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Abstract 
 

In this  paper  we present several fuzzy logics trying  to capture different no- 
tions  of necessity  (in  the  sense  of Possibility   theory)   for  Godel  logic formu- 
las.  Based  on different characterizations of necessity  measures  on fuzzy sets, a 
group of logics with Kripke style semantics  are built  over a restricted language, 
namely  a two level language  composed  of non-modal  and  modal  formulas,  the 
latter moreover  not  allowing for nested  applications of the  modal  operator N . 
Completeness  and some computational complexity  results  are shown. 
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1.  Introduction 
 

The  handling  and  modelling of uncertainty is a key issue in artificial  intel- 
ligence reasoning  tasks.    The  most  general  notion  of uncertainty  is captured 
by monotone  set  functions  with  two natural boundary conditions.   In the  lit- 
erature, these  functions  have received several names,  like Sugeno measures  [34] 
or plausibility  measures  [28].  Many  popular  uncertainty measures,  like proba- 
bilities,  upper  and  lower probabilities, Dempster-Shafer plausibility and  belief 
functions,  or possibility and necessity measures,  can be seen as particular classes 
of Sugeno measures. 

In this  paper,  we specially  focus on possibilistic  models of uncertainty.  A 
possibility measure  on a Boolean algebra  of events  U = (U, ∧, ∨, ¬, 0U , 1U ) is a 
Sugeno measure  µ∗  : U → [0, 1] (i.e.   it  satisfies  µ∗ (0U ) = 0, µ∗ (1U ) = 1 and 
µ∗ (u1 ) ≤ µ∗ (u2 ) whenever  u1   ≤ u2 ) such  that the  following ∨-decomposition 
property 

µ∗ (u1  ∨ u2 ) = max(µ∗ (u1 ), µ∗ (u2 )) 
 
 

✩ This  is a fully  revised and  extended version of the  conference paper [10]. 
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holds.      A  necessity   measure   is  a  Sugeno   measure   µ∗    satisfying   the   ∧- 
decomposition  property 

 
µ∗ (u1  ∧ u2 ) = min(µ∗ (u1 ), µ∗ (u2 )). 

 
Possibility  and  necessity  are  dual  classes of measures,  in the  sense that if µ∗ 

is a possibility  measure,  then  the  function  µ∗ (u)  = 1 − µ∗ (¬u)  is a necessity 
measure,  and vice versa.  If U is the power set of a set X , then  any dual pair of 
measures  (µ∗ , µ∗ ) on U is induced by a normalized  possibility distribution, i.e. a 
mapping  π : X → [0, 1] such that, supx∈X π(x)  = 1, and,  for any A ⊆ X , 

 
1

 
µ∗ (A) = sup{π(x) | x ∈ A} and µ∗ (A) = inf {1 − π(x)  | x 6∈ A}. 

 
A usual approach in artificial  intelligence is to integrate uncertainty models 

within logic-based knowledge representation formalisms by attaching some belief 
quantification to  declarative statements.   In  this  line,  Possibilistic  logic is a 
weighted logic that handles  possibilistic uncertainty by associating  certainty, or 
priority  levels, to classical logic formulas [14]. Possibilistic  logic (propositional) 
formulas  are pairs  (ϕ, r), where ϕ  is a classical propositional formula  and  r ∈ 
(0, 1] is interpreted  as  a  lower bound  for the  necessity  of ϕ.   The  semantics 
is given  by  possibility  distributions on  the  set  Ω of classical  interpretations. 
Namely, if π : Ω → [0, 1], then  π satisfies a pair (ϕ, r), written π |= (ϕ, r) when 
Nπ (ϕ)  = inf {1 − π(w) | w ∈ Ω, w(ϕ) = 0} ≥ r. Possibilistic  logic is axiomatized 
by taking  as axioms the axioms of Classical Propositional Calculus  (CPC) with 
weight 1 and as inference rules: 

 
- from (ϕ, α) and (ϕ → ψ, β) infer (ψ, min(α, β)) (weighted  modus ponens); 

 

- from (ϕ, α) infer (ϕ, β), with β ≤ α (weight weakening). 
 

Since its introduction in the mid-eighties,  multiple  facets of possibilistic logic 
have been developed and used for a number  of applications in AI, like handling 
exceptions  in default  reasoning,  modeling belief revision, providing  a graphical 
Bayesian-like  network  representation counterpart to a Possibilistic  logic knowl- 
edge base or representing positive and negative  information in a bipolar  setting 
with applications to preferences fusion and to version space learning.  Moreover, 
Possibilistic  logic copes with  inconsistency  by taking  advantage of the  stratifi- 
cation  of the  set of formulas  induced  by the  associated  levels.  It  is also useful 
for representing preferences  expressed  as sets  of prioritized  goals, in this  case, 
the weight is to be understood as the priority  level of a goal. Several extensions 
of Possibilistic  logic deal with time,  multiple  agents’ mutual beliefs, a symbolic 
treatment of priorities  for handling  partial orders  between  levels,  or learning 
stratified hypotheses for coping with  exceptions.   The  reader  is referred  to [14] 
for an extensive  overview on Possibilistic  logic and its main applications. 

 
 

1 Indeed, µ∗ (A)  = inf {1 − π(x) | x 6∈ A} holds  true only  when  A = X , when  A = X  then 
it must be µ∗ (A)  = 1.
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When  we go beyond  the  classical framework  of Boolean  algebras  of events 
to  more  general  frameworks,  appropriate extensions  of uncertainty measures 
need to be considered  in order  to represent  and  reason  about  the  uncertainty 

of non-classical  or fuzzy events.   For  instance,  the  notion  of (finitely  additive) 
probability has been generalized  in the setting  of MV-algebras  by means of the 
notion  of state  [29]2  and  has been used in [18] to provide  a logical framework 
for reasoning  about  the probability of (finitely-valued) fuzzy events. 

Within  the posibilistic  framework,  several extensions  of the notions  of possi- 
bility and necessity measures  for fuzzy sets have been proposed in different logi- 
cal systems extending  the well-known Dubois-Lang-Prade’s Possibilistic  logic to 
fuzzy events,  see e.g. [12, 15, 23, 3, 2, 4]. Actually,  the different generalizations 
proposed  in the  literature arise  from two observations.  First  of all, in contra- 
position  to the  classical case, [0, 1]-valued mappings  on the  set of fuzzy sets in 
some (finite)  domain  X , Π, N  : [0, 1]X  → [0, 1] satisfying  the  usual  boundary 
conditions  Π(∅)  = N (∅)  = 0 and  Π(X )  = N (X )  = 1 and  the  characteristic 
decomposition  properties 

 
Π(A ∨ B) = max(Π(A), Π(B)),     N (A ∧ B) = min(N (A), N (B)), 

 
for any A, B ∈ [0, 1]X  where ∨ and ∧ denote  the pointwise maximum  and min- 
imum operations, are not univocally  determined by a possibility  distribution π 
on the  set X .  The  second observation is that in the  classical case the  expres- 
sions of possibility  and  necessity  measures  on subsets  of a set X  in terms  of a 
possibility  distribution on X  can be equivalently rewritten as 

 
Π(A) = sup min(π(x), A(x)),     N (A) = inf max(1 − π(x), A(x))

x∈X x∈X
 

where the  subset  A ⊆ X  is identified  with  its membership  function  A : X  → 
{0, 1}.   Therefore,  natural generalizations of these  expressions  when A : X  → 
[0, 1] is a fuzzy subset  of X  are 

 

Π(A) = sup π(x) ⊗ A(x),     N (A) = inf  π(x)  ⇒ A(x)                    (*)
x∈X x∈X

 

where ⊗ is a t-norm  and ⇒ is some suitable  fuzzy implication  function3 . 
In particular, the following implication  functions  have been discussed in the 

literature as instantiations of the ⇒ operation  in (*): 
 

(1)  u ⇒KD v = max(1 − u, v) (Kleene-Dienes  implication);    
1, if u ≤ v(2)  u ⇒RG v = (reciprocal  of Godel implication); 1 − u, otherwise

 
 

2 Another generalization of the  notion of probability has  been  recently studied in depth in 
[1] by defining  probabilistic states over  Gödel algebras. 

