.84) | +8.01% 1.0 16.0 (11 / 17)
Multi-level clustering with dynamic thresholds
Lossy PLL Both
Transform ASNR (min/max) Cost ASNR (min/max) ASize Cost Scalability (min/max)
EIF size 28 +0.06 (—0.01 / +0.14) 9.1 | +0.10 (+0.02 / +0.21) —0.90% | 13.7 64.8 (51 /7 72)
EIF size 14 +0.04 (—0.04 / +0.12) 4.7 | 40.11 (4+0.01 / 40.24) | —0.92% 7.2 41.2 (29 / 51)
EIF size 7 —0.12 (—0.27 / —0.03) 2.5 | +0.00 (—0.14 / +0.24) | —0.48% 3.8 26.1 (19 / 32)
EIF size 4 —0.34 (—0.58 / —0.24) 1.6 | —0.13 (—0.41 / +0.21) | +0.10% 2.5 18.5 (13 / 25)
AE size 28 —0.05 (—0.13 / 4+0.02) 7.5 | +0.05 (—0.06 / +0.25) | —0.56% | 11.3 52.5 (46 / 55)
AE size 14 —0.08 (—0.17 / 0.00) 4.0 | 40.04 (—0.08 / 4+0.27) | —0.57% 6.0 35.0 (27 / 40)
AE size 7 —0.29 (—0.51 / —0.18) 2.0 | —0.09 (—0.34 / +0.25) | —0.03% 3.1 18.5 (17 / 19)
AE size 4 —0.34 (—0.89 / —0.22) 1.3 | —0.10 (—0.62/ +0.28) | 4+0.02% 2.0 12.9 (12 / 13)
Multi-level clustering with static thresholds (only the most relevant)
Lossy PLL Both
Transform ASNR (min/max) Cost ASNR (min/max) ASize Cost Scalability (min/max)
(8,28,6), (4,12,6), (2,12,5),(1,10,0)] | 4+0.06 (—0.06 / +0.16) 7.6 | +0.12 (+0.02 / +0.24) | —0.93% | 11.6 45.0 (45 / 45)
(16, 14, 3), (4,12, 6), (1,24, 0)] +0.09 (—0.08 / +0.18) 4.5 | 40.17 (+0.05 / 4+0.31) | —1.07% 6.9 41.0 (41 / 41)
(32,7,1),(4,8,1),(1,4,0)] —0.31 (—0.71 / —0.17) 2.0 | —0.10 (—0.49 / +0.27) | —0.03% 3.0 17.0 (17 /1 17)
(32,7,2),(4,16,6), (2,12,4), (1,8,0)] +0.04 (—0.09 / +0.14) 3.1 | +0.15 (4+0.03/ +0.34) | —0.99% 4.8 31.0 (31 / 31)
(32,7,2),(8,8,4),(2,16,10), (1,20,0)] [ 4+0.04 (—0.11 / +0.13) 3.1 | +0.15 (+0.04 / +0.30) | —0.97% | 4.8 35.0 (35 / 35)
(32,7,3),(8,12,5),(2,20,7),(1,14,0)] | +0.06 (—0.04 / 40.15) 3.9 | +0.12 (+0.02 / 4+0.25) | —0.93% 6.0 38.0 (38 / 38)
(56,4,1), (7,8, 4), (4,7,4), (1, 16, 0)] —0.14 (—0.35 / —0.07) 1.9 | 40.04 (—0.15 / +0.32) | —0.48% | 2.9 27.3 (26 7 29)
AVIRIS Yellowstone (Sc 0):
Lossy PLL Both
Transform ASNR (min/max) Cost ASNR (min/max) ASize Cost Scalability (min/max)
