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Abstract 

  

Several organic wastes of major production in the world (municipal solid wastes, 

wastewater sludge, manures and bulking agents) and some already treated organic 

wastes have been investigated to determine the partition among the several fractions that 

compose them and their kinetics of biodegradation. Different literature models have 

been explored for their suitability to predict the behaviour in respiration studies of these 

wastes. All the models presented limitations related to their simplicity or their excessive 

complexity, which makes them unsuitable for reliable and fast studies at real scale. A 

new model based on the rapid, the slowly and the inert organic fractions has been tested 

for all the wastes, showing excellent correlations with actual respiration activity. 

Finally, the kinetic parameters for this model in its application to all the wastes studied 

are presented. 

  

Keywords: Biodegradation kinetics; Organic matter characterization; Biodegradability; 

Respirometry; Composting. 
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1. Introduction 

 

The increasing amounts of organic solid wastes generated by municipalities, 

industries or agricultural activities have become a worldwide problem. Among the 

available technologies to treat and recycle organic wastes, composting is presented as 

one of the most useful options to recycle organic materials to obtain a valuable organic 

fertilizer or amendment known as compost.  

 The proper knowledge of the characteristics of the wastes to be composted is 

essential to carry out the process in a favourable way to obtain the desirable compost 

quality. The aerobic biodegradation potential can be defined as the organic carbon 

content that can be biodegraded and transformed into carbon dioxide, and it is a key 

parameter to be considered for the optimal design and performance of the composting 

process. Often, the total organic carbon (TOC) content is not a reliable measure for this 

purpose since the recalcitrant or inert carbon fraction can be sometimes higher than the 

biodegradable organic carbon (BOC) fraction of the sample. In addition, the knowledge 

of the kinetic parameters regarding the aerobic biodegradation reactions can be very 

helpful for the determination of the time required for a correct stabilization of the 

material (Lasaridi and Stentiford, 1998). 

The initial C/N ratio is one of the most important factors affecting the 

composting process and the compost quality (Epstein, 1997; Zhu, 2007). Traditionally, 

the assessment of the C/N ratio in solid samples has been determined on a total organic 

basis through the determination of total organic carbon (TOC) and total nitrogen (N) via 

chemical analyses (Bisutti et al., 2004). In consequence, the C/N ratio used as an 

indicator of the composting process has been typically determined assuming that both 

nutrient sources are fully biodegradable (Eiland et al., 2001; Huang et al., 2004; Zhu, 

2007). However, it seems clear that only a percentage of the carbon is really 

Pre-print



 4 

biodegradable (BOC) and only a certain BOC fraction is capable of being biodegraded 

during the restricted treatment time of biological processes at industrial/full scale. When 

an unbalanced C/N ratio based on chemical content is considered, some unwanted 

processes can occur such as ammonia emissions, losses of nitrogen in compost or 

biological source limitations. The present study is focused on the determination of BOC 

and its rapidly biodegradable (CR) and slowly biodegradable (CS) fractions under 

aerobic conditions. The analysis of CR and CS could be achieved by using a simple 

kinetic model. CR and N values would be the most appropriate values for reliable 

determinations of the real C/N ratio. In fact, such a simple model would be of high 

interest for the management of composting plants in terms of process duration, plant 

real capacity and aeration requirements.  

There are some publications related to the biodegradation potential and kinetic 

analysis of organic wastes, the most worthwhile recent ones being published by Adani 

et al. (2004), Trémier et al. (2005), Komilis (2006), Tosun et al. (2008), Bueno et al. 

(2008) and de Guardia et al. (2010), among others. In all these studies, except in Tosun 

et al. (2008), complex models are developed and tested to describe the aerobic 

biodegradation of wastes, obtaining the biodegradation kinetic rate constants and the 

different fractions in which organic matter (or organic carbon) can be classified 

depending on its biodegradation rate. All these models provide valuable scientific 

information. However, they are not easy to apply to real treatment processes, since 

many analyses (including physical, chemical and biological determinations) and process 

monitoring are required. Moreover, they are not valid for all the wastes currently 

composted because some kinetic parameters are only suitable for specific types of 

wastes such as sewage sludge (Trémier et al., 2005). On the contrast, Tosun et al. 
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(2008) report some simple models, which are easy to apply. However, they have not 

been tested with a wide range of different wastes of diverse biochemical composition.  

The objectives of this study are: 1) to test some proposed models for the 

determination of the biodegradable organic matter content; 2) to develop a respirometric 

methodology and an easily applicable mathematical model that is able to characterize 

the waste initial organic carbon composition, defined as rapidly (CR), slowly (CS) and 

non-biodegradable or inert (CI) fractions, and the kinetic rate constants associated with 

each biodegradable fraction and 3) to provide useful information in terms of material 

biodegradability for the management and design of composting processes.  