3 The  minimum properties required to  a  binary operation ⇒:  [0, 1] × [0, 1] →  [0, 1] to  be 
considered as  fuzzy  counterpart of the  classical {0, 1}-valued  implication truth-function are: 
1 ⇒ 1 = 0 ⇒ 0 = 1, 1 ⇒ 0 = 0, ⇒  is non-increasing in the  first  variable and  non-decreasing 
in the  second  variable.
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(3)  u ⇒L  v = min(1, 1 − u + v) (L  ukasiewicz implication).
 

All these functions  actually  lead to proper  extensions  of the above definition  of 
necessity  over classical  sets  or events  in the  sense that if A is a crisp  set,  i.e. 
A(x) ∈ {0, 1} for all x ∈ X , then (*) gives N (A) = inf x∈X {max(1−π(x), A(x))}. 

In the literature different logical formalizations to reason about  such exten- 
sions of the  necessity  of fuzzy events  can be found.  In [27], and  later  in [24], a 
full many-valued modal approach is developed over finitely-valued  L  ukasiewicz 

logics in order  to capture the  notion  of necessity  defined using ⇒KD .  A logic 
programming approach over Godel logic is investigated in [3] and  in [2] by re- 
lying on ⇒KD  and  ⇒RG , respectively.   More recently,  following the  approach 
of [18], modal-like  logics to  reason  about  the  necessity  of fuzzy events  in the 
framework  of MV-algebras  have  been  defined  in [19], in order  to  capture the 
notion  of necessity  defined by ⇒KD and ⇒L   . 

The purpose of this paper is to explore different logical approaches to reason 
about  the  necessity  of fuzzy events  over Godel  fuzzy logic.  In more  concrete 
terms,  our aim is to study  a modal-like expansion of the [0, 1]-valued Godel logic 
with a modality  N  such that the truth-value of a formula  N ϕ (in [0, 1]) can be 
interpreted as the degree of necessity of ϕ.  In this context, although  it does not 
extend the classical possibilistic logic, it seems also interesting to investigate the 
notion  of necessity  definable from Godel implication, which corresponds  to the 
standard fuzzy interpretation of the implication  connective  in Godel logic: 

    
1, if u ≤ v(4)  u ⇒G v = v, otherwise    (Godel implication).

 
This work is structured as follows. After this introduction and recalling some 

background on Godel fuzzy logic and related  concepts,  in Section 3 we recall a 
characterization of necessity measures  on fuzzy sets defined by the implications 
⇒KD  and  ⇒RG  and  provide  a (new)  characterization of those  defined by ⇒G . 
These characterizations are the basis for the completeness  results  of several log- 
ics introduced in Sections  4, 5 and  6 capturing the  corresponding  notions  of 
necessity  for Godel  logic formulas.   These  logics, with  Kripke  style  semantics, 
are built over a two-level language composed of modal and non-modal  formulas, 
the  former not allowing nested  applications of the  modal operator. A common 
fragment of these logics akin to classical possibilistic  logic is considered  in Sec- 
tion  8.  Some remarks  about  the  computational complexity  for these  logics are 
made in Section 9. Finally,  in Section 10, we mention  some open problems  and 
new research  goals we plan to address  in the near future. 

 
 

2.  Preliminaries on the Godel fuzzy logic  G and its expansions G∆ (C) 
 

All this section is devoted to preliminaries on the Godel fuzzy logic G and its 
expansions  G∆ (C).  We present  their  syntax  and  semantics,  their  main  logical 
properties  and the notation we use throughout the article. 

The language of Godel propositional logic is built  as usual from a countable 
set  of propositional variables  V , the  constant  0 and  the  binary  connectives  ∧
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and  →.   Disjunction and  negation  are respectively  defined as ϕ ∨ ψ :=  ((ϕ  → 
ψ) →ψψ) ∧ ((ψ → ϕ) → ϕ)  and as ¬ϕ := ϕ → 0, and the constant 1 is taken  as 
0 → 0. 

As a many-valued logic, Godel  logic is the  axiomatic  extension  of Hájek’s 
Basic Fuzzy  Logic BL [24] (which  is the  logic of continuous  t-norms  and  their 
residua)  by  means  of the  contraction axiom  ϕ  →  (ϕ ∧ ϕ).   Since the  unique 
idempotent continuous  t-norm  is the  minimum,  this  yields that Godel logic is 
strongly  complete  with  respect  to its standard fuzzy semantics  that interprets 
formulas  over the  structure [0, 1]G  = ([0, 1], min, ⇒G , 0, 1)4 , i.e.  semantics  de- 
fined by truth-evaluations e such that e(ϕ ∧ ψ) = min(e(ϕ), e(ψ)),  e(ϕ → ψ) = 
e(ϕ)  ⇒G e(ψ) and e(0) = 0. As a consequence e(ϕ ∨ ψ) = max(e(ϕ), e(ψ))  and 
e(¬ϕ)  = ¬G e(ϕ)  = e(ϕ)  ⇒G  0. 

Godel  logic can  also  be  seen  as  the  axiomatic   extension  of intuitionistic 
propositional logic by the  prelinearity axiom (ϕ → ψ) ∨ (ψ → ϕ).  Its algebraic 
semantics  is therefore  given by the  variety  of prelinear  Heyting  algebras,  also 
known  as Godel  algebras.   A Godel  algebra  is a structure A  = (A, ∗, ⇒, 0, 1) 
which  is a (bounded, integral,  commutative) residuated lattice  satisfying  the 
contraction equation

 
 

and pre-linearity equation 
x ∗ x = x 

 
 
(x ⇒ y) ∨ (y ⇒ x) = 1,

 

where  x ∨ y = ((x  ⇒ y) ⇒ y) ∗ ((y  ⇒ x)  ⇒ x)).   Godel  algebras  are  locally 
finite,  i.e.   given a Godel  algebra  A  and  a finite  set  F  of elements  of A,  the 
Godel subalgebra generated by F  is finite as well. 

On the other  hand,  Hajek also shows [24] that Godel logic can be expanded 
with the  so-called Monteiro-Baaz’s  projection  connective  ∆. Truth-evaluations 
of Godel logic are extended  adding  the stipulation e(∆ϕ) = δ(e(ϕ)) where 

    
1,     if x = 1δ(x) = 0,    otherwise

 
Axioms and rules for G∆ are those of Godel logic plus the following axioms 

 
(∆1) ∆ϕ ∨ ¬∆ϕ                                  (∆2) ∆(ϕ ∨ ψ) → (∆ϕ ∨ ∆ψ) 
(∆3) ∆ϕ → ϕ                                      (∆4) ∆ϕ → ∆∆ϕ 
(∆5) ∆(ϕ → ψ) → (∆ϕ → ∆ψ) 

 
and  the  Necessitation rule for ∆:  from ϕ derive ∆ϕ. G∆ is shown to be stan- 
dard  complete  (i.e.   wrt.   the  structure [0, 1]G∆    = ([0, 1], min, ⇒G , δ, 0, 1))  for 
deductions from finite theories. 

It is worth noticing that Godel logic satisfies the classical deduction theorem, 
Γ ∪ {ϕ} `G  ψ iff Γ `G  ϕ  → ψ, while the  deduction  theorem  for G∆  reads  as 
follows: Γ ∪ {ϕ} ̀ G∆   ψ iff Γ `G∆   ∆ϕ → ψ. 

 
 

4 Called standard Gödel algebra.
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Finally,  the logic G∆ can be expanded  with truth-constants r for each r be- 
longing to a countable  C ⊆ [0, 1], containing  0 and 1 (in particular one may take 
C = [0, 1] ∩ Q, the set of rational numbers  in the unit  real interval). Additional 
axioms of G∆ (C) [17] are book-keeping axioms for the  different connectives of the 
logics: namely,  for any r, s ∈ C, the axioms r ∧ s ↔ min(r, s), r → s ↔ r ⇒G s, 
and the axioms ∆r ↔ δ(r). So defined, the logic G∆ (C) can be shown to satisfy 
the same deduction theorem  as G∆ and to be standard complete for deductions 
from finite theories  wrt.   the  standard structure [0, 1]G∆    expanded  with  truth 
constants r interpreted by their  own value5   r, for each  r ∈ C.  In case of ex- 
panding  G∆  with  a finite set of truth-constants C, Hájek  already  proved  that 
the resulting  logic G∆ (C) is strongly  standard complete  [24, Th.  4.2.21]. 

