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Abstract 

 

 A strategy to improve the operation of working anaerobic digesters treating the 

organic fraction of municipal solid wastes (OFMSW) to increase the biogas production 

is studied. It consists of increasing the organic loading rate of the digesters by adding 

extra organic matter from some problematic organic wastes. Vegetable oil, animal fats, 

cellulose and protein were used as pure co-substrates and the co-digestion anaerobic 

process was analysed in terms of the ultimate methane production, the methane 

production rate and the hydraulic residence time. The analysis of methane or biogas 

production led to different conclusions when expressing this parameter on a volatile 

solids basis or on a reactor volume basis. The need for a combined analysis is 

highlighted. In addition a new model to predict the biodegradability rate and evaluating 

the organic matter fraction susceptible to biodegradation was developed and proved to 

be suitable for assessing anaerobic digestion processes. All four co-substrates used led 

to some operative improvements. Vegetable oil is the most suitable co-substrate to be 

anaerobically digested with the OFMSW since all the parameters evaluated were greatly 

improved compared to the OFMSW digestion.  

 

Keywords: anaerobic co-digestion; biogas; organic fraction of municipal solid waste; 

organic wastes; methane production; kinetic model. 
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Nomenclature 
BMP Biological methane potential l [CH4] kg-1 [VS] (Normal conditions) 

BOC Biodegradable organic carbon % db (dry basis) or TOC (g) basis 

C Carbon  

C/N Carbon to nitrogen ratio  

CW Cellulose wastes  

VO Vegetable oil  

AF Animal fat  

CH4 Methane  

CI Inert fraction % 

CO2 Carbon dioxide  

CR Rapidly mineralisable fraction % 

CS Slowly mineralisable fraction % 

CW Remaining carbon in the sample % 

DM Dry matter % 

GB21 Cumulative biogas production in 21 days  l [biogas] kg-1 [TS] (Normal conditions) 

GBn Cumulative biogas production in n days l [biogas] kg-1 [TS] (Normal conditions) 

HRT Hydraulic retention time day 

kR Rapid rate constants day-1 

kS Slow rate constants day-1 

LCFA Long-chain fatty acids  

M Cumulative BMP l [CH4] kg-1 [VS] (Normal conditions) 

MSW Municipal solid waste  

N Nitrogen  

OFMSW Organic fraction of municipal solid waste  

OM Organic matter content %, db 

IOW Industrial organic wastes  

P Maximum methane potential l [CH4] kg-1 [VS] (Normal conditions) 

P’ Specific maximum methane potential l [CH4] l
-1

 [reactor] (Normal conditions) 
Rmax Maximum methane production rate l [CH4] kg-1 [VS] day-1 (Normal conditions) 

R’max Specific maximum methane production rate l [CH4]  l
-1

 day-1 

T Time hour or day 

TOC Total organic carbon %, db 

UMP Ultimate methane production l [CH4] kg-1 [VS]loaded 

UMP’ Specific methane production l [CH4] l
-1 [reactor] (Normal conditions) 

VS Volatile solids  %, db 

VSloaded Loaded volatile solids (considering only 
substrates but not VS corresponding to 
inoculum) 

%, db 

λ Lag phase day 
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1. Introduction 

 Biogas technologies (European Commission, 2009; 2006; Swedish Institute of 

Agricultural and Environmental Engineering, 2006; Jansen, 2003) are an attractive and 

well established alternative that allows the production of energy while processing 

different organic wastes or biomass and obtaining a solid product that can be used as an 

organic fertiliser or conditioner (Pain et al., 1988; Lema and Omil, 2001; McCarty, 

2001; Lettinga, 2001; Murto et al., 2001; Neves et al., 2006; Neves et al., 2009; 

European Commission, 2001). In addition, the Landfill Directive 1999/31/EC (article 5) 

together with the Working Document on Biological Treatment of Biowaste 2nd draft 

(European Commission, 2001) introduced very challenging targets for the reduction of 

biodegradable waste to landfill some years ago. In consequence, at present there are a 

large number of anaerobic digestion facilities treating different kinds of organic wastes 

such as municipal solid waste (MSW), source-separated organic fraction of municipal 

solid waste (OFMSW, mainly food and yard wastes), manure, sewage sludge and 

different industrial organic wastes (IOW). 

 However, there are some poorly biodegradable IOW that cannot be digested 

alone due to their characteristics, for example, low solubility or unbalanced carbon-to-

nitrogen (C/N) ratio. Nevertheless, when mixed with other complementary wastes, the 

mixture becomes suitable for anaerobic co-digestion (Alatriste-Mondragón et al., 2006). 