Half Cluster [9] —0.56 (—0.92 / —0.13) 6.3 | +0.01 (—0.56 / 4+0.57) | —0.20% 9.7 42.0 (42 /1 42)
DWT (5 levels) —7.92 (-11.26 / —5.71) 1.6 - - - 36.0 (32 / 38)
IWT (5 levels) - - —6.40 (-10.96 / —2.34) [+22.78% 1.0 16.0 (11 / 17)
AE size 4 —3.55 (—5.68 / —2.25) 1.3 | —2.00 (—5.14 / 40.50) | 4+9.09% 2.0 12.9 (12 / 13)
[(32,7,2), (4,16,6), (2,12,4), (1, 8,0)] —0.97 (—1.48 / —0.27) 3.1 | —0.08 (—0.98 / 4+0.94) | +1.37% 4.8 31.0 (31 / 31)
1(32,7,3),(8,12,5),(2,20,7), (1,14,0)] | —0.54 (—0.83 / —0.10) 3.9 | +0.12 (—0.44 / 40.84) | 40.09% 6.0 38.0 (38 / 38)
AVIRIS Yellowstone (Sc 11):
Lossy PLL Both
Transform ASNR (min/max) Cost ASNR (min/max) ASize Cost Scalability (min/max)
Half Cluster [9] —0.24 (—0.47 / —0.10) 6.3 | +0.22 (—0.22 / +0.84) —1.14% 9.7 42.0 (42 / 42)
DWT (5 levels) —5.47 (—8.87 / —3.68) 1.6 - - - 36.0 (32 / 38)
IWT (5 levels) - — | —3.81 (—8.31 7/ —0.20) [+15.39% | 1.0 16.0 (11 / 17)
AE size 4 —3.43 (—6.47 /| —2.25) 1.3 | —1.54 (—=5.20 / +0.93) | +8.54% 2.0 12.9 (12 / 13)
[(32,7,2), (4,16, 6), (2,12,4), (1,8,0)] | —0.70 (—1.09 / —0.41) 3.1 | +0.29 (—0.53 / +1.28) | —0.06% | 4.8 31.0 (31 /30)
[(32,7,3),(8,12,5),(2,20,7),(1,14,0)] | —0.32 (—0.52 / —0.13) 3.9 | 40.39 (-0.11 / 4+1.23) | —1.19% 6.0 38.0 (38 / 38)
Hyperion Coral Reef:
Lossy PLL Both
Transform ASNR (min/max) Cost ASNR (min/max) ASize Cost Scalability (min/max)
Half Cluster [9] —0.04 (—0.10 / 40.04) 19.4 | —0.04 (—0.11 / +0.05) +0.04% | 29.6 42.0 (42 /1 42)
DWT (5 levels) —2.26 (—2.85 / —1.86) 4.9 - - - 36.0 (32 / 38)
IWT (5 levels) - - —2.41 (—2.88 / —2.10) | +6.02% 3.1 16.0 (11 / 17)
AE size 4 —0.91 (—1.63 / —0.72) 3.9 | —0.83 (—1.54 / —0.63) | +0.71% 6.0 12.9 (12 / 13)
[(32,7,2),(4,16,6), (2,12, 4), (1,8,0)] —0.25 (—0.43 / —0.13) 9.5 | —0.20 (—0.28 / —0.11) | —0.34% | 14.5 31.0 (31 / 31)
[(32,7,3),(8,12,5),(2,20,7), (1,14,0)] | —0.25 (—0.42 / —0.17) 11.9 | —0.21 (—0.29 / —0.16) | —0.69% | 18.2 38.0 (38 / 38)
Table IV