As a last  remark,  let  us notice  that the  algebraic  semantics  for G∆ (C)  is 
given by the varieties of G∆ (C)-algebras, which are expansions of Godel algebras 
defined in the natural way, and are also locally finite. 

 
 

3.  Some representable  classes of necessity measures over Godel alge- 
bras of fuzzy sets and their characterizations 

 
Let (L, ≤, 0, 1) be a bounded  linearly  ordered  set.  Let X  be a finite set and 

let F (X ) = LX be the set of functions  f : X → L, in other  words, the set of L- 
fuzzy sets over X . F (X ) can be regarded  as a Godel algebra  equipped  with the 
pointwise extension  of the operations of the linearly ordered  Godel algebra  over 
L.  In the  following, for each r ∈ L, we will denote  by r the  constant function 
r(x) = r for all x ∈ X . 

In this section we provide characterizations of some classes of necessity mea- 
sures on Godel algebras  of functions  of F (X ) which are representable in terms 
of possibility  distributions π : X  → L and  implication  functions  considered  in 
the Introduction. But we first introduce  a general notion  of basic necessity over 
particular subsets of F (X ) that encompasses all those representable classes, just 
by requiring  to satisfy the corresponding  extensions  of the two defining proper- 

ties in the Boolean case.  For the sake of a simpler notation we denote  by F (X ) 
both  the  set of L-fuzzy sets over X  and  the  Godel algebra  of functions  which 
has as domain  this set. 

 
Definition 1.  Let  L  be a  bounded  linearly  ordered  set  and  let U ⊆ F (X )  be 
closed under  ∧ and such that  0, 1 ∈ U .  A mapping N : U → L satisfying 

(N1)        N (f ∧ g) = min(N (f ), N (g))           
(N2)        N (r) = r, for all r ∈ L such that  r ∈ U 

 

is called a basic necessity. 
 

If U ⊆ F (X ) is a Godel subalgebra and N : U → L is a basic necessity  then 
it is easy to check that N  also satisfies the following properties: 

 
 

5 If ∆ was not  present in the  logic,  we would  still  have  completeness but w.r.t. to  algebras 
over  [0, 1] with  truth-constants not  necessarily interpreted by their own  values.
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(i)       min(N (f ), N (¬G f )) = 0 
(ii)       N (f ⇒G g) ≤ N (f ) ⇒G N (g) 

where ¬G f = f ⇒G 0.  The  classes of necessity  measures  based  on the  Kleene- 
Dienes implication  and  the  reciprocal  of Godel  implication  have  been already 
characterized in [3, 2], but  we provide  the  proof below to keep the  paper  self- 
contained. We do not  consider here the  one based  on L  ukasiewicz implication, 
which was addressed  in [19].  Notice  that, for these  characterizations to  work 

one has to consider necessities over the full set of functions  F (X ). 
For  each  x  ∈ X ,  let  us  denote  by  x  its  characteristic function,   i.e.   the 

function  in F (X ) such that x(y) = 1, if y = x and x(y) = 0, otherwise.  Observe 
that each f ∈ F (X ) can be written as 

f = 
^ 

x ⇒ f (x), 
x∈X 

 
where ⇒ is an implication  function  (as the  ones introduced in Section  1) such 
that 1 ⇒ u = u for any u ∈ L.  Therefore,  if N  is a basic necessity  on F (X ), by 

(N1) we have 
N (f ) = inf  N (x ⇒ f (x)). 

x∈X 

Using this then  we have the following characterizations. 
 

Proposition 2 (cf  [3,  2]).  Let N : F (X ) → L be a basic necessity  over F (X ), 
where {0, 1} ⊆ L ⊆ [0, 1] is closed by the standard negation  n(x)  = 1 − x.  Then 
we have: 

 
(i)  N  satisfies  the following property  for all f ∈ F (X ) and r ∈ L: 

 
(NKD )       N (r ⇒KD f ) = r ⇒KD N (f ) 

 
if and only if there  exists a normalized  possibility distribution π : X → L 
such that,  for all f ∈ F (X ), N (f ) = inf x∈X (π(x)  ⇒KD f (x)); 

 
(ii)  N  satisfies  the following property  for all f ∈ F (X ) and r ∈ L: 

 
(NRG )       N (r ⇒KD f ) = r ⇒G N (f ) 

 
if and only if there  exists a normalized  possibility distribution π : X → L 
such that,  for all f ∈ F (X ), N (f ) = inf x∈X (π(x)  ⇒RG f (x)). 

 
Proof:   (i)  Assume  N  is  defined  as  N (f )  = inf x∈X (π(x)   ⇒KD  f (x)).    Then, 
since 1 − r = 1 − r, N (r ⇒KD f ) = inf x∈X ((1 − π(x))  ∨ ((1 − r) ∨ f (x))  = 
(1 − r) ∨ inf x∈X ((1 − π(x))  ∨ f (x))  = r ⇒KD N (f ).  As for the other  direction, 
assume N  satifies (NKD ).  From  the above remarks,  for  each f ∈ F (X ) we have 
N (f )  = inf x∈X N (x  ⇒KD  f (x))  = inf x∈X N (1 − f (x)  ⇒KD  (1 − x)).    Now, 
defining π(x)  = 1 − N (1 − x)  and  applying  (NKD ), we get N (f ) = inf x∈X (1 − 
f (x))  ⇒KD (1 − π(x))  = inf x∈X π(x)  ⇒KD f (x).
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(ii) Assume  N  is defined as N (f ) = inf x∈X (π(x)  ⇒RG  f (x)).   We use the 
fact  that, for any  u, v, t ∈ [0, 1], it  is easy to  check that the  identity  u ⇒RG 
(v ∨ψt) = (1 − t) ⇒G (u ⇒RG v) hold  s. Then,  again since 1 − r = 1 − r, we have 
N (r ⇒KD f ) = inf x∈X (π(x)  ⇒RG (r ⇒KD f )(x))  = inf x∈X (π(x)  ⇒RG (1 − r ∨ 
f (x)))  = r ⇒G (inf x∈X π(x)  ⇒RG f (x))  = r ⇒G N (f ).  Conversely,  assume  N 
satisfies (NRG ).  Then,  reasoning  as above  and  defining π(x)  = 1 − N (1 − x), 
we have N (f ) = inf x∈X N (x ⇒KD f (x))  = inf x∈X N (1 − f (x) ⇒KD (1 − x)) = 
inf x∈X (1 − f (x))  ⇒G N (1 − x) = inf x∈X π(x)  ⇒RG f (x).                                   ✷ 

 
The characterization of the necessity  measures  based on the Godel implica- 

tion function is a bit more involved since it requires the presence of an associated 
class of possibility measures  which are not dual in the usual strong  sense. 

 
Definition 3.  Let U ⊆ F (X ) be a Gödel  subalgebra.   A mapping  Π : U → L 
satisfying 

(Π1)        Π(f ∨ g) = max(Π(f ), Π(g))            
(Π2)        Π(r) = r, for all r ∈ L such that  r ∈ U 

 

is called a basic possibility. 
 

Note  that if Π : U ⊆ F (X ) → L is a basic possibility  then  it also satisfies 
max(Π(¬G f ), Π(¬G ¬G f )) = 1. Now observe that each f ∈ F (X ) can be written 
as 

f = 
_ 

x ∧ f (x). 
x∈X 

and  hence,  since at  the  beginning  of this  section  we have  assumed  that X  is 
finite, if Π is a basic possibility  on F (X ), by (Π1) we have 

 
Π(f ) = sup Π(x ∧ f (x)). 

x∈X 
 

Proposition 4.  Let Π : F (X ) → L be a basic possibility over F (X ).  Π further 
satisfies 

(Π3)        Π(f ∧ r) = min(Π(f ), r), for all r ∈ L 

iff there  exists  a  normalized   π  :  X  →  L  and,  for  all  f ∈ F (X ),  Π(f )  = 
supx∈X min(π(x), f (x)). 