There is abundant literature about co-digestion processes, such as co-digestion of the 

OFMSW and agricultural residues (Converti et al., 1997; Kübler et al., 2000), organic 

wastes and sewage sludge (Neves et al., 2009; Fernández et al., 2005; Zhang et al., 

2008) or more specific wastes (Buendía et al., 2009; Bouallagui et al., 2009). 

 A new strategy to be implemented in already operating plants could be the 

combined treatment of different kinds of IOW with OFMSW. Thus, on the one hand, a 
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new waste would acquire value for use in working digesters, whilst avoiding the need 

for new investment. On the other hand, energy would be obtained. The most common 

problematic organic wastes produced by industry or municipalities are those that are 

rich in lipids, cellulose and proteins. 

 Lipids are characterised either as fats, oils or greases, coming mainly from food 

wastes and some industrial wastewaters, such as those from slaughterhouses, dairies or 

fat refineries (Li et al., 2002). Lipids are attractive for biogas production since they are 

reduced organic materials with a high theoretical methane potential. However, they also 

present several problems such as inhibition of methanogenic bacteria and adsorption 

onto biomass that can cause sludge flotation and washout (Neves et al., 2009). 

 Cellulose wastes (CW) come mainly from paper and cardboard industries 

(mostly composed of cellulose, hemicellulose and lignin) or from textile industries. CW 

are also part of the bulk MSW that is not source-separated, which could be added to the 

organic waste flow again in order to be anaerobically treated. CW have a C/N ratio 

ranging from 173:1 to greater than 1000:1, while the suggested optimum C/N ratio for 

anaerobic digestion is in the range of 20:1 to 30:1 (Zhang et al., 2008). Therefore, 

mixing CW with the OFMSW can provide suitable nutrients for the combined co-

digestion (Zhang et al., 2008).  

 Wastes with high protein content and consequent high nitrogen content come 

mainly from meat industries, slaughterhouses and farms (slurry and manure). Since 

these wastes have a high organic content, high biological oxygen demand and low C/N 

ratio, anaerobic co-digestion with the OFMSW or sludge is recommended for their 

treatment (Buendía et al., 2009). In addition, large ammonia concentrations in animal 

wastes are found to inhibit anaerobic treatments (Nielsen et al., 2008). This problem is 
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further accentuated for protein-rich wastes, for which the ammonia concentration 

significantly increases during their fermentation (Chen et al., 2008).  

 To the authors’ knowledge, there is scarce information about high organic load 

co-digestion of lipids, cellulose and protein as pure co-substrates for the OFMSW and 

its assessment and possible implementation in working digesters. In fact, most industrial 

co-digestion plants treat the OFMSW together (in a relative small percentage) with 

sewage sludge (Rintala and Jarvinen, 1996; Mata-Álvarez, 2000). In addition, there is a 

scarce industrial application of co-digestion (Mata-Álvarez, 2000), and most of the 

studies published are difficult to apply, and consequently only 7% of the overall 

anaerobic digestion of the OFMSW capacity is at present co-digested. The aim of this 

work is to study the feasibility of the co-digestion of the OFMSW with different kinds 

of pure organic co-substrates such as vegetable oil (VO), animal fat (AF), cellulose and 

peptone (protein) and to assess the possibilities of implementing this co-digestion 

process in already working plants. This can be considered as a necessary step prior to 

the assessment of co-digestion with real substrates that may have more complex and 

diverse compositions. 

 

2. Materials and Methods 

2.1. Waste sources and inoculum characteristics 

Main properties of the OFMSW, inoculum and co-substrates used are presented 

in Table 1. The OFMSW samples were obtained from a Mechanical-Biological 

Treatment (MBT) plant (Barcelona, Spain) that treats mixed MSW and OFMSW in two 

separated lines, with a total capacity of 240,000 tons of waste per year. The OFMSW 

samples used were taken from the plant after mechanical pre-treatment and prior to the 

anaerobic digestion process. This material, essentially free of impurities, is shredded to 
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20-30 mm and fed to the digester in the plant. A representative sample (approximately 

40 kg) was obtained by mixing four subsamples of about 10 kg each, taken from 

different points of the bulk material. This sample was used for biogas and methane 

production tests and other analyses.  

 The four co-substrates used were: (i) commercial vegetable (coconut) oil; (ii) 

animal fat (Trg Debo Fancy, KAO Corporation S.A., Spain); iii) cellulose (cellulose 

powder, 20 micron, Sigma-Aldrich); and protein (bacteriological peptone, Oxoid, total 

nitrogen 14%). An amount of the corresponding co-substrate to 20% (dry basis) of the 

OFMSW was added to obtain the target mixtures, which were intended to achieve 20% 

increase in the loading rate. Vegetable and animal fats were additionally characterised 

in terms of their long chain fatty acids. VO is mainly composed of lauric acid (45.5%), 

myristic acid (18.5%), palmitic acid (10.4%) and oleic acid (8.7%). AF is mainly 

composed of oleic acid (38.0%), palmitic acid (30.0%) and stearic acid (17.0%). 