BITRATES AT WHICH ENCODERS PRODUCE LOSSLESS BITSTREAMS. MEASURED IN BPPPB. BEST AND WORST IMAGE CODING METHODS ARE
HIGHLIGHTED FOR EACH CORPUS. THREE PURE LOSSLESS METHODS ARE ALSO INCLUDED AS REFERENCE: FAST-LOSSLESS (FL) [37],
LAIS-QLUT-OPT (LLUT) [38], AND TSP-W2 [31]. FOR THESE RESULTS, THE COMPLETE AVIRIS IMAGES HAVE BEEN USED.

JPEG2000 FL LLUT | TSP-W2
RKLT Static Dynamic IWT

AVIRIS Cuprite 4.85 4.84 4.89 5.28 4.91 4.29 3.77
AVIRIS Jasper Ridge 4.86 4.92 5.11 5.59 4.95 4.61 4.08
AVIRIS Moffett Field 4.95 5.01 5.22 5.68 4.99 4.62 4.12
AVIRIS Lunar Lake 4.95 4.94 4.98 5.32 4.91 4.37 3.81
AVIRIS Yellowstone (Sc 0) 3.86 3.96 4.23 4.73 3.96 - 3.99
Average 4.69 4.73 4.89 5.32 | 4.74 | “4.47

Hyperion Agricultural 6.02 5.96 6.16 6.40 - - -
Hyperion Coastal 5.75 5.72 5.87 6.14 - - -
Hyperion Urban 6.06 6.01 6.28 6.56 - - -
Average 5.94 6.10 6.37 - - -
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Figure 12. Classification-based measures for the AVIRIS image Lunar Lake
and JPEG2000.
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Figure 13. RX anomalies for the Hyperion image Agriculture. The image has
been encoded and decoded with one of the spectral transforms and JPEG2000
at 0.3 bpppb.

most suitable.

Moreover, two distinct approaches to select structures have
been investigated, differing on whether eigen-thresholding
methods are used directly over every image (dynamic struc-
tures), or are used only to characterize the transform for a set
of images (static structures). We found that static structures
tend to have higher coding performances than the dynamic
ones, but dynamic structures are the ones with greater cost
savings.

Two are the most relevant multi-level clustered structures
found, one static, and one dynamic. If compared with a
wavelet transform, the former has a competitive cost, and
almost the same coding performance as the KLT, while the
latter, also as compared with wavelets, has a similar cost,
and better performance, although not as good performance as
the KLT. The use of one of these two transforms effectively

solves our initial problem: computational costs. While the
static transform allows applying a KLT with very reasonable
resource constraints, the dynamic transform can be taken as a
direct replacement of the DWT for spectral coding, improving
the DWT in all the three measured criteria: quality, cost, and
scalability. For both lossy and PLL, the proposed transforms
perform between 16 and 50 times faster than the original KLT.

The best two transforms have been further validated in
experimental results, which have shown similar behaviors
when used in different images, with different image coders, or
in lossy or lossless mode. In addition, the transforms have been
used in classification-based experiments, which have shown
also similar results.

REFERENCES

[1] B.Penna, T. Tillo, E. Magli, and G. Olmo, “Transform coding techniques
for lossy hyperspectral data compression,” IEEE Trans. Geosci. Remote
Sens., vol. 45, no. 5, pp. 1408-1421, May 2007.

[2] P. W. Hao and Q. Y. Shi, “Matrix factorizations for reversible integer
mapping,” IEEE Trans. Signal Process., vol. 49, no. 10, pp. 2314-2324,
2001.

[3] N. Ahmed, T. Natarajan, and K. Rao, “Discrete cosine transfom,” IEEE
Trans. Comput., vol. C-23, no. 1, pp. 90-93, Jan. 1974.

[4] L. Lan and I. Reed, “Fast approximate Karhunen-Loeve transform
(AKLT) with applications to digital image-coding,” Visual Commun. and
Image Process. 93, vol. 2094, pp. 444-455, 1993.

[5]1 A. Pirooz and I. Reed, “A new approximate Karhunen-Loeve transform
for data compression,” Conference Record of the Thirty-Second Asilomar
Conference on Signals, Systems and Computers, vol. 1-2, pp. 1471-
1475, 1998.

[6] M. Cagnazzo, L. Cicala, G. Poggi, and L. Verdoliva, “Low-complexity
compression of multispectral images based on classified transform
coding,” Signal Processing-Image Communication, vol. 21, no. 10, pp.
850-861, 2006.

[71 Y. Wongsawat, S. Oraintara, and K. R. Rao, “Integer sub-optimal
Karhunen-Loeve transform for multi-channel lossless EEG compres-
sion,” European Signal Processing Conference, 2006.