 

Proof:   One direction  is easy.  Conversely,  assume  that Π : F (X ) → L satisfies 
(Π1) and (Π3).  Then,  taking  into account the above observations, we have 

 
Π(f ) = sup Π(x ∧ f (x))  = sup min(Π(x), f (x)).

x∈X x∈X
 

Hence, the claim easily follows by defining π(x)  = Π(x)  .                                   ✷ 
 

Proposition 5.  Let N : F (X ) → L be a basic necessity  and Π : F (X ) → L be 
a basic possibility satisfying  (Π3).  N  and Π further  satisfy
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(N Π)       N (f ⇒G r) = Π(f ) ⇒G r, for all r ∈ L 
iff there  exists a normalized  π : X → L and,  for all f ∈ F (X ), 

 
N (f ) = inf  π(x)  ⇒G f (x)  and Π(f ) = sup min(π(x), f (x)).

x∈X x∈X
 

Proof:   Given a possibility  distribution π on X , define N (f ) = inf x∈X π(x)  ⇒G 
f (x) and Π(f ) = supx∈X min(π(x), f (x)),  for each f ∈ F (X ).  It is clear that so 
defined N  and  Π are a basic necessity  and  a basic possibility  respectively.  But 
we also have  N (f ⇒G r) = inf x∈X (π(x)  ⇒G  (f (x)  ⇒G r)) = inf x∈X ((π(x) ∧ 
f (x))  ⇒G  r) = (supx∈X π(x)  ∧ f (x))  ⇒G r = Π(f ) ⇒G  r.  Hence,  Π and  N 
satisfy (N Π). 

Conversely,   suppose  that N  and  Π  are  a  basic  necessity  and  possibility 
satisfying   (N Π).    Then,   defining  π   :  X   →   L  by  π(x)   = Π(x)   for  each 
x  ∈ X , we have  N (f )  = inf x∈X N (x  ⇒G  f (x))  = inf x∈X Π(x)  ⇒G  f (x)  = 
inf x∈X π(x)  ⇒G f (x).  Moreover,  if Π also satisfies (Π3),  by Proposition 4, we 
have Π(f ) = supx∈X min(π(x), f (x)). 

✷ 
 
 

4.  The Logic of Basic Necessity NG0 (C) 
 

In this  and  the  following three  sections  we define several  logics to capture 
reasoning about  the necessity of fuzzy events,  understood as equivalence classes 
of formulas  of Godel  logic with  a  finite  set  of truth  constants C.   Following 

previous approaches like [24], the idea is to introduce  a modal operator N such 
that, for every  formula  ϕ  of the  logic G∆ (C),  N ϕ  is fuzzy proposition  which 
reads  “ϕ  is certain” whose  truth-value is to  be  interpreted as  the  necessity 

degree of ϕ.  The  logics we will define next  are built  over a two-level language: 
non-modal formulas to describe and reason about the events and modal formulas 
(without nesting of the operators N ) to represent and reason about  the certainty 

or necessity  of the non-modal  formulas.  Since possibilistic  models are basically 
qualitative models  of uncertainty (the  comparative ordering  is what  matters 
rather than  absolute  degrees),  we choose again Godel logic (with  a finite set of 
truth-constants) as fuzzy logic to reason about  the modal N ϕ formulas.  Due to 
the  semantics  of the  logic G∆ (C)  one can express that the  necessity  of ϕ is at 
least r or at most s (with  r, s ∈ C) by the formulas r → N ϕ and N ϕ → s, while 
a formula  N ϕ → N ψ expresses the  qualitative comparative statement “ψ is at 
least as certain  as ϕ”. 

The  particular semantics  of the  necessity  operators N  will vary  from  one 
section  to  the  other.    In  this  section  we axiomatize   the  operators N  whose 
semantics  is given by the class of basic necessity  measures,  while in the  follow- 
ing sections  we will successively consider  the  logics for the  operators N  whose 
semantics  are  given by the  three  classes of representable measures  studied  in 
Section  3.  As shown  there,  the  basic  differences between  all these  logics will 
be the  way N  handle  truth-constants, this  is a main  reason  to include  a set C 
of truth-constants in the  languages  of both  modal  and  non-modal  formulas  of
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our logics. A second reason is to be able to express statements of the kind “the 
necessity  of ϕ is at least r”, as explained  above. 

 
4.1.  Syntax of NG0 (C) 

Let us fix a set of propositional variables  V and a countable set C ⊆ [0, 1] ∩ Q 
containing  0 and 1. 

The language  of NG0 (C) consists of two classes of formulas: 
 

(i)  the  set  Fm(V, C)  of non-modal  formulas  ϕ, ψ . . ., which  are  formulas  of 
G∆ (C) (Godel logic G expanded  with the Monteiro-Baaz’s  projection  con- 
nective ∆ and truth constants r for each rational r ∈ C ⊂ [0, 1]) built from 
the set of propositional variables  V  = {p1 , p2 , . . .}; 

 
(ii)  and  the  set  MFm(V, C)  of modal  formulas  Φ, Ψ . . .,  built  from  atomic 

modal  formulas  N ϕ,  with  ϕ ∈ Fm(V, C), where N  denotes  the  modality 
necessity,  using the  connectives  from G∆  and  truth constants r for each 
rational r ∈ C ⊂ [0, 1]. Notice that nested  modalities  are not allowed.  By 
“modal  theory”  we will simply mean a set of modal formulas. 

 
The  axioms  of the  logic NG0 (C)  of basic  necessity  are  the  axioms  of G∆ (C) 
for non-modal  and  modal  formulas  plus  the  following necessity  related  modal 
axioms: 

 
(N1)    N (ϕ → ψ  ) → (N ϕ → N ψ) 
(N2)    N (r) ↔ r,                           for each r ∈ C ⊆ [0, 1] ∩ Q. 

 

The  rules of inference of NG0 (C)  are modus ponens (for modal and  non-modal 
formulas)  and necessitation for non-modal  formulas:  if ϕ is a theorem  of G∆ (C) 
then  N ϕ  is a theorem  of NG0 (C).   These  axioms  and  rules define a notion  of 
proof, denoted  `NG0 (C) , in the usual way.  It is worth noting that NG0 (C) proves 

the  formula  N (ϕ ∧ ψ) ↔ (N ϕ ∧ N ψ), which encodes a characteristic property 
of necess ity measures. 

In the particular case of no additional truth-constants in the language other 
than  1 and  0, i.e.  when C = {0, 1}, there  is no need to consider the  expansion 
with the  ∆ operator, and  hence one should consider the  logic G instead  of the 
logic G∆ (C). 

 
4.2.  Semantics  of NG0 (C) 

For the semantics of NG0 (C) we consider several classes of possibilistic Kripke 
models. 

A C-basic  necessity  Kripke model is a system  M = hW, e, I i where: 
 

•  W is a non-empty set whose elements  are called nodes or worlds, 
 

•  e : W × V   → [0, 1] is such that, for each w ∈ W , e(w, ·) : V → [0, 1] is 
an  evaluation of propositional variables  which  is extended  to  a G∆ (C)- 
evaluation of non-modal  formulas  of Fm(V, C) in the usual way.
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•  For  each ϕ ∈ Fm(V, C) we define its associated  function  ϕ̂ : W → [0, 1], 
where ϕ̂(w) = e(w, ϕ).  Let Fm\(V, C) = {ϕ̂ | ϕ ∈ Fm(V, C)} 

 

•  I : Fm\(V, C) → [0, 1] is a basic necessity  over Fm\(V, C) (as a G-algebra), 
i.e.  it satisfies 
(i) I (r̂) = r, for all r ∈ C ⊆ [0, 1] ∩ Q 
(ii) I (ϕ̂1  ∧ ϕ̂2 ) = min(I (ϕ̂1 ), I (ϕ̂2 )). 