The inoculum for anaerobic digestion was collected from the plant anaerobic 

digester treating OFMSW (4500 m3 capacity, working temperature 37ºC and hydraulic 

retention time, HRT, 21 days). The reactor was continuously fed with a mixture of 

OFMSW:recirculated sludge in a ratio 1:2 (dry basis). The anaerobic inoculum was kept 

at 37ºC during two weeks to remove any remaining easily biodegradable fraction. 

 

2.2. Biological methane production 

To analyse the biogas and methane production of the different samples, an 

analytical method was set up by adapting the procedure described by the German 

Institute for Standardization (Federal Government of Germany, 2001). This standard 

procedure provides the parameter GB21 expressed as normal litres of biogas 

(temperature: 273K and pressure 1.01325 bar) produced per kg of total solids (l kg-1 
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[TS]) during 21 days. In the developed test, biogas production was monitored at 

different times and the test was finished when no significant biogas production was 

observed (after 135 days). Thus, the parameter GBn was the biogas production obtained 

for n days of analysis. Results were expressed both as normal litres of biogas produced 

per kg of dry matter and per kg of volatile solids (l kg-1 [VS]). The ratio of substrate to 

inoculum used in the industrial anaerobic digester (1:2 OFMSW to inoculum d.b.), was 

used in all the experiments involving the use of co-substrates and an extra 20% of dry 

matter was added through co-substrate addition. Accordingly, the resulting ratio in the 

co-digestion experiments was a mixture 1:2:0.2 OFMSW:inoculum:co-substrate (dry 

basis). 

The mixtures were incubated in a temperature-controlled room at 37ºC in sealed 

aluminium bottles with a working volume of 1 l. Before each experiment, the bottles 

were purged with nitrogen gas to ensure anaerobic conditions. The bottles had a ball 

valve that was connected to a digital manometer (SMC model ZSE30, Japan) to 

measure biogas pressure. The bulk density of the mixture was previously determined (in 

triplicate) to calculate the headspace volume of the bottles, which was assumed constant 

during the experiment. During the test, the bottles were shaken once a day. Biogas 

production was calculated according to the ideal gas law from the pressure measured in 

the bottle and considering the headspace volume previously measured. To avoid 

excessive pressure in the bottle, the biogas produced was purged periodically (typically 

25-30 times during the experiment), so that the pressure never exceeded 2 bar. This 

should minimise the possible solubilisation of carbon dioxide since methane is hardly 

soluble in aqueous media. As a result, the final biogas production over a long period 

should hardly be affected.   
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All biogas production tests were carried out in triplicate (three different bottles 

for each sample). The results are expressed as an average with standard deviation. The 

typical deviation found in triplicate samples was in the range of 5-15%. If one of the 

reactors presented a deviation greater than 20%, it was discarded from the biogas 

potential calculation, as described in the procedure of the Federal Government of 

Germany (2001). A biogas production test containing only inoculum and another 

containing a mixture of inoculum and the OFMSW (substrate:inoculum ratio 1:2 d.b.) 

were also set up in triplicate to be used as a blank and control test respectively. 

Specifically the loading rates used were 57.2 g [TS] l-1 (37.4 g [VS] l-1) for the blank 

containing only inoculum, 72.6 g [TS] l-1 (49.5 g [VS] l-1) for the control, which is the 

operating loading rate of the industrial digester and close to 87 g [TS] l-1 (63.5 g [VS] l-

1) for all co-digestion experiments, which represents an increase of 20% compared to 

control analysis. The blank is also useful to provide a quantitative measure of inoculum 

activity. Biogas and methane production from inoculum samples was subtracted from 

the biogas and methane produced by the waste samples.  

Biogas composition was analysed to obtain the biochemical methane production 

(BMP) using gas chromatography (Perkin-Elmer AutoSystem XL Gas Chromatograph) 

with a thermal conductivity detector and a Hayesep column 3m 1/8" 100/120. The 

details of biogas analysis can be found elsewhere (Fernández et al., 2005). Typical 

values of methane percentage in biogas were around 55-70%, although in specific 

experiments some values greater than 85% were measured.  