[8] Y. Wongsawat, “Lossless compression for 3-D MRI data using reversible
KLT,” Int’l Conf. on Audio, Language and Image Processing, 2008.
(ICALIP 2008)., pp. 1560-1564, July 2008.

[9] 1. Blanes and J. Serra-Sagrista, “Clustered reversible-KLT for progres-
sive lossy-to-lossless 3d image coding,” in Data Compression Conf. 2009
(DCC 2009). 1IEEE Press, Mar. 2009, pp. 233-242.

[10] A. Abrardo, M. Barni, E. Magli, and F. Nencini, “Error-resilient and
low-complexity onboard lossless compression of hyperspectral images
by means of distributed source coding,” IEEE Trans. Geosci. Remote
Sens., 2010, (To appear).

[117] E. A. M. L. Bruekers and A. W. M. van den Enden, “New networks
for perfect inversion and perfect reconstruction,” IEEE J. Sel. Areas
Commun., vol. 10, no. 1, pp. 130-137, 1992.

[12] L. Galli and S. Salzo, “Lossless hyperspectral compression using KLT,”
IEEE Int’l Geosci. and Remote Sens. Symp. Proc. (IGARSS 2004), vol.
1-7, pp. 313-316, 2004.

[13] R. B. Cattell, “The scree test for the number of factors,” Multivariate
Behav. Res., vol. 1, pp. 245-76, 1966.

[14] E. R. Malinowski, “Determination of the number of factors and the
experimental error in a data matrix,” Analytical Chemistry, vol. 49, no. 4,
pp. 612-617, 1977.

[15] J. L. Horn, “A rationale and a test for the number of factors in factor
analysis,” Psychometrika, vol. 30, pp. 179-185, 1965.

[16] H. Akaike, “A new look at the statistical model identification,” IEEE
Trans. Autom. Control, vol. 19, no. 6, pp. 716-723, Dec 1974.

[17] G. Schwarz, “Estimating the dimension of a model,” Annals of Statistics,
vol. 6, pp. 461-464, 1978.

[18] J. Rissanen, “Modeling by shortest data description,” Automatica,
vol. 14, pp. 465-471, 1978.

[19] J. C. Harsanyi, W. Farrand, and C.-I. Chang, “Determining the number
and identity of spectral endmembers: An integrated approach using
Neyman-Pearson eigenthresholding and iterative constrained RMS error
minimization,” Proc. of the 9th Thematic Conf. on Geologic Remote
Sens., pp. 395-408, Feb. 1993.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. Y, MONTH Z 2009 10

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

G. Golub and C. van Loan, Matrix Computations. The Johns Hopkins
University Press, Oct. 1996.

Jet Propulsion Laboratory, NASA, “Airborne Vis-
ible InfraRed Imaging Spectrometer website,”

http://aviris.jpl.nasa.gov/html/aviris.overview.html.

U.S. Geological Survey and NASA, “Earth Observing 1, Hyperion
website,” http://eol.usgs.gov/hyperion.php.

D. Taubman and M. Marcellin, JPEG2000: Image Compression Fun-
damentals, Standards, and Practice. Kluwer International Series in
Engineering and Computer Science, 2002, vol. 642.

J. Zhang, J. E. Fowler, and G. Liu, “Lossy-to-lossless compression
of hyperspectral imagery using three-dimensional TCE and an integer
KLT,” IEEE Geosci. Remote Sens. Lett., vol. 5, pp. 814-818, Oct. 2008.
F. Garcia-Vilchez and J. Serra-Sagrista, “Extending the CCSDS Recom-
mendation for Image Data Compression for Remote Sensing Scenarios,”
IEEE Trans. Geosci. Remote Sens., vol. 47, no. 10, pp. 3431-3445, 2009.
Consultative Committee for Space Data Systems, “Image Data Com-
pression,” Blue Book, CCSDS 122.0-B-1, Nov. 2005.

D. Taubman, “Kakadu software,” http://www.kakadusoftware.com/,
2000.

J. Fowler, “QccPack: An open-source software library for quantization,
compression, and coding,” in Applications of Digital Image Processing
XXIII, A. Tescher, Ed., vol. 4115, San Diego, CA, USA, Aug. 2000, pp.
294-301.