 
Now,  given  a  modal  formula  Φ,  the  truth value  of Φ in  M = hW, e, I i, 

denoted  kΦkM , is inductively  defined as follows: 
 

•  If Φ is an atomic  modal formula  N ϕ, then  kN ϕkM  = I (ϕ̂) 
 

•  If Φ is a non-atomic  modal formula,  then  its truth value is computed by 
evaluating its  atomic  modal  subformulas,   and  then  by  using  the  truth 
functions  associated  to the G∆ (C)-connectives occurring  in Φ. 

 

We will denote  by N (C) the class of C-basic necessity  Kripke  models. 
 

4.3.  Completeness  of NG0 (C) 
Taking  into  account  that G∆ (C)-algebras are  locally  finite,  following the 

same approach of [19] with  the  necessary  modifications,  one can prove the  fol- 
lowing result. 

 
Theorem 6.  Let C ⊆ [0, 1] ∩ Q be finite.   NG0 (C)  is sound  and  complete  for 
modal theories  wrt.  the class N (C)  of C-basic  necessity  Kripke models. 

 
Proof:   Let Γ and  Φ be a modal  theory  and  a modal  formula  respectively,  and 
asssume  Γ 6`NG0 (C ) Φ. We will prove that there  exists a basic necessity 

Kripke model  M  satisfying  Γ but  not  Φ.  We follow the  strategy adopted in  
[24, 18] that amounts  to translating theories over NG0 (C) into theories over G∆ 
(C).  For each modal  formula  Ψ, let us denote  by Ψ?  the  corresponding  G∆ 
(C)-formula obtained from Ψ by considering  any  atomic  subformula  of the  
form N ϕ  as a new propositional variable.  Define, therefore,  Γ? = {Ψ?  | Ψ ∈ Γ} 
and

 

Ax? = {Υ?  | Υ is an instance  of axiom (Ni),  i = 1, 2} ∪ {(N ϕ)? | `G 

 

(C) ϕ}.
 

Using the same technique  used in [24] it is not difficult to prove that 
Γ 6`NG0 (C ) Φ iff Γ? ∪ Ax?  

6`G 

(C) Φ? .                               (1)

 
Now, since G∆ (C) is strongly complete for C finite [24, Theorem 4.2.21], we know 
that there  exists  a G∆ (C)-evaluation v that is a model of Γ? ∪ Ax?  such that 
v(Φ? ) < 1.  We define then  the  following Kripke  model:  M = (W, e, I ), where 
W is the  set of G-evaluations of propositional variables  V , e : W × V  → [0, 1] 
defined by 

 

•  e(w, pi ) = w(pi ), for all w ∈ W and pi  ∈ V ,
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and extended  to G∆ (C)-formulas as usual, and I : Fm\(V, C) → [0, 1] defined by 
 

•  I (ϕ̂) = v((N ϕ)? ) . 
 

It is fairly easy to see that M is indeed a Kripke  model equipped  with a basic 
necessity  I , since: 

 

(i)  I (ϕ̂  ∧ ψ̂)   =  I (ϕ\∧ ψ)   =  v((N (ϕ  ∧ ψ))? )   =  v((N ϕ)?  ∧ (N ψ)? )   = 
min(v((N ϕ)? ), v((N ψ)? )) = min(I (ϕ̂), I (ψ̂)). 

 

(ii)  I (r̂) = v((N r)? ) = v(r) = r, for each r ∈ C. 
 

Notice that the only constant functions  in Fm\(V, C) are those of the form r̂ 
for r ∈ C.  And that while M is a model for Γ, it holds that ||Φ||M  < 1.         ✷ 

 
Actually,  when the  set of propositional variables  V is assumed  to be finite, 

by suitably  modifying the  above proof one can prove that NG0 (C)  is not  only 
complete wrt.  the class N (C) of basic necessity Kripke models but also wrt.  the 
subclass of finite structures (and  hence also wrt.  the subclass of rational-valued 
structures). 

 
Corollary 7.  Let V and C be finite.  Then NG0 (C) is complete for finite modal 
theories  wrt.  the class of finite C-basic  necessity  Kripke models. 

 
Proof:   Assume Γ 6`NG0   Φ, with Γ finite, and proceed as above until  there 
exists a G∆ (C)-evaluation v that is a model of Γ? ∪ Ax?  such that v(Φ? ) < 1.  
Since the  variety  of Godel algebras  is locally finite,  the  set  of equivalence  
classes of formulas  of Fm(V, C) modulo  provable  equivalence  is finite as well.  
Hence we may  assume  that Ax? is finite  as well.  Moreover,  since the  set  of  
tautologies of G is the  intersection of the  tautologies of the  n-valued  Godel 

logics Gn , the above implies that there  exists a sufficiently large n ∈ N such 
that Φ?  does not follow from  Γ? ∪ Ax?  over  Gn,∆ (C),  the  finitely-valued  
Godel logic Gn , with truth values  Cn   = {0, 1/n, . . . , 1},  expanded  with  ∆ 
and  truth constants from
C ⊆ Cn .  Therefore,  we have  that Γ? ∪ Ax?  |=G  n,∆ (C)  Φ? , i.e.   there  exists  a
Cn -valued  Godel assignment v0  such that v0 (Ψ? ) = 1 for all Ψ? ∈ Γ? ∪ Ax? and 

0          ? 
v (Φ  ) < 1. 

We  define the  following Kripke  model:  M = (Wn , e, I ),  where  Wn   is the 
finite  set  of Gn -evaluations of propositional variables  V,  e  : Wn  × V  →  Cn 
defined by 

 

•  e(w, p) = w(p), for all w ∈ Wn  and p ∈ V 

and  extended  to Gn,∆ (Cn ) formulas  as usual  using Gn,∆ (C)  logic connectives, 
and I : Fm\(V, C) → Cn   is defined by 

 

•  I (ϕ̂) = v0 ((N ϕ)? ).
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In particular, since v0  is a model of the translation of the (N2) axiom, for each 
r ∈ C we have I (r̂) = v0 ((N r)? ) = v0 (r) = r, for each r ∈ C.  It is easy to check 
that, so defined,  I is a basic  necessity,  and  hence  M is indeed  a finite  basic 
necessity  Kripke  model.   Notice  also that I (ϕ̂) = v0 ((N ϕ)? ) if ϕ  ∈ Fm(V, C). 
Finally,  one can check that M is a model for Γ and that ||Φ||M  < 1.               ✷ 

 
Let us say that a modal formula  Φ is 1-satisfiable  if there  exists a necessity 

Kripke  structure M = hW, e, I i such  that kΦkM   = 1.   As a corollary  of the 
model construction in the above proof, we have the following result. 

 
Corollary 8.  Let  Φ be a modal  formula  of MFm(V, C)  with V and  C finite. 
If Φ is 1-satisfiable  then  it is satisfiable  in a finite  model,  that  is,  there  exists 
M = hW, e, I i with W being finite such that  kΦkM  = 1. 

 
Proof:   The condition  of Φ being 1-satisfiable is equivalent to the condition  that 
¬∆Φ  is not  a  valid  formula  in  the  the  class  N (C)  of basic  necessity  Kripke 
models, and then,  following the proof of the completeness  result  in Corollary  7, 
one can build a finite model M where k¬∆ΦkM  < 1, i.e. where kΦkM  = 1.  ✷ 

 
In next  sections  we consider extensions  of NG0 (C)  which faithfully  capture 

the three  different notions  of necessity  measures  introduced before. 
 
 

5.  The Kleene-Dienes implication-based necessity logic  NGKD (C) 
 

In this  section  we assume  C to be closed by the  standard negation,  i.e.  if 
r ∈ C, then  1 − r ∈ C as well. We start by considering  the following additional 
axiom: 

 
(NKD )     N (r ∨ ϕ) ↔ (r ∨ N ϕ),      for each r ∈ C 

 
Let  NGKD (C)  be the  axiomatic  extension  of NG0 (C)  with  the  axiom  (NKD ). 
The  aim  is to  show  completeness   of NGKD (C)  with  respect  to  the  subclass 
NKD (C)  of N (C)  structures M  = (W, e, I ) such that for every ϕ ∈ Fm(V, C), 
I (ϕ̂) = inf w∈W  π(w) ⇒KD ϕ̂(w) for some possibility  distribution π : W → [0, 1] 
on the set of possible worlds W . 