 
 
2. Materials and Methods 

2.1. Organic Wastes 

Ten organic samples of different origins and at different stages of biodegradation 

were used in this work to include composting plants feedstocks and final products. A 

first group of raw wastes were composed of: mixed municipal solid waste (MSW), the 

source selected organic fraction of municipal solid waste (OFMSW), raw sludge (RS) 

and anaerobically digested sludge (DS) from wastewater treatment plants, pruning 

waste (PW), solid fraction of pig slurry (PM) and cow manure (CM). A second group of 

biologically treated wastes included: digested and further composted OFMSW (C-

OFMSW), mature and refined compost from composted OFMSW (F-OFMSW) and 

composted wastewater sludge (CS).  

All the municipal organic samples (MSW, OFMSW, C-OFMSW and F-

OFMSW) were obtained from a mechanical-biological treatment (MBT) plant located in 

Barcelona (Spain). Briefly, the plant operation is divided into three successive units: i) 

mechanical pre-treatment (to extract non-organic materials such as plastics, glass and 
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metals for recycling), ii) anaerobic digestion (21 days) and iii) composting (2-4 weeks). 

The plant processes both the OFMSW and MSW in two independent lines with a total 

capacity of 240,000 Mg per year. The complete and detailed information about the plant 

can be found in a previous study by Ponsá et al. (2008). RS and DS were directly 

obtained from the sludge dehydration lines of the Besòs (Barcelona, Spain) and 

Sabadell (Barcelona, Spain) municipal wastewater treatment plants, respectively. CS 

came from the Olot (Girona, Spain) composting plant, that processes municipal non-

digested wastewater sludge using the invessel (tunnel) technology for rapid 

decomposition and static aerated piles for maturation (Cadena et al., 2009). PM and CM 

samples were selected as typical farm wastes around the Barcelona province and they 

were collected from a farm in Vic (Barcelona, Spain). No composting was carried out in 

these farms at the moment of collection. Finally, a sample of PW from La Selva 

(Girona, Spain) composting plant was studied as a waste typically used as a bulking 

agent in composting processes. This plant also uses the invessel (tunnel) technology for 

rapid decomposition and static aerated piles for maturation (Ruggieri et al., 2008).  

Following Ponsá et al. (2010a), analytical methods were carried out on a 

representative sample (approximately 40 kg) obtained by mixing four sub-samples (10 

kg each) taken from different points of the bulk material. Samples derived from MSW 

and the OFMSW were ground to 15-20 mm particle size to reduce the dimension of the 

original materials. All the samples were frozen at -18°C within 12 hours after sampling. 

Before each analysis the samples were thawed during 24 hours at room temperature.  
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2.2. Respirometric tests 

Microbial respiration was measured as O2 consumption and CO2 production in a 

dynamic respirometer built and started-up by Ponsá et al. (2010a), which is based on the 

methodology described by Adani et al. (2006). 

Briefly, a 150 g organic sample was placed in a 500 mL Erlenmeyer flask that 

was introduced in a water bath at 37 ºC. A constant airflow was supplied to the sample 

and the on-line O2 and CO2 contents in the exhaust gases were measured and monitored. 

From the curves of oxygen concentration vs. time and carbon dioxide vs. time, two 

Dynamic Respirometric Indices (DRI or simply DRI) related to O2 consumption or CO2 

production were obtained from each sample. DRI represents the average oxygen uptake 

rate during the 24 hours of maximum biological activity observed during the 

respirometric assay and it reports the stability degree (Adani et al., 2004; Ponsá et al., 

2010a). It is expressed in mg of O2 consumed per g of dry matter per hour. However, to 

achieve the objectives of this study, the DRI is also required to be expressed in mg of 

CO2 produced per g of dry matter per hour.  

All measurements were carried out in duplicate. Low porosity samples were 

mixed with an inert bulking agent (only in the case of wastewater sludge: RS and DS 

and manures: CM and PM). This bulking material is formed by small pieces (20 x 10 

mm) of a biologically inert material (Spontex, Iberica) and mixed with the sample in a 

1:10 wet weight ratio (bulking agent:sample). 

 

2.3. Biodegradable Organic Carbon (BOC)  
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The cumulative CO2 production was calculated to know the total BOC content 

for each sample using a methodology presented by Ponsá et al. (2010a) to determine the 

cumulative oxygen consumption for a specific time.  

An increase in the time of the respirometric test permitted the determination of 

the total cumulative CO2 production. The time required depended on the bio-stability of 

each sample; in consequence, the determination was finished when the CO2 production 

rate was negligible. It was assumed that the assay could be finished when the measure 

of oxygen uptake rate (OUR) was below 5 % of the maximum OUR achieved during the 

respiration experiment (Komilis, 2006; Sánchez, 2007).  

As it is well known, during the aerobic degradation of organic matter the 

biodegradable organic carbon is transformed by oxidation to CO2. Thus, the total CO2 

production measured by the respirometric test is an indirect BOC measure of a sample, 

since this fraction is all the carbon dioxide produced by means of the biological activity. 