The maximum methane production rate (Rmax) and lag phase (λ) were 

determined by fitting the modified Gompertz model (Eq. 1) described by Zwietering et 

al. (1990) and Lay et al. (1998) to the experimental cumulative methane production 

curves.  
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where M is the cumulative BMP (l [CH4] kg-1 [VS]); P is the maximum methane 

potential (l [CH4] kg-1 [VS]); t is the time (day); Rmax is the maximum methane 

production rate (l [CH4] kg-1 [VS] day-1) and λ the lag phase (day). 

Matlab v2007a software package (MathWorks Inc., Massachusetts, USA) was 

used for fitting the value of the model parameters in Equation 1 (P, Rmax and λ). 

 

2.3. Anaerobic biodegradation kinetics modelling 

In order to completely characterise the biodegradable organic matter content of a 

given waste by means of quantitative measures of the easily and slowly biodegradable 

organic matter and biodegradation kinetic rate constants, the data of cumulative biogas 

produced could be fitted to the four models described by Tosun et al. (2008). It has to be 

noted that Tosun’s models were developed to fit data obtained under aerobic conditions 

and expressed as the percentage of carbon mineralised, calculated as the amount of 

cumulative C-CO2 produced, by means of aerobic biodegradation, at a given time on 

initial total organic carbon (TOC), that is, a biodegradable organic carbon (BOC)/TOC 

ratio for a given time. 

Although Tosun’s models are described for use in aerobic biodegradation 

processes, they could also be used for describing and assessing the anaerobic 

biodegradation processes. However, Tosun’s models present some limitations, of which 

the most important is consideration of the non-biodegradable organic matter or organic 

carbon as the slowly biodegradable fraction which obviously leads to only partially 

reliable results. 
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To address the limitations of the first-zero-order and first-first-order models 

described by Tosun, a new simple model was developed to obtain the three different 

fractions in which organic matter or carbon can be classified after fitting the data: 

rapidly biodegradable (CR), slowly biodegradable (CS) and inert fraction (CI). In 

addition, instead of monitoring the carbon emitted in the form of CO2 which is 

appropriate when organic matter is aerobically degraded, the carbon contained in the 

biogas in form of CO2 and CH4 was considered. 

If the concept of the Tosun model were to be retained, the mathematical 

expression would be unable to predict the inert fraction. However, instead of 

considering the evolution of the carbon emitted, the carbon that still has not been 

degraded can be also monitored, assuming that the initial TOC corresponds to 100% of 

the carbon in the sample and subtracting the carbon emitted from this initial value. The 

remaining carbon in the sample can be expressed as percentage of the initial TOC.  

The mathematical modelling of these data would correspond to the following 

expression: 

CW = CR exp(-kRt) + CS exp(-kSt) + CI  (2) 

where CW is the remaining carbon in the sample (%) at time t (day), CR and CS are the 

percentages of rapidly and slowly mineralisable carbon fractions respectively, CI is the 

carbon inert fraction, and kR and kS are rapid and slow rate constants (day-1), 

respectively. This expression consists of two exponential decay terms (first order 

kinetics) and an independent and constant term. 

 

2.4. Analytical Methods 

Bulk density, water content, dry matter and organic matter (equivalent to volatile 

solids) were determined in triplicate according to the standard procedures (The US 

Pre-print



12 
 

Department of Agriculture and The US Composting Council, 2001). Fat, protein and 

carbohydrate contents in the initial and final mixtures (after 135 days) were determined 

according to official methods in Spain (Spanish Ministry of Environment, 2009). No 

replications were available for these analyses. 

 

2.5. Statistical methods 

ANOVA tests were performed to compare different treatments. If the ANOVA 

test resulted in statistically significant differences, Tukey test was performed in pairwise 

comparisons. A confidence level of 95% was selected for all statistical comparisons. 

Statistical tests were conducted with SPSS 15.0.1 (SPSS Inc., USA). 

 

3. Results and discussion 

3.1. Methane production yields 

The general characterisation of the inoculum, the OFMSW and co-substrates is 

shown in Table 1. All the values reported are in agreement with usual characterisations 

of these materials (Neves et al., 2009; Alatriste-Mondragón et al., 2006; Fernández et 

al., 2005; Zhang et al., 2008). 

Methane cumulative production for all the mixtures was continuously monitored 

and compared with the control test (OFMSW:inoculum ratio 1:2). As mentioned above, 

the experiment finished when no significant methane production was detected. As a 

result the ultimate methane production (UMP), which means the maximum methane 

potential, was obtained for all the mixtures and expressed as (l [CH4] kg-1 [VSloaded]). 