 

Lemma 9.  Let  C  ⊆  C0 .    Then   NGKD (C0 )  is  a  conservative   extension   of 
NGKD (C). 

 
Proof:   Let Γ and Φ be a modal theory  and a modal formula respectively  in the 
language  of NGKD (C),  i.e.  Γ ∪ {Φ} ⊆ MFm(V, C),  such that Γ |=NGKD (C0 )  Φ.
Reasoning as in Theorem  6, Γ `NGKD (C0 ) Φ iff Γ ∪ Ax?

 `G∆ (C0 ) Φ , where Ax is
the set of instances  of the axioms using only constants from C. Now, the lemma 
follows using the fact that G∆ (C0 ) is a conservative extension  of G∆ (C).        ✷ 

 

Theorem 10.  Let Γ ∪ {Φ} be a subset of MFm(V, C).  Then: 

(i)  If Γ `NGKD (C) Φ then Γ |=NGKD (C) Φ;
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(ii)  Let V  and C be finite.  There  exists a sufficiently large finite C0  ⊇ C such 
that,  if Γ 6`NGKD (C0 ) Φ, then Γ |=NGKD (C0 ) Φ. 

 
Proof:   Assume  Γ  6`NGKD (C)  Φ for some finite  theory  Γ.   Notice  that,  due  
to Lemma 9, this means Γ 6`NGKD (C0 ) Φ for each C0  ⊇ C.  The proof begins 

exactly as the proof of Corollary  7 for NG0 (C).  Let n ∈ N be the natural 
number found there such that Φ? does not follow from Γ? ∪ Ax? over Gn,∆ (C).  
If Cn  ⊆ C then there  exists n0  ≥ n such that Cn0  = C, and  we take  C0  = Cn0  = 
C.  Otherwise,  if Cn  ⊃ C then  take  n0  = n and C0  = Cn . Let v be a Gn0 ,∆ (C0 )-
evaluation such that v(Ψ∗ ) = 1 for each Ψ ∈ Γ? ∪ Ax? , and v(Φ∗ ) < 1. 

Now consider  the  model  M = (W, e, I )  where  W  is the  finite  set  of C0 - 
valued  evaluations of propositional variables  of V , e : W × V  → C0  is defined 
as e(w, p) = w(p) and  e(w, ·) is extended  to Gn0 ,∆ (C0 )-evaluations to formulas 
of Fm(V, C0 ) as usual.   Finally,  the  necessity  I : Fm\(V, C0 ) → C0  is defined as I 
(ϕ̂) = v((N ϕ)? ).  Notice  that now F m\(V, C0 ) is the  set  of all functions  CW , 
including  all constant  functions  r for each r ∈ C0 .  But,  since v is a model of 
Ax?  containing  all necessary  instances  of the  translation of (NKD ), I is easily 
seen to satisfy also I ((1 − r ∨ ϕ)b) = I (1 − r ∨ ϕ̂) = max(1 − r, I (ϕ̂)), for every 
r ∈ C0 .   Therefore,  by  (i)  of Lemma  2,  there  exists  π  : W  →  C0   such  that 
I (ϕ̂) = minw∈W max(1 − π(w), w(ϕ)).   Hence M = (W, e, I ) ∈ NGKD (C)  is a 
model such that kΨkM  = 1 for each Ψ ∈ Γ and kΦkM  < 1.                               ✷ 

 
 

6.  The   reciprocal   of    Godel   implication-based   necessity    logic 
NGRG (C) 

 
To capture RG-necessities,  let us assume that C is closed under the standard 

negation,  i.e.   if r ∈ C,  then  1 − r ∈ C as well.  We define NGRG (C)  as the 
axiomatic  extension  of NG0 (G) over G∆ (C) with the following axiom: 

 
(NRG )     N (ϕ ∨ r) ↔ (1 − r → N ϕ),      for each r ∈ C 

 
and define NRG (C) as the subclass of N (C) structures M = (W, e, I ) such that 
for every ϕ  ∈ Fm(V, C),  I (ϕ̂) = inf w∈W  π(w)  ⇒RG  ϕ̂(w)  for some possibility 
distribution π : W → [0, 1] on the set of possible worlds W . 

Then,  using again  Lemma  2 and  an analog  of Lemma  9 for NGRG (C),  one 
can prove the following result  arguing  as in the proof of Theorem  10. 

 
Theorem 11.  Let Γ ∪ {Φ} be a subset of MFm(V, C).  Then: 

(i)  If Γ `NGRG (C) Φ then Γ |=NGRG (C) Φ; 
(ii)  Let  V and  C be finite.   There  exists  a  sufficiently  large  finite  C0  ⊇ C 

closed by the standard negation  such that,  if Γ 6`NGRG (C0 ) Φ, then  Γ |=NGRG 

(C0 ) Φ. 
 

It  is worth  pointing  out  that if we add  the  Boolean  axiom  ϕ ∨ ¬ϕ  to  the 
logics NKD (C)  and  NRG (C),  both  extensions  would basically  collapse into  the 
classical possibilistic  logic.
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7.  The Godel implication-based necessity logic  NΠG (C) 
 

Finally,  to  define a logic capturing NG -necessities,  we need  to  expand  the 
language  of NG0 (C)  with  an  additional operator Π to  capture the  associated 
possibility  measures  according  to  Proposition  5.   Therefore  we consider  the 
extended  set MFm(V, C)+  of modal formulas Φ, Ψ . . . as those built from atomic 
modal  formulas  N ϕ  and  Πϕ,  with  ϕ  ∈ Fm(V, C),  truth-constants r for each 
r ∈ C ⊆ [0, 1]∩Q and G∆ connectives.  Then the axioms of the logic NΠG (C) are 
those of G∆ (C) for non-modal  and modal formulas,  plus the following necessity 
related  modal axioms: 

 

(N1)      N (ϕ → ψ  ) → (N ϕ → N ψ) 
(N2)      N (r) ↔ r, 
(Π1)      Π(ϕ ∨ ψ) ↔ (Πϕ ∨ Πψ) 
(Π2)      Π(r) ↔ψr,               
(Π3)      Π(ϕ ∧ r) ↔ (Πϕ ∧ r)   
(NΠ)     N (ϕ → r) ↔ (Πϕ → r) 

where (N2), (Π2), (Π3) and (NΠ) hold for each r ∈ C. Inference rules of NΠG (C) 
are those of G∆ (C) and necessitation for N  and Π. 

Now, we also need to consider expanded  Kripke structures of the form M = 
hW, e, I , P i,  where W  and  e are as above  and  the  mappings  I , P  :→ [0, 1] are 
such that, for every ϕ ∈ Fm(V, C), I (ϕ̂) = inf w∈W  π(w) ⇒G ϕ̂(w) and P (ϕ̂) = 
supw∈W min(π(w), ϕ̂(w)), for some possibility  distribution π : W → [0, 1]. Call 
N PG (C)  the  class for such  structures.  Then,  using  Proposition 5 we get  the 
following result. 

 
 

Theorem 12. 
(i)  NΠG (C)  is sound wrt.  the class N PG (C)  of structures. 
(ii)  Let V  be finite and let Γ ∪ {Φ} be a finite subset of M F m(V, C).  There 

exists a sufficiently large finite C0  ⊇ C such that  such that  if Γ 6`NΠG (C0 ) Φ 
then 
Γ |=NΠG (C0 ) Φ. 
Proof:   Assume Γ 6`NΠG (C) Φ. Again, the proof proceeds very similar to the 
pre- vious ones, but now the model that is built M = (W, e, I , P ) has been 

expanded  with a mapping  P : F m\(V, C0 ) → C0  defined by 

•  P (ϕ̂) = v((Πϕ)? ). 