From these data, and considering that one mol of CO2 corresponds to one mol of C, 

BOC can be calculated as a dry weight percentage from the final cumulative CO2 

production and the molecular weight ratio between carbon and carbon dioxide (12/44), 

as shown in Equation 1. 

1000
100

44
12

)(%, 2
2 ⋅⋅








=

DMg

COmg
productionCOcumulativefinaldbBOC      Equation (1) 

where: BOC is the biodegradable organic carbon; the final cumulative CO2 production 

(or carbon mineralized) is expressed in mg CO2 g DM-1; 12 and 44 are the molecular 

weights of C and CO2, respectively; 1000 is the conversion factor from mg to g and 100 

is used to express BOC as percentage (dry matter basis).  
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Finally, it is necessary to point out that the main objective of this methodology is 

to determine the biodegradable organic carbon under composting conditions. 

Consequently, neither inocula nor additional nutrients were added.  

 

2.4. Analytical methods 
 

Water content, dry matter (DM), organic matter (OM) content and total organic 

carbon content (TOC) were determined according to the standard procedures (The U.S. 

Department of Agriculture and The U.S. Composting Council, 2001). Three replicates 

were analysed for each sample. 

 

2.5. Assessment of biodegradable organic matter fractions through biodegradation 

kinetics modelling 

Data of cumulative CO2 produced or mineralized was fitted to the four models 

described by Tosun et al. (2008) to characterize the biodegradable organic matter 

content of a given waste by means of quantitative measures of the easily and the slowly 

biodegradable organic matter fraction and the biodegradation kinetic rate constants. 

These models were considered as a first approach since they were simple and easy to 

apply, although some of them do not consider the fractionation of the biodegradable 

organic matter. However, it should be mentioned that these models are mainly 

empirical, as they do not imply a structured modelling of organic matter and its 

biodegradations by specific microbial communities, unlike other published models 

(Solé-Mauri et al., 2007).  

The four models are described below: 

1) First-zero-order kinetic model: 

The first-zero-order kinetic model is expressed as:  
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tkCtkCC sSRR +−−= ))exp(1(          Equation (2) 

where: C is the cumulative C-CO2 mineralized (or produced) at a given time t (days) 

(%, on TOC basis); CR is the rapidly biodegradable TOC fraction expressed as 

percentage of remaining TOC (%, on TOC basis); CS is the slowly biodegradable TOC 

fraction expressed as percentage of remaining TOC (%, on TOC basis); and kR and kS 

are the rapid and slow rate constants (day-1), respectively. 

- First-first-order kinetic model: 

The first-first-order kinetic model is expressed as: 

))exp(1())exp(1( tkCtkCC sSRR −−+−−=  Equation (3) 

where the parameters are the same as those of Equation (2). 

- Chen and Hashimoto’s kinetic model: 

The model is expressed by the following equation as suggested by Tosun et al. (2008): 

))1/()1((100100 KtKRRC m +−−+×−= µ  Equation (4)  

where R is the refractory coefficient, K is the Chen and Hashimoto dimensionless 

kinetic constant and mµ  is maximum specific growth rate of microorganisms (day-1). 

- Levi-Minzi’s kinetic model: 

Levi-Minzi’s model expresses the net mineralization of organic matter with an 

exponential kinetic: 

mktC =  Equation (5) 

where k is a constant that characterizes the units used for the variables used to express 

organic matter and m is a constant that characterizes the shape of the biodegradation 

curve. 

Matlab v2007a software package (MathWorks Inc., Massachusetts, USA) was 

used to fit the value of the model parameters presented in Equations 2-5.  
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3. Results and discussion  

3.1. Physico-chemical characteristics 

The main properties of the samples studied are shown in Table 1. As expected, 

dry matter content was higher and organic matter and TOC content were lower in final 

products than in raw materials. TOC content was around 45 % in most of the raw 

wastes. Besides, F-OFMSW presented higher organic matter and TOC contents than C-

OFMSW, since inert materials and bulking agents were removed after the final product 

post-treatment (Ruggieri et al., 2008). In MSW and OFMSW samples, the values found 

for TOC and OM content are statistically similar, which again highlights the difficulties 

of having these values with an acceptable precision when dealing with these extremely 

heterogeneous wastes. This supposes a clear limitation of the models only based on 

TOC when they are applied to bulk municipal wastes.  