Total solids reduction was 4.5% in the control test and 18% in the VO experiment while 

it was practically negligible in the rest of experiments. The inhibition of the 

methanogenic stage by volatile acid accumulation was not detected in any case as 
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demonstrated by methane concentration in biogas that was always higher than 55%. 

Furthermore ammonia inhibition was not detected when using protein as co-substrate. 

The UMP results obtained are reported and compared in Table 2. As observed, 

UMP of the mixtures increased significantly when using fats as co-substrates (83.1% 

and 33.0% for VO and AF respectively). The opposite trend was observed when using 

cellulose and protein as co-substrates. It could be concluded that fats could be suitable 

co-substrates for anaerobic digestion of the OFMS, as they improve VS degradation and 

increase the biogas production. In addition, considering these results, it could be also 

stated that cellulose and protein are not suitable for anaerobic co-digestion with the 

OFMSW.  

However, these results need to be carefully interpreted. The amount of total 

solids was increased 20% in the co-digestion experiments and consequently the amount 

of VS treated in the same working volume was also increased. Therefore the use of 

different units to express the UMP has to be considered. UMP was normalised by the 

initial substrate VS concentration (kg [VSloaded] l -1) in the mixture corresponding to 

OFMSW and co-substrates (not considering the VS from inoculum) to obtain the 

specific volumetric yield. UMP values expressed as l [CH4] l
-1 (UMP’) are also shown 

in Table 2. In this case, it can be observed that the addition of all four types of co-

substrates significantly increased UMP’ by 35.2%, 54.4%, 176.9% and 276.2% for 

cellulose, protein, AF and VO respectively. These results indicate that the reactor yield 

in terms of methane (or biogas) produced increases when adding any co-substrate. 

However, the organic matter (VS) degradation is not always improved and, in 

consequence, when using cellulose or protein wastes as co-substrates, a more intensive 

post-treatment for the end-product of anaerobic digestion (e.g. composting) might be 

necessary. 
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3.2. Kinetic modelling and biological methane potential validation 

Methane cumulative production for vegetable oil and animal fat and for cellulose 

and protein experiments are shown in Figure 1 and Figure 2 respectively. The control 

test is also shown in both Figures for comparison. 

The Gompertz model was used to describe the methane production in different 

experiments. Fitting the Gompertz equation to the experimental cumulative methane 

production is also shown in Figures 1 and 2, and Table 3 shows the Gompertz model 

parameters (Eq. 1). The values obtained for P were similar to the UMP experimentally 

obtained (Table 2). This confirms that the experimental cumulative methane production 

followed the theoretical trend in all cases, as is also confirmed by the goodness of fit of 

the Gompertz model to the experimental data (p < 0.001 in all cases).  

The lag phase was almost negligible and statistically equivalent for the control 

test and the cellulose and protein experiments. However, when adding fats as co-

substrates a lag phase of around 9 days was detected (Table 3). This could be explained 

by the fact that the inoculum used was not acclimatised to the different biochemical 

nature of fats (Fernández et al., 2005). In continuous experiments or in real digesters, 

this lag phase would disappear after an inoculum acclimation period. In this case, the 

overloading of the reactor can be avoided by starting up the reactor with a gradual 

increase of the co-substrate content in the input flow (Fernández et al., 2005). 

Rmax, expressed as l [CH4] kg-1 [VSloaded] day-1, was statistically higher for 

control test and protein experiment than for VO, AF and cellulose co-digestion 

experiments, which again highlights the importance of the inoculum acclimation and the 

effect of increasing the organic load.  
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Considering the Gompertz data fitting, it can be noted that the cumulative 

methane production for the control test and for the cellulose and peptone experiments 

reached the maximum before 21 days. This is in accordance with the operational HRT 

of the real digester from which the inoculum was obtained and confirms that it was 

working at the optimum HRT. However, for fats co-digestion experiments, and 

assuming that the lag phase would disappear in continuous operation, the maximum 

methane production would be reached after approximately 60 days of operation, which 

is similar to that found in other studies with complex wastes (Cuetos et al., 2008). This 

is related to the different biochemical nature and biodegradability of the co-substrates 

used, as well as to the higher energy content of fats compared to protein and cellulose 

(Ruggieri et al., 2008).  

Considering the cumulative methane potential at 21 days of operation for all the 

experiments, interesting conclusions can be obtained. For fat co-digestion experiments 

21 days were insufficient to reach the ultimate or maximum methane production. 

However the M values obtained at this point were close to 450 l [CH4] kg-1 [VSloaded] for 

VO, which still represents an improvement over 25% compared to the control test. 

Finally, an individual analysis for each co-substrate used can be done. 