Then,   it  is easy  to  check  that so defined  P  is a  basic  possibility  (see  Defi- 
nition  3).    Moreover,  since  Ax?  contains   the  necessary  instances   of axioms 
(N1),  (N2),  (Π1),  (Π2),  (Π3),  and  (NΠ),  the  mappings  I and  P  satisfy  the 
conditions  of Proposition 5,  and  hence  there  exists  π  :  W  →  C0   such  that 
I (ϕ̂) = minw∈W π(w) ⇒G w(ϕ)  and P (ϕ̂) = maxw∈W min(π(w), w(ϕ)).   There- 
fore M  = (Wn , e, I , P )  is a  N PG (C0 )-model  satisfying  all  formulas  in  Γ  but 
kΦkM  < 1.                                                                                                                   ✷ 

 
The main features  of the four logics defined so far are summarized  in Table 

1.
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Table 1:  Logics  capturing different notions of necessity measures. 
 
 

 
Logic 

 
Axioms                                Semantics M  = (W, e, I )                Implication Function 

 
NG0 (C) 

 
N (ϕ → ψ) → (N ϕ → N ψ)      I (r̂) = r 
N (r) ↔ r                             I (ϕ̂ ∧ ψ̂) = min(I (ϕ̂), I (ψ̂)) 

 
NGKD (C) 

 
N (r ∨ ϕ) ↔ (r ∨ N ϕ),            π : W  → [0, 1]                                             Kleene-Dienes 

I (ϕ̂) = inf w∈W  π(w) ⇒K D ϕ̂(w)        u ⇒K D v = max(1 − u, v) 

 
NGRG (C) 

 
N (ϕ ∨ r) ↔ (1 − r → N ϕ),     π : W  → [0, 1]                                             Reciprocal of  Gödel 

I (ϕ̂) = inf           π(w)          ϕ̂(w)         u         v = 
     

1, if u ≤ v 
w∈W                  ⇒RG                        ⇒RG                1 − u, other. 

 
NΠG (C) 

 
N (ϕ → r) ↔ (Πϕ → r)           M  = (W, e, I , P ), π : W  → [0, 1]          Gödel 

Π(r)    r                             I (ϕ̂) = inf           π(w)        ϕ̂(w)            u       v = 
     

1, if u ≤ v ↔                                              w∈W                  ⇒G                               ⇒G                   v, other. 
Π(ϕ ∨ ψ) ↔ (Πϕ ∨ Πψ)           P (ϕ̂) = supw∈W  min(π(w), ϕ̂(w)) 
Π(ϕ ∧ r) ↔ (Πϕ ∧ r) 

 
 
 

8.  A  common fragment  of NGKD (C), NGRG (C) and NΠG (C) 
 

In this section we turn our attention to a fragment of the previous logics, that 
is syntactically very close to classical possibilistic  logic, consisting  of formulas 
of the  kind  r → N ϕ,  where ϕ  contains  neither  additional truth-constants  nor 
the  ∆ operator, and  r ∈ C \ {0}.  By analogy  to classical possibilistic  logic, we 
will simply write (ϕ, r) for r → N ϕ. 

Let  PGL  be  the  common  fragment  of NGKD (C), NGRG (C)  and  NΠG (C) 
over  the   language   of  formulas   of  the   kind  (ϕ, r) and   axiomatized  by  the 
following axioms 

 
- (ϕ, 1), with ϕ being an axiom of Godel logic 

and the following inference rules: 

- from (ϕ, r), (ϕ → ψ, s) infer (ψ, min(r, s))            (weighted  modus ponens) 
- from (ϕ, r) infer (ϕ, s), with s ≤ r                          (weight weakening) 

 
We will denote  by `PGL  the  notion  of deduction using the  above  axioms  and 
rules.   Since axiom  (K)  and  the  necessitation rule are  present in all the  three 
logics, PGL is sound with respect to the three classes of Kripke models NKD (C), 
NRG (C)  and  N PG (C).  Moreover we can show that deductions in PGL  and  in 
Godel logic are very related,  mimicking  the  relationship between  deductions  in 
(classical)  possibilistic logic and CPC  deductions within  stratified propositional
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logic formulas. 
In the  following, for any  set  of PGL-formulas T = {(ψ1 , r1 ), . . . (ψm , rm )}, 

we will denote  by T ∗  = {ψ  | (ψ, r) ∈ T and r ≥ s} and  by T ∗  the  whole set 
, . . . , ψ   } of the underlying  set of Godel logic formulas, { 

Lemma 13.  Let T = {(ψ1 , r1 ), . . . (ψm , rm )}. Then  T `PGL  (ϕ, s) iff T ∗ `G  ϕ. 

Proof:   Easy by noticing  that proofs can be easily transferred from one logic to 
the other and that if a formula (ψi , ri ) ∈ T is used in the proof of (ϕ, s), because 

of the two inference rules, then  necessarily  s ≥ ri .                                               ✷ 
 

Lemma 14.  Let L ∈ {NGKD (C), NGRG (C), NΠG (C)}, and let T be a finite set 
of PGL-formulas. If T |=L (ϕ, r) for some r > 0, then T ∗ |=G ϕ. 

 
Proof:   Assume  T  |=L  (ϕ, r) with  T ∗  being  G-consistent, otherwise  the  result 
trivially  holds.  Let w be a Gödel evaluation such that w is a model of T ∗  and 
let πw   be the  possibility  distribution such that πw (w) = 1 and  πw (w0 ) = 0 for 
w0  = w.  Consider  then  the  Kripke  model Mw   = (W, e, Iw ) where W is the  set 
of G-evaluations for G-formulas,  and  Iw (ψ̂) = inf w 0 ∈W  πw (w0 ) ⇒ w0 (ψ),  where 
⇒∈ {⇒K D , ⇒RG , ⇒G }. 

Let  L ∈ {NGKD (C), NΠG (C)}.   An easy computation shows that, for any 
G∆ (C)-formula ψ,  kN ψkMw   =  w(ψ)  and  hence  Mw    |= (ψ, r) iff w(ψ)  ≥  r. 
Therefore,  Mw   is clearly a model of T . Therefore  we have proved  that for each 
G-model  w of T ∗ , w(ϕ)  ≥ r, in other  words, T ∗ |=G∆ (C) r → ϕ,  and  using the 
deduction theorem  for the  logic G∆ (C),  |=G∆ (C) r → (∆φT  → ϕ),  where φT   is 
the  conjunction of all the  formulas  of the  theory  T ∗ .  Now, using results  from
[22]6 , it holds that |=G ∆φT  → ϕ, i.e.  T ∗ |=G∆ ϕ, and  since T ∗  and  ϕ do not
contain  the ∆ connective,  this is equivalent to T ∗ |=G ϕ. 

= 1Let L = NGRG Mw                                                            N ψkMw

otherwise.   Hence Mw   |= (ψ, r) with  r > 0 iff w(ψ)  = 1.   Therefore,  Mw   is 
clearly a model of T . Therefore  we have proved that for each G-model w of T ∗ , 
w(ϕ) = 1, in other  words, T ∗ |=G ϕ.                                                                        ✷ 

 
The  next  theorem  shows partial completeness  results  for PGL  with respect 

to the three  different representable notions  of necessity  measures. 
 

Theorem 15.  Let   L     ∈    {NGKD (C), NGRG (C), NΠG (C)}.        Let   T     = 
{(ψ1 , r1 ), . . . (ψm , rm )} be a finite set of PGL  formulas.  Then,  if T `PGL  (ϕ, r) 
then  T  |=L  (ϕ, r).   Conversely,   if  T  |=L  (ϕ, r) with  r > 0,  then  T  `PGL 
(ϕ, min(r1 , . . . , rm )). 

 
 

6 In [22] the author studies the functions from the unit hypercube [0, 1]n  into  [0, 1] associated 
to  formulas of Godel  logic  (with n being  the  number of variables of the  formula) and  from 
the  form  of these  functions it follows  that there is no Godel  logic formula ϕ such  that, given 
r ∈ (0, 1], v(ϕ) ≥  r for  each  valuation v.   In  particular this  means that if, for  some  truth- 
constant  r > 0 from  C , r →  ϕ is a tautology of G∆ (C),  then necessarily ϕ itself  must be  a 
tautology of Gödel logic.
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Proof:   One  direction   is  soundness.      As  for  the   other   direction,   let  T   = 
{(ψ1 , r1 ), . . . (ψm , rm )} and  assume  T  |=L  (ϕ, r).  By  Lemma  14,  T ∗  |=G  ϕ, 
and   by  completeness   of  Gödel  logic,  T ∗    `G    ϕ.     Finally,   by  Lemma   13, 
T `PGL  (ϕ, min(r1 , . . . , rm )). 