 

3.2. Dynamic respiration index (DRI) 

Table 1 shows the DRI based on the CO2 production and O2 consumption to 

know the carbon degradation rate and the stability degree, respectively. It is assumed 

that 1 mg O2 g OM-1 h-1 is the maximum DRI threshold for biological stability (Adani et 

al., 2004; Baffi et al., 2007). Only C-OFMSW, F-OFMSW, CS and PW were below this 

limit and could be considered stabilized samples with low rapidly biodegradable organic 

matter content. On the contrary, high stability indices were found for RS, CM, 

OFMSW, MSW and DS. Recently, Ponsá et al. (2010a) has presented a qualitative 

classification of wastes into three categories, which are based on the material typology 

and its stability respiration indices. According to this classification, RS, PM and 

OFMSW are highly biodegradable wastes because they present a stability index higher 

than 5 mg O2 g DM-1 h-1; DS and CM can be classified as moderately biodegradable 

Pre-print



 12

wastes since they present a DRI between 2 to 5 mg O2 g DM-1 h-1 and the rest of the 

materials are wastes of low biodegradability, which have a DRI below 2 mg O2 g DM-1 

h-1. The only exceptional case in this study is the abnormally low respiration value of 

mixed MSW, which in other studies is clearly within the range of moderately 

biodegradable wastes (DRI within 2 and 5 mg O2 g DM-1 h-1). The reason for this value 

must be found in the inherent variability of MSW (Ponsá et al., 2008; Ponsá et al., 

2010a; Ponsá et al., 2010b). 

 

3.3. Biodegradable Organic Carbon (BOC) 

The total BOC content of the samples analysed is presented as percentage of dry 

matter and shown in Table 1. BOC correlated relatively well with total OM (r=0.801, 

p<0.001) and it was 29.4 % of OM as average. BOC was determined from a continuous 

respirometric test; therefore, the evolution of the BOC cumulative consumption could 

be monitored and it will be used in the following sections. Each sample presented a 

different total time of assay according to the threshold established to finish the process. 

Only the pruning waste assay was stopped before reaching this threshold because it 

behaves as a really slowly biodegradable material and it was considered that in 90 days 

the assay was long enough for a correct biodegradable carbon determination. 

Essentially, the DRI obtained for PW was 0.82 mg O2 g DM-1 h-1, which was the lowest 

value observed for the different raw wastes analysed. After 90 days, OUR was 0.18 mg 

O2 g DM-1 h-1 (20% of DRI and the lowest value observed for any analysed waste).  

As expected, most of the samples obtained after anaerobic digestion and/or 

composting treatments presented lower BOC values than raw materials since in both 

biological treatments most of the BOC is biodegraded. According to these data, it can 

be hypothesized that the total BOC could be directly related to the biological stability 
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degree, which was measured as DRI (Table 1). However, no significant statistical 

correlation was found. This has been also observed in other studies, where the 

relationship between the respiration rate and the total oxygen consumed resulted in a 

deficient coefficient of linear regression (Mojaher et al., 2009). The possible reason is 

that two different samples can present a similar BOC and very different DRI, depending 

on their biochemical composition, that is, how rapidly or slowly BOC biodegrades. For 

instance, PW and RS presented a similar BOC (approximately 18 % on a dry basis), 

while the DRI of PW was much lower, according to the lower rate of decomposition of 

fibres. Accordingly, the characterization of BOC and its fractionation into rapidly and 

slowly degradable fractions would be of interest (Trémier et al., 2005).  

 

3.4. Assessment of biodegradable organic matter fractions through biodegradation 

kinetics modelling 

To provide a quantitative measure of the different fractions of biodegradable 

organic matter that is contained in organic wastes, the data of CO2 produced or 

mineralized were fitted to different models. The objective was to assess the different 

biodegradable organic fractions by means of a simple, rapid and easily applicable 

model. Therefore, the percentage of carbon mineralized was calculated as the amount of 

cumulative C-CO2 produced at a given time on the basis of the initial total organic 

carbon (constant value and characterization parameter), which is the BOC/TOC ratio for 

any given time, as thus a time-variable parameter. The following discussion and 

evaluation of the biodegradable organic matter fractions will be carried out on the basis 

of BOC. 

The four models described by Tosun et al. (2008) were fitted to the obtained 

experimental data for the ten different wastes studied. Figure 1 shows the percentage of 
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carbon mineralized with time and the fitting of the four models considered for one of 

the MSW replicates. A similar behaviour was observed for all the organic wastes except 

for CS. In this case, any of the tested models provided a good fitting.  

The kinetic parameters obtained when fitting the experimental data to the models 

are shown in Table 2. Levi-Minzi’s model did not correctly fit the experimental data. 

Chen and Hashimoto’s model fit to the data was mathematically acceptable, but the 

resulting parameters did not offer reliable information; with K values ranging from 1 to 

1016 and µmax ranging from 1.7 to 1013 depending on the waste considered. 

Consequently, both models were not considered in further discussion.  

First-zero-order and first-first-order models fitted well to the experimental data, 

but the best fit was observed for the first-first-order kinetic model, with correlation 

coefficients that were always near to 0.99.  

Higher values of CR were obtained for F-OFMSW (16.19%) than for C-OFMSW 

(6.06%). As previously commented, this can be explained by the organic matter 

concentration occurring in the MBT post-treatment where the material, after being 

composted, is subjected to bulking agent separation and inorganic material removal 

before commercialization. Another possible explanation could be the presence of 

intensive anaerobic digestion in the case C-OFMSW. 