Considering the above results, it could be established that VO is the most suitable waste 

that can be used as co-substrate in anaerobic digesters. In addition UMP and UMP’ 

increased 83.1% and 276.2% respectively and the cumulative methane potential at 21 

days had also increased by 28.6%. Consequently, higher VS degradation was also 

obtained after 21 and 135 days. Additionally, methane concentration in biogas had 

always reached 85% after 25 days while the highest value for the control test was 68%. 

All these results would indicate that the anaerobic digestion was improved in all 

aspects. Moreover a previous study demonstrated that VO is an excellent co-substrate 
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for a simulated OFMSW when operating under continuous conditions (Fernández et al., 

2005) showing no LCFA inhibition or cell washout. In addition LCFA were completely 

degraded in the process. 

  When using AF, a different behaviour was observed compared to VO. UMP 

and UMP’ values increased 33.0 and 176.9% respectively while Rmax decreased 61.1%. 

Additionally, although the UMP was notably increased, the low methane production 

rate led to a low cumulative methane production at 21 days (16.7% lower than control 

test). The feasibility of using AF as co-substrate needs to be evaluated in economic 

terms and considering possible destabilisation due to the presence of fats (Rincón et al., 

2008). Higher methane (and biogas) production per unit of digester volume would be 

obtained when increasing HRT above 21 days, but a lower organic matter stabilisation 

(degradation) would take place. This means that some other organic matter stabilisation 

process, such as composting, must be intensively applied to the digested material. In 

economic terms it would mean that, for a HRT of 21 days, more energy can be obtained 

per unit volume of reactor while less energy is obtained per kg of VS loaded, and 

consequently more energy must be used in other post-treatment to stabilise the organic 

matter. 

Results obtained for cellulose and protein experiments were similar; therefore 

the same analysis can apply for both. UMP and Rmax values did not increase and the 

cumulative methane and biogas production at 21 days was 31.3 and 22.9% lower than 

control assays for cellulose and protein respectively. Organic matter degradation was 

also lower, but when results are expressed on a volume basis (UMP’), trends changed 

completely. UMP’ increased 39.9 and 58.2% for cellulose and protein experiments 

respectively. Again, these results should be analysed from an economic point of view. 
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Higher reactor yields in terms of l [CH4] l -1 [reactor] would be obtained while less 

organic matter would be degraded to biogas. 

 

3.3. Co-substrates specific degradation 

 In order to know the amount of co-substrate that had been degraded in the co-

digestion experiments, fat, sugars and protein analysis were carried out. The initial and 

final (after 135 days of experiment) mixtures composition is reported in Table 4 as well 

as the calculated reduction for each fraction. In this table, the content of sugars, fats and 

proteins is presented as a percentage. However, the reduction of the three components is 

calculated considering the total initial and final mass in the reactors (considering total 

VS reduction).  

The results showed that fats were more degraded when using fats as co-substrate 

since it became the main substrate for anaerobic bacteria to the detriment of sugars or 

protein. The same behaviour was detected for cellulose experiments but not for protein. 

 When using VO and AF as co-substrates, fat degradation values were similar. 

However sugars and protein degradation were much higher for VO experiment. This 

would explain its higher UMP, UMP’ and Rmax values. When using AF as co-substrate, 

sugar degradation seemed to be inhibited and protein degradation significantly 

decreased (33%). 

 When using cellulose as co-substrate, high degradation of sugars was achieved 

together with the highest protein degradation. It can be concluded that cellulose is a 

good co-substrate since it allows the simultaneous anaerobic degradation of the other 

organic components. 

After 135 days, final concentrations in all experiments where similar to that of 

control assay except for sugars final concentration in AF experiment, as discussed 

Pre-print



18 
 

above, and protein final concentration in protein experiment (Table 4). In this last case, 

the low protein biodegradation observed, similar to that of the control, might indicate 

that this co-substrate was not significantly degraded, although inhibition caused by the 

excessive presence of volatile fatty acids was observed when treating high organic loads 

of protein (data not shown). 

 

3.4. Assessment of biodegradable organic matter fractions through anaerobic 

biodegradation kinetics modelling 

All data from the co-digestion experiments was fitted to the new model proposed 

and the results obtained are shown in Table 5 while model fittings and the evolution of 

CR and CS are plotted in Figure 3.  

It can be seen that this model permits the determination of three carbon or 

organic matter fractions (CR, CS and CI) and the two biodegradation rate constants (kR 

and kS). This method is more reliable than that proposed by Tosun, since the 

consideration of non-biodegradable carbon as part of the total organic carbon is 

unquestionably necessary for a complete waste characterisation. In addition it is also 

confirmed by the goodness of model fitting (p<0.001 in all cases) and by the correlation 

coefficients (R2>0.98 in all cases). It has to be mentioned that lag phase data was 

subtracted from OFMSW:VO and OFMSW:AF co-digestion experiments prior to fitting 

the data to the new model. 