Group on Interactive Coding of Images, “TER software;
Open Source CCSDS-122-B-1 implementation and extension.”
http://www.gici.uab.cat/TER, June 2008.

Group on Interactive Coding of Images, “RKLT software,”
http://gici.uab.cat/, 2009.

A. Kiely and M. Klimesh, “Exploiting calibration-induced artifacts in
lossless compression of hyperspectral imagery,” IEEE Trans. Geosci.
Remote Sens., vol. 47, no. 8, pp. 2672-2678, Aug. 2009.

A. Lucero, S. Cabrera, E. J. Vidal, and A. Aguirre, “Evaluating residual
coding with JPEG2000 for L-infinity driven hyperspectral image com-
pression,” Satellite Data Compression, Communications, and Archiving,
vol. 5889, no. 1, pp. 12-23, 2005.

G. Carvajal, B. Penna, and E. Magli, “Unified lossy and near-lossless
hyperspectral image compression based on JPEG 2000,” IEEE Geosci.
Remote Sens. Lett., vol. 5, no. 4, pp. 593-597, Oct. 2008.

J. B. MacQueen, “Some methods for classification and analysis of
multivariate observations,” in Proc. 5th Berkeley Symp. Math. Statistics
and Probability, L. M. L. Cam and J. Neyman, Eds., vol. 1. University
of California Press, 1967, pp. 281-297.

I. Reed and X. Yu, “Adaptive multiple-band CFAR detection of an
optical pattern with unknown spectral distribution,” IEEE Trans. Acoust.,
Speech, Signal Process., vol. 38, no. 10, pp. 1760-1770, Oct. 1990.

B. Penna, T. Tillo, E. Magli, and G. Olmo, “Hyperspectral image
compression employing a model of anomalous pixels,” IEEE Geosci.
Remote Sens. Lett., vol. 4, no. 4, pp. 664-668, Oct. 2007.

M. Klimesh, “Low-complexity adaptive lossless compression of hyper-
spectral imagery,” Proc. SPIE, pp. 63 000N.1-63 000N.9, Sept. 2006.
J. Mielikainen and P. Toivanen, “Lossless compression of hyperspectral
images using a quantized index to lookup tables,” IEEE Geosci. Remote
Sens. Lett., vol. 5, no. 3, pp. 474-478, July 2008.

Ian Blanes (S’05) Ian Blanes received the B.S. and
M.S. degrees in Computer Science in 2007, and
2008 from the Universitat Autonoma de Barcelona,
Spain. He was awarded by the Spanish Ministry of
Education as second-best computer science student
of Spain (2007 awards). In 2007, he held an intern
position at Thomson Corporate Research, Princeton,
New Jersey. Currently he holds a research grant
by Spanish Ministry of Education and is currently
working toward the Ph.D. degree. Since 2003, he
has been with the Group on Interactive Coding of

Images of the Universitat Autonoma de Barcelona.

Joan Serra-Sagrista (S’97-M’05) received the B.S.,
M.S., and Ph.D. degrees in Computer Science from
the Universitat Autonoma de Barcelona, Spain, in
1992, 1994, and 1999, respectively. Since 1992
he has been with the Department of Information
and Communications Engineering, at the Univer-
sitat Autonoma de Barcelona, Spain, where he is
currently an Associate Professor and Director of
the Group on Interactive Coding of Images. From
September 1997 to December 1998, he hold a
DAAD research grant at the University of Bonn,
Germany. From June to July 2000 he was a visiting researcher at the
U.Bonn, Germany. His current research interests include image coding, data
compression, vector quantization, and wavelet-based techniques, with special
attention to remote sensing and telemedicine applications. He has coauthored
several papers in these areas. Dr. Serra-Sagrista is also a member of SPIE.
He is a 2006 recipient of the Intensification Program Young Investigator
Award. He has served on the steering committee and on technical program
committees of several international conferences, and is a Reviewer for the
major international journals in his research field.