As expected from the DRI data, the lowest content of rapidly mineralizable 

fraction (CR) was obtained for C-OFMSW and PW. In general, it was observed that 

wastes with high DRI also presented high values of CR. However, no significant 

correlation was found between CR or kR and DRI.  

The data presented in Table 2 confirmed a low content of rapidly biodegradable 

organic carbon content (or equivalently biodegradable organic matter content) in treated 

samples and in pruning waste. On the contrary, raw samples presented a rapidly 
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biodegradable content of organic matter higher than 24%. In the case of pig manure, 

although the first-first-order model fitting showed a relatively small fraction of rapidly 

biodegradable carbon (9.67%), the high kinetic constant kR observed (0.547 day-1) is in 

agreement with the high DRI observed (Table 1). 

When analysing and discussing these results, it is important to consider the 

limitations that this methodology presents. The first-zero-order and first-first-order 

models permit the classification of the carbon content into two different categories: 

easily and slowly biodegradable fractions. However, this does not necessarily mean 

that, for example, the characteristics of the easily organic matter contained in a sample 

of the OFMSW may be comparable to the same fraction in a sample of pig manure. The 

unique equivalent meaning for all samples is the next: the easily biodegradable fraction 

of a given waste has a biodegradation rate constant much higher than the slowly 

biodegradable fraction. In this sense, it is very important to simultaneously consider 

both parameters: the percentage of easily biodegradable carbon and the corresponding 

biodegradation rate constant. The higher the rate constant is, the faster the 

biodegradation takes place on the rapidly biodegradable waste fraction. In conclusion, a 

general classification for a sample with different organic fractions can be established 

from the first-first-order model fit. It can be considered that a sample or a fraction is 

easily biodegradable if the biodegradation constant rate ranges from 0.096 to 0.6 day-1 

and slowly biodegradable if it ranges from 0.001 to 0.011 day-1. When biodegradation 

constant rates are equal to 0 or lower than 0.001 day-1, the corresponding organic or 

carbon fraction of the entire sample could be considered as inert organic matter. Similar 

conclusions can be obtained from the data presented by Tosun et al. (2008). Also, 

according to results reported in Komilis’ kinetic study (Komilis, 2006), the threshold 
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estimation between both fractions is obtained for biodegradation constant rates of 

approximately 0.05 day-1.  

However, the most important limitation when using the first-zero-order and the 

first-first-order models is the consideration of the non-biodegradable (inert) organic 

matter or organic carbon as a slowly biodegradable fraction. This leads to non-

completely reliable results as there is a wide group of organic wastes in which this 

fraction can be significant or even predominant, as discussed later.  

Two additional models that permit the characterization of easily and slowly 

biodegradable organic matter fractions were considered in this study. The model 

suggested by Komilis (2006) was more complete than those described by Tosun et al. 

(2008), but it requires additional chemical analysis (final TOC and initial dissolved 

organic carbon) and it was discarded according to the aims of this work. The model 

suggested by Trémier et al. (2005) was also fitted to experimental data. This model had 

been optimized for sludge:bulking agent mixtures and provided good results for the 

sludge experimental data of this work (data not shown). However, the model did not 

properly fit the respirometric profile of the rest of wastes. Trémier’s model requires five 

kinetic parameters and two stoichiometric parameters to estimate the three active 

compounds present in the substrate: biomass, rapidly and slowly biodegradable 

fractions. The determination of these seven parameters of the model requires performing 

experiments with substrates of different biochemical composition. In consequence, 

model optimization is necessary for each waste prior to its use. For this reason, 

Trémier’s model was also discarded in this study, although it is evident that it can be of 

use if the specific characteristics of a waste are well known.  

To overcome the limitations of the first-zero-order and first-first-order models 

described by Tosun, the first-first-order model was modified to include the three 
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different fractions in which organic matter or carbon can be divided: CR, CS and inert 

fraction (CI).  

The exact concept of the Tosun model and its mathematical expression is unable 

to predict the inert fraction. However, instead of monitoring the evolution of the carbon 

emitted in form of CO2, the remaining carbon that still has not been degraded can be 

monitored, by assuming that the initial TOC corresponds to the 100% of the carbon in 

the sample and subtracting the carbon emitted from this initial value. The remaining 

carbon of the sample can be expressed as a percentage of the initial TOC and some 

profiles based on this procedure can be observed in Figure 2. 

The mathematical modelling of these data corresponds to the following 

expression: 

ISSRRW CtkCtkCC +−+−= )exp()exp(          Equation (6) 

where: CW is the remaining carbon of the sample (%) at time t (days), CR and CS are the 

percentages of rapidly and slowly biodegradable fractions, respectively, CI is the inert 

fraction and kR and kS are rapid and slow rate constants (day-1), respectively. This 

expression consists of two exponential decay terms (first-order kinetics) and an 

independent and constant term. 