✷ 
 
 

9.  Some complexity issues 
 

Let L ∈ {N G0 (C ), NK D (C ), NRG (C ), N ΠG (C )}.  We begin by showing that, 
whenever  we fix the set of propositional variables,  the satisfiability problem  for 
L is decidable  in polynomial  time. 

 
Theorem 16.  Let Φ a formula in the L-language with n propositional variables. 
Then,  checking the satisfiability  of Φ is a problem decidable in polynomial time. 

 
Proof:   We just  deal  with  NG0 (C);  the  other  cases are  similar  and  left to  the 
reader. 

Following  the  completeness  proof,  satisfiability of Φ in NG0 (C)  is equiva- 
lent  to  the  satisfiability of a theory  in G∆ (C)  obtained as translation from Φ 
as  follows.   Let  Φ?  be  obtained from  Φ by  replacing  every  occurrence  of an 
atomic  subformula  of the  form N ϕ by a new propositional variable  pϕ .  Then, 
inductively  define the mapping  ? from modal formulas  into G∆ (C)-formulas as 
follows: 

 
- (N (ϕ))? = pϕ , 
- (r)? = r, 
- (Φ → Ψ)? = Φ? → Ψ? , 
- (∆(Φ))? = ∆(Φ? ) 

 

Let, therefore,  Γ be the union of Φ?  and F ? defined as
 

F ? = {Υ? 

 

| Υ is an instance  of the axioms} ∪ {pϕ  |`G∆ (C) ϕ},
 

where all the  non-modal  formulas  belong to Fn (G∆ (C)),  the  G∆ (C)-algebra of 
equivalence  classes of formulas  over n generators  modulo provable  equivalence. 
Notice that F ? is a finite theory  over G∆ (C) whose language has as new propo- 
sitional variables  V ar0  = {pϕ  | ϕ ∈ Fn (G∆ (C))}.  The cardinality of F ? depends 

only on the original number  of variables  n. 
Now, checking the  satisfiability of Φ over NG0 (C)  is equivalent to checking 

the  satisfiability of Φ?  ∪ F ?  over  G∆ (C).    Since  the  number  of variables  in 
V ar0  is fixed once we fix n,  we only need to consider  a chain  with  |V ar0 | + 1 
elements.  Then, in order to decide the computation problem for the satisfiability 

of Φ? ∪ F ? , it is enough to calculate  the truth table  corresponding  to a formula 
over a (|V ar0 | + 1)-valued  G-chain,  and  hence it  is linear  in the  length  of the 
formula.                                                                                                                        ✷
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Notice that the above translation works whenever the number  of variables  is 
fixed.  The  most  interesting and general case, in which the  number  of variables 
is not specified, still is an open problem. 

Finally,  as for the fragment PGL,  it be can easily noticed  that the problem 
of deciding whether  (ϕ, r) can be deduced  from a finite theory  T , i.e.  whether 
T `PGL  (ϕ, r) holds true,  is equivalent to deciding whether  T ∗ `G  ϕ holds true 
in Godel logic, which is known to be a co-NP complete  problem  (see e.g. [24]). 

 
 

10.   Future Work 
 

Several issues related  to the logics we have introduced in this paper  deserve 
further  investigation.  These  logics are  not  proper  modal  logics, since the  no- 
tion of well-formed formula  excludes those formulas  with occurrences  of nested 
modalities.   Work  in progress  is devoted  to  the  study  of the  Possibilistic  Ne- 
cessity  Godel  logic (PNG,  for short),   presented in [10].  PNG  is a full fuzzy 
modal  logic for graded  necessity  over Godel  logic, that is, a modal  expansion 
of the  [0, 1]-valued Godel logic with a modality  N  such that the  truth-value of 
a formula  N ϕ (in [0, 1]) can be interpreted as the  degree of necessity  of ϕ,  ac- 
cording to some suitable  semantics.  The language  of PNG  is defined as follows: 
formulas  of PNG  are built  from the  set of G-formulas  using G-connectives  and 
the  operator N .   Axioms  of PNG  are  those  of Godel  logic plus  the  following 

modal axioms: 
 

1.  N (ϕ → ψ) → (N ϕ → N ψ ). 
2.  N ψ ↔ N N ψ. 
3.  ¬N 0. 

 
Deduction   rules  for PNG  are  Modus  Ponens  and  Necessitation for N  (from 
ψ derive  N ψ).   These  axioms  and  rules  define a notion  of proof `PNG   in the 
usual way.  It would be worth  to study  in depth  the relation  between  PNG  and 
the  logic of Basic Necessity  NG0 (C)  (and  of some of its meaningful  axiomatic 
extensions).  Since the logic PNG may only capture the logic of basic necessities, 
additional axioms (and  possibly operators as well) must  be considered  in order 
to capture more specific families of necessities, as those related  to axioms (NKD ), 
(NRG ), (Π3) or the  axiom (N Π).  For instance,  a candidate axiom as the  PNG 
counterpart of (NKD ) is 

 
N (N ϕ ∨ ψ) ↔ N ϕ ∨ N ψ 

 
and a candidate counterpart of (NRG ) would be 

 
N (N ϕ ∨ ψ) ↔ ∼N ϕ → N ψ 

 
where ∼ is an additional involutive  negation,  and 

 
Π(ϕ ∧ Πψ) ↔ Πϕ ∧ Πψ 

N (ϕ → N ψ) ↔ Πϕ → N ψ
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would be candidate axioms for counterparts of (Π3) and (N Π) respectively. 
From the algebraic study  of specific logics a general theory  of the algebraiza- 

tion of logics slowly emerged during  the last  century  with the aim of obtaining 
general results  relating  the properties  of a logic with the properties  of the class 
of algebras  (or algebra  related  structures) associated  with it.  The algebraizable 
logics are purported to be the logics with the strongest possible link with their 
natural class of algebras.   A precise concept  of algebraic  semantics  and  of al- 
gebraizable  logic was introduced by Blok and  Pigozzi  in [5].  The  main  point 
in Blok and  Pigozzi’s concept  of algebraic  semantics  comes from  the  realiza- 
tion that the set of designated  elements considered in the algebraic semantics  of 
known logics is in fact the set of solutions  of an equation.  Then,  in the study  of 
a logic, we should find an equational way to define uniformly  in every algebra  a 
set of designated  elements  in order  to obtain  an algebraic  soundness  and  com- 
pleteness theorem.  In [10] we showed that PNG is finitely algebraizable and has 
a strong  completeness  algebraic theorem.  Future work will be devoted  to study 
further  the algebraic semantics  of PNG, the class of NG-algebras. From an alge- 
braic point of view, it seems interesting also to investigate faithful  NG-algebras 
(see [10]) since they  enjoy very nice properties. 

As mentioned in Section  2, Godel propositional logic is an extension  of the 
Intuitionistic logic Int, by the  axiom  of prelinearity.  Hence,  necessity-valued 
Godel logics could be regarded  as extensions  of the  Intuitionistic Modal Logic 
IntK✷ , which is axiomatized by adding to Int axioms K, ✷(p ∧ q) ↔ (✷p ∧ ✷q) 
and  ✷> and  whose deduction rules  are  Modus  Ponens  and  Necessitation  for 
✷.   The  logic IntK✷   and  its  extensions  were introduced and  investigated in 
different  articles,  among  them  [31], [7], [33] and  [30].  Kripke-style  models for 
intuitionistic modal logics using two accessibility  relations  between  worlds, one 
of which  is intuitionistic and  the  other  one  modal,  were  introduced in  [33], 
and  a completeness  theorem  for IntK✷  using this  semantics  and  the  standard 
canonical  model technique, can  be found  in [11].  In the  future  we would like 
to  explore  the  relationship between  the  logics introduced in  this  paper  and 
fragments  of well-know many-valued modal logics in the literature (see e.g. [6]). 
Among  them,  specially  relevant for our  research  are  the  Godel  modal  logics 
studied  by Caicedo and Rodŕıguez in [9]. 
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