Although not reflected in Table 5, for the OFMSW (control), OFMSW:VO and 

OFMSW:AF the model proposed gives values for both CR and CS. However, the 

resultant kinetic constants kR and kS are exactly the same and consequently the organic 

matter mathematically included in CR and CS fractions is equivalent. Thus, the 

biodegradable organic matter contained in the OFMSW can be entirely considered as 
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rapidly anaerobically biodegradable, but when the OFMSW is co-digested with VO or 

AF, the biodegradation kinetic rate decreases significantly (67% and 80% respectively) 

and consequently organic matter is biodegraded more slowly. On the contrary, when the 

OFMSW is co-digested with cellulose and protein, different kinetic rate constants are 

obtained for CR and CS with kR values similar to those obtained for the control 

experiment. Particularly when the OFMSW is co-digested with cellulose, kR decreases 

by 22% while it is maintained at the same value when it is co-digested with protein.  

In spite of this, CS values are really low compared to CR and therefore they can 

be considered negligible. The biodegradability of the OFMSW and its comparison with 

co-digestion mixtures can be evaluated when comparing CR values and including also 

CS results. In this sense, CR ranges from approximately 40% to 50% in all the mixtures 

studied except when adding VO as co-substrate. If VO is co-digested with the OFMSW, 

CR increases up to 63%, what would be in accordance with the results obtained from the 

Gompertz model. In addition, if comparing the rate of biodegradability after 21 days 

(equivalent to the HRT of the real digester) with the control results, the values are 

similar and close to 40%. This would mean that, in both experiments (control and 

OFMSW:VO) after 21 days of anaerobic biodegradation process, 40% of the initial 

TOC would have been converted to biogas. Furthermore, when VO is added the 

methane content in biogas increases by 25%, which gives an additional economical 

benefit to the process. 

When the OFMSW is co-digested with AF, cellulose or protein waste, the 

percentage of organic matter converted to biogas is similar (CI values range from 50-

55%) while the initial loading rate is increased. This would imply, as was also 

suggested from the Gompertz model results, the need for an intensive post-anaerobic 

digestion treatment that allows for the required stabilisation of the organic matter. 
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Finally, it is important to point out that this model allows for the evaluation of 

carbon degradation kinetics related to the efficiency of the process in terms of organic 

matter biodegradation, while the Gompertz model allows for the evaluation of methane 

production kinetics and therefore a complete economic analysis of the process.  

 

4. Conclusions  

The main conclusions that can be extracted from this study are: 

1) The co-substrates used, vegetable oil, animal fat, cellulose and protein, seem to be 

adequate for anaerobic co-digestion because all four led to some operative 

improvements. However the implementation of a real full scale co-digestion process 

using these co-substrates needs a rigorous economic and technical analysis, allowing for 

local factors.  

2) It has been demonstrated that VO is the most suitable co-substrate for anaerobic 

digestion with the OFMSW since all the parameters evaluated with the Gompertz model 

(UMP, UMP’, R and R’ and total solids reduction) are greatly improved compared to 

the control experiment. In addition, when assessing the biodegradable organic matter 

biodegradation, VO is also the most suitable co-substrate because CR is clearly 

increased while biodegradation rate is maintained close to 40% after 21 days of process 

and despite a 20% increase in the initial loading rate. When individual co-substrate 

degradations are considered, VO is again the more feasible waste to be used as co-

substrate. The use of the other co-substrates (AF, cellulose and peptone) needs an 

economic and technical evaluation since they improve some anaerobic digestion 

aspects, such as ultimate methane production, but their initial production rate is lower 

than that of the control and rates of biodegradability are not improved. 
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3) The experimental data obtained in all the co-digestion experiments was well fitted by 

a Gompertz model. 

4) The way to express a yield in anaerobic digestion, based on reactor volume or 

volatile solid fed in the reactor, may lead to different observations. Both forms are to be 

considered when evaluating a new co-substrate in a specific situation.  

5) The new model proposed, based on that described by Tosun, can appropriately 

predict the biodegradable fractions of a sample as well as the biodegradation kinetic 

rates. In addition the total rate of biodegradation is provided by the model. 

6) Future work on the use of co-substrates in anaerobic digestion at industrial scale 

should be based on real tests at full scale with an accurate operational, economic, 

logistical and environmental analysis. 
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Tables 

 

Table 1. Characteristics of initial OFMSW, inoculum and co-substrates used in the 

study. 