Although it is not always necessary, when fitting the model is recommendable to 

add the restriction of the equivalency of the total biodegradable carbon fractions (CR 

plus CS) to the total BOC degraded. Otherwise, the model could lead to wrong results 

since all the organic matter in the sample could be considered as potentially 

biodegradable. This implies a previous chemical analysis of TOC as well as the 

biological analysis of BOC for all the samples studied.  

All data from the wastes analysed were fitted to this model and the results 

obtained are shown in Table 3. The model fittings and the evolution of CR, CS and the 
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evolution of organic matter degradation when no distinction between CR and CS can be 

distinguish (CBIO) is provided by the model and are plotted in Figure 2 for all the wastes 

analysed (time scales are different for each waste to clearly observe the model fitting).  

After fitting the experimental data to the model, it can be concluded that this 

model permits the determination of the three carbon or organic matter fractions (CR, CS 

and CI) and the two biodegradation rate constants (kR and kS). This method is more 

reliable than those proposed by Tosun, since the consideration of non-biodegradable 

carbon as a part of the total organic carbon is clearly necessary for a complete waste 

characterization. In this regard, values of CR and CS and the new CI fraction are 

different from those obtained in Tosun models. In addition, this model is validated by 

the wellness of the model fitted to the experimental data (p<0.001 in all cases) and by 

the correlation coefficients (r>0.97 in all cases). 

Although it is not presented in Table 3 for C-OFMSW, F-OFMSW, PW and CS, 

the proposed model gives values for both CR and CS. However, the kinetic constants kR 

and kS present the same numeric value and consequently the organic matter included in 

CR and CS fractions is mathematically equivalent. Therefore, when considering the 

values of the kinetic rate constants, it can be observed that biologically treated wastes 

and wastes in which low biodegradation potential is expected (such as PW) only present 

one type of organic matter, which can be classified as slowly biodegradable. In this 

case, the kinetic rate constants are always lower than 0.12 day-1. 

On the contrast, two different fractions of organic matter with different 

biodegradation rate constants are obtained for all the raw waste samples with a low 

standard deviation among the replicates analysed. The difference between the 

biodegradation rate constants is always higher than 61%, which means that CR and CS 

have clearly different biodegradation characteristics. From these results, the threshold 
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between rapidly and slowly biodegradable carbon rate constants would be 

approximately between 0.12 and 0.24 day-1, although this difference is not absolute and 

only an estimation. Additional experiments with other waste typologies would help in 

establishing this limit with more accuracy.  

All the samples have a percentage of organic matter that is not biodegradable 

(CI) and this value is directly estimated by the model fitting. As expected, the 

biologically treated wastes are those that present the highest percentage of non-

biodegradable carbon, ranging from 94% (for CS) to 82% (for C-OFMSW). On the 

contrary, feedstock samples always present a percentage of CI lower than 73%, except 

for the case of DS when CI values are close to 80%. DS is a special case, since it 

presents a CR value around 10% when the total biodegradable organic carbon is similar 

to those wastes with a low biodegradation potential. Probably, this is due to the 

presence of hydrolysed organic matter that have not been biodegraded by the 

methanogenic bacteria during the process of anaerobic digestion and that it is easily 

biodegradable organic matter under aerobic conditions. 

The wastes with the highest biodegradable organic matter percentages were the 

OFMSW (54%) and CM (49%). The wastes with the highest CR fraction were the 

OFMSW and RS with values around 13%. The highest kR (1.5 day-1) was obtained for 

PM waste. The lowest kS value was obtained for PW, which indicated that this waste 

was the most slowly biodegradable but not the least biodegradable, since CI only 

represented 50% of the initial TOC. 

When comparing the values obtained from the proposed model with the values 

obtained from Tosun models, it is evident that the values significantly differ, since 

initial considerations are also different. In this new adapted model, kR is never lower 

than 0.24 day-1, whereas in Tosun models carbon was considered as rapidly 
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biodegradable when kR was higher than 0.096 day-1. Probably the existence of the inert 

carbon fraction that is not considered in Tosun models causes a reduction effect in the 

resulting kinetic constants for CR and CI. Further studies are necessary to clarify this 

point.  

Finally, it can be considered that an entire sample or fraction is rapidly 

biodegradable when the biodegradation constant rate is over 0.25 day-1 and it can be 

considered as slowly biodegradable when biodegradation constant rate ranges 

approximately from 0.001 to 0.12 day-1. When biodegradation constant rates are equal 

to 0 or lower than 0.001 day-1, the corresponding organic or carbon fraction or the entire 

sample could be considered as inert organic matter. These results are not in agreement 

to those obtained by Komilis (2006) and establish a new classification and methodology 

to discern among the biodegradation potentials of different wastes that can be used to 

consistently characterize the waste organic matter fractions in terms of biodegradability. 

