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Abstract 
 

Many successful models  for predicting attention in a 

scene involve  three main steps: convolution with a set of 

filters, a center-surround  mechanism and spatial pooling 

to construct a saliency map. However, integrating spatial 

information and justifying the choice of various parame- 

ter values remain open problems. In this paper we show 

that an efficient model of color appearance in human vision, 

which contains a principled selection of parameters as well 

as an innate spatial pooling mechanism, can be generalized 

to obtain a saliency model that outperforms state-of-the-art 

models. 

Scale integration  is achieved by an inverse wavelet trans- 

form over the set  of scale-weighted center-surround  re- 

sponses. The scale-weighting function (termed EC SF ) has 

been optimized to better replicate psychophysical data on 

color appearance, and the appropriate  sizes of the center- 

surround inhibition windows have been adjusted by training 

a Gaussian Mixture Model on eye-fixation data, thus avoid- 

ing ad-hoc parameter selection. Additionally,  we conclude 

that the extension of a color appearance model to saliency 

estimation adds to the evidence for a common low-level vi- 

sual front-end for different visual tasks. 
 
 
1. Introduction 

 

Saccadic eye movements  are perhaps one of the most 

defining characteristics of the human visual system, allow- 

ing us to rapidly sample images by changing the point of 

fixation. Although many factors may determine what im- 

age features  are selected or discarded by our attentional 

processes, it has been useful to separate these into two cat- 

egories of factors: bottom-up  and top-down. The former 

comprises automatically-driven  (instantaneous) processes 

while the later comprises  processes that are dependent of 

the organism’s  internal  state (such as the visual task at hand 

or the subject’s background).  While the difficulties  of un- 

derstanding internal  states are usually dealt with by ma- 

chine learning techniques trained on general prior knowl- 

edge, image-driven processes are usually  tackled by build- 

ing saliency maps, getting inspiration from low-level bio- 

logical  processes which  are better known  than the more elu- 

sive top-down mechanisms. Saliency maps are topograph- 

ical maps of the visually salient parts of scenes (saliency 

at a given location  is in turn determined by how different 

this location is from its surround in color, orientation, mo- 

tion, depth, etc. [10]).  Computing  these maps is still an 

open problem whose interest is growing in computer vision 

[6, 5, 3, 17, 9, 8]. 

Several computational  models have already been pro- 

posed to predict human gaze fixation,  some of which are in- 

spired by biological  mechanisms (usually well known low- 

level processes) while others are based on learning tech- 

niques that directly train from human fixation data. 

Among the biologically-inspired  models of saliency, the 

model of Itti et al. [7] is one of the most influential,  sum- 

ming the scale-space center-surround excitation  responses 

of feature maps at different  spatial frequencies and orien- 

tations and feeding the result into a neural  network, the 

output of which measures saliency. Gao et al.   [4] ap- 

proached saliency at a location  as the discriminatory power 

of a set of features describing that location to distinguish 

between the region and its surround. Bruce & Tsotsos [3] 

considered saliency at a location  to be quantified  by the self- 

information of the location with respect to its surrounding 

context - either the entire image, or more localized pixel 

regions. Zhang et al. [17] also proposed a method  based 

on self-information,  but using a spatial pyramid to produce 

local features (with the contextual  statistics being gener- 

ated from a collection  of natural  images rather than a lo- 

cal neighborhood of pixels or a single image).  Seo & Mi- 

lanfar [14] uses a self-resemblance  mechanism  to compute 

saliency, where a region with dissimilar curvature compared 

to its surroundings  was designated as being highly salient. 

In a typical  learning-based approach [9, 8], salient features 

are learned and combined using eye-tracking data, with the 

learning techniques serving to reduce the number of model 

parameters that must be tuned. 

In the most common bottom-up modelling framework, 
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(a) (b) (c) 
 

Figure 1: (a) Two salient features of a scene outlined  in green and 

red. In (b) and (c) we show the spatial scale and orientations  at 

which each object is most prominent. Because these scales and 

orientation are different for the two features, integrating informa- 

tion contained in the spatial pyramid is critical. 
 
 

attention in a scene involves  a scale-space decomposition 

of the input image using a set of linear filters, a center- 

surround operation over the decomposition, and some kind 

of spatial pooling to build the final saliency map. However, 

two main questions at the core of this approach remain un- 

resolved: (a) how to integrate the information  derived from 

the multiple scales of the decomposition,  and (b) how to 

adjust the various parameters in order to obtain a general 

mechanism.  Integrating  scale information  is of particular 

importance  as salient  features in a scene and in different 

scenes may occupy different  spatial frequencies, as shown 

in Figure 1. Therefore  a mechanism  to locate salient fea- 

tures at different levels of the spatial pyramid and combine 

these features into a final map is critical. 