 

Parameter OFMSW Inoculum Vegetable oil Animal fat Cellulose Protein 

Dry matter  

(%) 

29.0 7.0 >99 >98 >99 >99 

Organic matter 

(% dry basis) 

77.0 65.4 >99 >99 >99 >99 

Fat content 

 (% dry basis) 

11.52 7.86 >99 >99 0.0 0.0 

N-Kjeldahl  

(% dry basis) 

1.83 2.89 < 0.02 < 0.02 0.0 14  

C/N ratio 14.09 37.45 > 4000 > 4000 > 4000 - 
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Table 2. Ultimate methane potential obtained in co-digestion experiments. For each 

parameter, values followed by different letters in brackets are statistically different. 

 

Mixture UMP (l [CH4] kg-1 [VS]) UMP’ (l [CH4]  l
-1) 

Control (OFMSW) 382 ± 23 (a) 5.2 ± 0.3 (a) 

OFMSW:Vegetable Oil 699 ± 6 (b) 19.6 ± 0.2 (b) 

OFMSW:Animal Fat 508 ± 16 (c) 14.4 ± 0.5 (c) 

OFMSW:Cellulose 254 ± 10 (d) 7.0 ± 0.4 (d) 

OFMSW:Protein 288 ± 7 (d) 8.0 ± 0.2 (e) 
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Table 3. Summary of the estimated parameters from Gompertz equation for digestion and co-digestion experiments. For each parameter, values 

followed by different letters in brackets are statistically different. 

 

 

 

Mixture P (l [CH4] kg-1 [VS]) Rmax (l [CH4] kg-1 [VS] day-1) λ (day) 

Control (OFMSW) 350±27 (a) 35±1 (a) 0.6±0.1 (a) 

OFMSW:Vegetable Oil 686±7 (b) 21.9±0.7 (b) 8.9±0.2 (b) 

OFMSW:Animal Fat 490±26 (c) 14±1 (c) 9.1±0.1 (b) 

OFMSW:Cellulose 240±16 (d) 17±2 (d) 0.37±0.05 (a) 

OFMSW:Protein 269±3 (d) 32.0±0.7 (a) 0.50±0.07 (a) Pre-print
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Table 4. Co-substrates specific degradation analysis. 

 

 Initial (0 days) Final (after 135 days) Elimination

Mixture 

Total 

Fats 

(%, 

ww)* 

Total 

Sugars 

(%, ww) 

Total 

Protein 

(%, ww) 

Total 

Fats 

(%, ww) 

Total 

Sugars 

(%, ww) 

Total 

Protein 

(%, ww) 

Fats 

(%) 

Control (OFMSW) 0.71 0.69 4.37 0.44 0.14 4.93 40.86 

OFMSW:Vegetable Oil 2.08 0.33 4.86 0.44 0.15 3.63 80.00 

OFMSW:Animal Fat 2.12 0.33 4.86 0.55 0.41 4.16 75.64 

OFMSW:Cellulose 0.70 1.71 4.86 0.54 0.14 3.42 27.72 

OFMSW:Protein 0.70 0.33 6.24 0.55 0.18 6.24 24.65 

 

* ww: wet weight 

 Pre-print



30 
 

Table 5. Kinetic parameters for new model developed. Data are obtained from fitting 

Equation 2.  

 

 TOC (%) CR (%) CS (%) CI (%) kR (day-1) kS (day-1) 

OFMSW 

(control) 
44.2 46.2 --- 53.8 0.138 --- 

OFMSW:VO 57.5 62.6 --- 37.4 0.045 --- 

OFMSW:AF 58.9 49.2 --- 50.8 0.027 --- 

OFMSW:C 44.3 40.6 3.4 55.9 0.107 0.009 

OFMSW:P 44.8 47.1 3.3 49.7 0.139 0.009 
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Legends to Figures 

 

Figure 1: Evolution of Cumulative Methane Production during 135 days for Control 

test (●), Vegetal Oil (VO) (○), Animal Fat (AF) (▼) co-digestion experiments and 

Gompertz model (-). 

 

Figure 2: Evolution of Cumulative Methane Production during 135 days for Control 

test (●), Cellulose (○), Protein (▼) co-digestion experiments and Gompertz model (-). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Evolution of carbon remaining in the sample (●), kinetic model fitting  

(        ), evolution of CR degradation  (        ) and evolution of CS degradation (        ). 

Carbon is expressed as total organic carbon (TOC) 
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Figure 1: Ponsá et al. 

 

 

 

      

 

 

 

 

 

 

 

Pre-print



33 
 

Figure 2: Ponsá et al. 
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Figure 3: Ponsá et al. 
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