DRI results can not be directly related to a single parameter of the model. High 

values of DRI are a consequence of high CR values with a moderate kR or moderate 

values of CR with high values of kR. This is in accordance to Ponsá et al. (2010a), who 

concluded that DRI can not be used as a single parameter to determine a waste aerobic 

biodegradability potential and, in consequence, longer and cumulative aerobic 

respirometric indices need to be used. Alternatively, the correlations between DRI and 

the product CRkR for the six feedstocks used in the study were checked. The results 

were: for OFMSW, RS, CM and PM: r = 0.991; adding MSW: r = 0.951 and adding DS: 

r = 0.861; all of them with p < 0.05. This can be of high interest because it establishes a 

new relationship between a very fast parameter to characterize a waste (DRI) and 

parameters that are inherent to the model proposed for the biodegradation of a given 

waste. In fact, it means that DRI is reflecting the rapidly biodegradable organic matter 
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of a waste, as it can be statistically correlated with the product CRkR for different 

organic wastes of different biochemical composition. The research of the possible 

relationships between DRI and other kinetic parameters can be the objective of further 

investigations. 

 

4. Conclusions 

The present work establishes a new respirometric methodology that permits a 

complete organic matter characterization by fitting the experimental respiration data to a 

simple and an easy-to-apply mathematical model based on the monitoring of the organic 

carbon depletion. This new model approach overcomes the limitations, complexity and 

considerable physico-chemical analysis required in the existing methodologies and 

models.  

Different raw and biologically treated wastes have been completely 

characterized in terms of CR, CS, CI, kR and kS, which presents a new classification 

based on their biodegradation rates. 

The results from the model cannot be directly correlated to DRI, which 

indicates, as suggested in Ponsá et al. (2010a), that the organic matter in real wastes can 

not be characterized by a unique parameter. Therefore, the different organic matter 

fractions and biodegradation rates must be considered together for a reliable 

characterization. 
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Tables 
 
Table 1. Characterizations of the different wastes used for the assessment of 

biodegradable organic matter fractions. 

 

 
DM 

(%, wb) 
OM 

(%, db) 
TOC 

(%, db) 
BOC 

(%, db) 
DRI-O2 

(mg O2·g DM-1·h-1) 
DRI-CO2 

(mg CO2·g DM-1·h-1) 
MSW 62 ± 6 38 ± 6 34 ± 3 12.6 ± 0.1 1.50 ± 0.09 1.70 ± 0.01 

OFMSW 29 ± 3 77 ± 3 44 ± 3 23.4 ± 0.2 4.10 ± 0.06 5.5 ± 0.6 

C-OFMSW 65 ± 2 28 ± 3 16 ± 1 1.8 ± 0.2 0.22 ± 0.06 0.26 ± 0.01 

F-OFMSW 50.2 ± 0.8 33.3 ± 0.9 38 ± 3 3.7  ± 0.4 0.55 ± 0.07 0.70 ± 0.08 

Raw Sludge 29.4 ± 0.8 77.1 ± 0.9 45 ± 3 17.7 ± 0.2 6.1 ± 0.9 6.57 ± 0.03 

Digested Sludge 19.6 ± 0.1 54.8 ± 0.1 29 ± 2 11 ± 3 3.2 ± 0.2 2.9 ± 0.3 

Composted Sludge 57.4 ± 0.4 65 ± 2 38 ± 4 2.19 ± 0.04 0.14 ± 0.02 0.20 ± 0.01 

Cow Manure 23.5 ± 0.2 84.9 ± 0.9 47 ± 3 23.1 ± 0.4 2.69 ± 0.02 3.03 ± 0.08 

Pig Manure 12.7 ± 0.3 85.1 ± 0.4 67 ± 4 22 ± 3 5.3 ± 0.2 6.4 ± 0.6 

Pruning Waste 60.4 ± 1.1 92 ± 1 42 ± 1 19 ± 4 0.82 ± 0.09 1.1 ± 0.2 

 
wb: wet basis. db: dry basis. OFMSW: Organic Fraction of Municipal Solid Waste. C-
OFMSW: Digested and Composted OFMSW. F-OFMSW: Mature and refined compost 
from composted OFMSW. OM: Organic Matter. DM: Dry Matter. TOC: Total Organic 
Carbon. BOC: Biodegradable Organic Carbon. DRI: Dynamic Respiration Index 
(referred to O2 consumption or CO2 production). 
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Table 2. Kinetic parameters for the different models analyzed fitted to experimental BOC respiration evolution determined in this study. 