In this paper,  we propose  a computational   model of 

saliency that follows the typical three-step architecture de- 

scribed above, while trying to answer the above questions 

through a combination  of simple, neurally-plausible mech- 

anisms that remove nearly all arbitrary variables. Our pro- 

posal in this paper generalizes a particular low-level  model 

developed to predict color appearance [13] and has three 

main levels: 

In the first stage, the visual stimuli are processed in a 

manner consistent with what is known about the early hu- 

man visual pathway (color-opponent and luminance chan- 

nels, followed by a multi-scale  decomposition).   The bank 

of filters used (Gabor-like wavelets) and the range of spatial 

scales (in octaves) are biologically justified [1, 15, 16] and 

commonly  used in low-level vision modelling. 

The second stage of our model consists of a simulation 

of the inhibition mechanisms present in cells of the visual 

cortex, which effectively normalize their response to stim- 

ulus contrast. The sizes of the central and normalizing  sur- 

round windows  were learned by training  a Gaussian Mix- 

ture Model (GMM) on eye-fixation data. 

The third stage of our model integrates information  at 

multiple scales by performing an inverse wavelet transform 

directly on weights computed from the non-linearization of 

the cortical outputs. This non-linear integration is done 

through  a weighting  function similar to that proposed by 

Otazu et al.  [13] and named Extended Contrast Sensitiv- 

ity Function (EC SF ), but optimized to fit psychophysical 

color matching data at different spatial scales. 

Our fitted EC SF is at the core of our proposal and repre- 

sents its most novel component. It had been previously  ad- 

justed by fitting the same low-level model to predict match- 

ing of color inductive patterns by human observers. The fact 

that this function can also model saliency provides support 

for the hypothesis of a unique underlying  low-level  mech- 

anism for different visual tasks. This mechanism  can be 

modelled  either to predict color appearance (by applying the 

inverse wavelet transform onto the decomposed coefficients 

modulated by the EC SF weights) or visual salience (by 

applying the transform to the weights themselves instead). 

In addition, we introduce a novel approach to selecting the 

size of the normalization  window,  which reduces the num- 

ber of parameters that must be set in an ad-hoc manner. 

Our two main contributions  can be summarized as fol- 

lows: 
 

1. A framework for integrating  scale through  a simple 

inverse wavelet  transform  over the set  of weighted 

center-surround outputs. 
 

2. A reduction of ad-hoc parameters. This was done by 

introducing training steps on both color appearance 

and eye-fixation psychophysical data. 
 

The rest of this paper is organized  as follows. In section 

2 we present the low-level color vision model and our fit- 

ted ECSF. In section 3, we use the resulting weights of the 

model to compute saliency while in section 3.1 we evalu- 

ate the model’s performance.  Section 3.2 summarizes the 

results and section 4 discusses further  work. 

 
2. A low level vision model 
 

The saliency estimation method we propose in this work 

is an extension of a low level visual representation derived 

from the unified color induction model developed by Otazu 

et al. [12, 13]. In these works the authors propose a multi- 

resolution model that predicts brightness and color appear- 

ance, respectively. Color perception is the result of several 

adaptation mechanisms which cause the same patch to be 

perceived differently depending on its surround.  Areas A 

and B of both images in Figure 2 are perceived  as having 

different brightness (in panel a) and/or different color (in 

panel c) respectively, although in both cases they are phys- 

ically identical (intensity and RGB color channel profiles 

are plotted  as solid lines in the corresponding panels (b) and 

(d)). These illusions 1 are predicted by the color model of 

Otazu et al.[13], shown in dashed lines in Figure 2 (panels 
 

1 the Checkershadow  and Beau-lotto illusions were created by E.H. 

Adelson and Beau Lotto respectively. 
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(b) and (d)). For example,  area A is darker in graphic (b) 

and area B is more orange-ish in graphic (d). 

where hj  is the j-th coefficient of the one-dimensional fil- 

ter h. The contrast energy is computed for coefficients at all 
spatial locations and spatial scales. Filter hj defines a region 
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around the central wavelet coefficient  ω x,y where the activ- 
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Color  model  prediction ity ax,y  is calculated. The interaction between this central 
region and surrounding regions produces a center-surround 

effect. In order to model this center-surround effect, the 

energies of the central region acen and the surround region 
sur
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ax,y are compared using 

 
rx,y = (acen  2

 

 

 
sur  2

 

x,y ) /(ax,y ) . (3) 
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The energy of the surrounding regions, asur , is com- 

puted in an analogous manner to acen , with the only dif- 
ference being the definition of the filter h, also shown in 
Figure 5. A non-linear scaling of rx,y is performed to pro- 
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zx,y  = r2
 

 

/(1 + r2
 

 
)  (4) 

so that zx,y  ∈ [0, 1]. When zx,y  → 0, central activity acen
 

Figure 2: Brightness and color visual illusions with their corre- 
is much lower than surround activity asur . Similarly, when 

sponding image profiles (continuous lines, panels b and d) and zx,y   → 1, central activity is much higher than surround 

model predictions profiles (broken lines, in panels b and d). 
 