 

Kinetic model Model parameter MSW OFMSW C-OFMSW F-OFMSW RS DS CM PM PW CS 

First-zero-order 

CR (%) 33.70 33.96 6.06 16.19 25.06 16.01 50.66 9.62 13.41 0.097 

CS (%) 66.30 66.04 93.94 83.81 74.94 83.99 49.34 90.39 86.59 99.90 

kR (day-1) 0.10 0.193 0.161 0.127 0.229 0.415 0.095 0.69 0.062 2.786 

kS (day-1) 0.001 0.009 0.002 0.000 0.007 0.001 0.000 0.01 0.004 0.002 

First-first-order 

CR (%) 33.57 31.66 5.92 16.18 24.24 16.00 50.58 9.67 7.90 0.068 

CS (%) 66.43 68.34 94.08 83.82 75.76 84.00 49.42 90.33 92.10 99.93 

kR (day-1) 0.10 0.202 0.165 0.127 0.234 0.416 0.096 0.547 0.182 4.51 

kS (day-1) 0.001 0.011 0.002 0.000 0.008 0.001 0.000 0.006 0.005 0.002 

Chen and Hashimoto 

R 0.551 0.125 0.822 0.783 0.537 -0.086 0.410 0.006 0.164 -0.256 

K 17.72 1773.7 2.61 1011 29.43 12.06 8.17 1015 14.19 1.006 6.11 1014 1.14 104 

µmax (day-1) 850.5 63.07 1.20 1010 3.66 1.96 5.14 1013 1.736 2.006 5.64 1012 23.02 

Levi-Minzi 
k 48942 11.85 1.672 4.135 9.141 8.843 13.59 3.006 2.221 0.262 

m 0.394 0.439 0.564 0.431 0.453 0.225 0.348 4.006 0.657 0.975 

 
OFMSW: Organic Fraction of Municipal Solid Waste. C-OFMSW: Digested and Composted OFMSW. F-OFMSW: Mature and refined compost 
from composted OFMSW. RS: Raw Sludge. DS: Digested Sludge. PW: Pruning Waste. PM: Solid Fraction of Pig Manure. CM: Cow Manure. 
PW: Pruning Waste. CS: Composted Sludge. CR: rapidly biodegradable carbon fraction based on initial TOC. CS: slowly biodegradable carbon 
fraction based on initial TOC. kR: rapid rate constant. kS: slow rate constant. R: refractory coefficient. K: Chen and Hashimoto dimensionless 
kinetic constant. mµ : maximum specific growth rate of microorganisms. k: model constant. m: model constant. 
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Table 3. Kinetic parameters for new model developed in this study. 

 

Model parameter CR(%) CS(%) CI (%) kR (day-1) kS (day-1) 
MSW 4.2 ± 0.4 32.34 ± 0.06 63.0 ± 0.9 0.25 ± 0.01 0.08 ± 0.01 

OFMSW 13 ± 3 40 ± 2 46.0 ± 0.7 0.30 ± 0.03 0.08 ± 0.01 

C-OFMSW --- 12  ± 1 87 ± 1 --- 0.08 ± 0.01 

F-OFMSW --- 16 ± 2 82 ± 1 --- 0.120 ± 0.002 

Raw Sludge 12.5 ± 0.9 26.6 ± 0.7 60.9 ± 0.2 0.77 ± 0.07 0.100 ± 0.003 

Digested Sludge 10 ± 1 7 ± 1 81 ± 2 0.65 ± 0.01 0.12 ± 0.04 

Cow Manure 3.2 ± 0.2 45 ± 1 51 ± 1 0.24 ± 0.05 0.094 ± 0.004 

Pig Manure 4.3 ± 0.4 23 ± 1 73 ± 1 1.5 ± 0.2 0.05 ± 0.01 

Pruning Waste --- 49 ± 2 50 ± 2 --- 0.024 ± 0.003 

Compost Sludge --- 5.8 ± 0.1 94.2 ± 0.1 --- 0.068 ± 0.001 

 
OFMSW: Organic Fraction of Municipal Solid Waste. C-OFMSW: Digested and 
Composted OFMSW. F-OFMSW: Mature and refined compost from composted 
OFMSW. CR: rapidly biodegradable carbon fraction based on initial TOC. CS: slowly 
biodegradable carbon fraction based on initial TOC. kR: rapid rate constant. kS: slow 
rate constant. 
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Legends to Figures 
 
 

Figure 1. Evolution of the carbon biodegraded during time and fittings of kinetic 

models tested for one of the replicate samples of Municipal Solid Waste. 

 

Figure 2. Evolution of carbon remaining in the sample expressed as total organic 

carbon (TOC), fitting of kinetic model, evolution of CR and CS degradation and 

evolution of organic matter degradation when no distinction between CR and CS is 

provided by the model (CBIO) for one of the replicates of each waste sample analysed in 

this study. Please note the different time scales. OFMSW: Organic Fraction of 

Municipal Solid Waste. C-OFMSW: Digested and Composted OFMSW. F-OFMSW: 

Mature and refined compost from composted OFMSW. RS: Raw Sludge. DS: Digested 

Sludge. PW: Pruning Waste. PM: Solid Fraction of Pig Manure. CM: Cow Manure. 

PW: Pruning Waste. CS: Composted Sludge. CR: rapidly biodegradable carbon fraction 

based on initial TOC. CS: slowly biodegradable carbon fraction based on initial TOC. 
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Fig. 1. 
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