 
In the first stage of Otazu et al.’s model, an image is 

convolved with a bank of filters using a multi-resolution 

wavelet transform.  The resulting spatial pyramid contains 

wavelet planes oriented either horizontally (h), vertically (v) 

or diagonally (d). The coefficients of the spatial pyramid 

obtained using the wavelet transform can be considered an 

estimation of the local oriented contrast. For a given image 

I , the wavelet transform is denoted as 

 
W T (Ic ) = {ws,o }s=1,2,...,n ; o=h,v,d (1) 

 

where ws,o is the wavelet plane at spatial scale s and orien- 

tation o and Ic represents one of the opponent channels O1, 

O2 and O3 of image I . Each opponent channel is decom- 

posed into a spatial pyramid  using the wavelet transform, 

W T .  This transform contains Gabor-like basis functions 

and the number of scales used in the decomposition is given 

by n = log2 D for an image whose largest dimension is size 

activity. Therefore, rx,y may be interpreted as as a saturated 
approximation to the relative central activity acen . The size 

of central and surround regions are used to define the size 

of the corresponding hj  filters. 

It is well-known  that color appearance is dependent on 

spatial frequency. Mullen [11] described human sensitivity 

to local contrast in color opponent channels with a general- 

ized Contrast Sensitivity Function (CSF), which is a func- 

tion of spatial frequency.  Adopting this idea, Otazu et al. 

define an extended contrast sensitivity  function (EC SF ) 

which is parametrized by spatial scale s and center-surround 

contrast energy. Spatial scale is inversely proportional to 

spatial frequency ν such that s = log2 (1/ν) = log2 (T ), 

where T denotes one frequency cycle measured in pixels. 

The function EC SF is defined as 
 

EC SF (z, s) = z · g(s) + k(s)  (5) 

 
where the function g(s) is defined as 

 
 s 2

 
− 

σ2 g 

D.  g(s) = 
 
βe 2   

1  s ≤ s0
 

 

In the second stage, the contrast energy ax,y   around  a 

wavelet coefficient ωx,y   centered at position x, y is esti- 

s2 

2  otherwise 

(6) 

mated by convolving the local region with a binary filter 

h. The shape of the filter varies with the orientation of the 
wavelet plane on which it operates, as shown  in Figure 5. 
For example, for a horizontal  wavelet plane, ax,y  is com- 

puted by 

Here s represents the spatial scale of the wavelet plane be- 

ing processed, β is a scaling constant, and σ1 and σ2 define 

the spread of the spatial sensitivity of g(s). The s
g 

param- 

eter defines the peak spatial scale sensitivity  of g(s).  In 

Equation 5, the center-surround activity z of wavelet co- 

ax,y  = 
    

ωx 

j 

j,y 2hj (2) efficients  are modulated by g(s).  An additional function, 

k(s), was introduced to ensure a non-zero lower bound on 



Param. σ1 σ2 σ3 β s
g
 sk

 

Intensity 1.021 1.048 0.212 4.982 4.000 4.531 

Color 1.361 0.796 0.349 3.612 4.724 5.059 
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(7) 

1 otherwise 
 

Here, σ3 defines the spread of the spatial sensitivity of k(s) 

and sk defines the peak spatial scale sensitivity  of k(s). 

The function EC SF  is used to weight the center- 
surround contrast energy zx,y  at a location,  producing  the 

final response αx,y : 
 

αx,y = EC SF (zx,y , sx,y ).  (8) 
 

αx,y  is the weight that modulates the wavelet coefficient 

ωx,y . The perceived image channel I perceived that contains 

the color appearance illusions  are obtained by performing 

an inverse wavelet  transform  on the wavelet coefficients 

ωx,y  at each location,  scale and orientation,  after the co- 

efficients  have been weighted by the αx,y response at that 

location: 
 

I perceived
 

 
 
 
 
 
 
 
 

(a) 

c  (x, y) = αx,y,s,o · ωx,y,s,o + Cr (9) 
s  o 

Here o represents the orientation of the wavelet plane of 
ωx,y,s,o and Cr represents the residual image plane obtained 

from W T . 

The model of Otazu et al.  was capable of replicating 

the psychophysical  data obtained from two separate exper- 

iments. In the first experiment, by Blakeslee et al. [2], ob- 

servers performed asymmetric brightness matching tasks in 

order to match the illusions present in regions of the stim- 

uli.  Some example  brightness stimuli are shown in Fig- 

ure 3(a). The second experiment was performed by Otazu 

et al. [13] in an analogous fashion, but with observers per- 

 
 

(b) 

 
Figure 3: (a) Examples of images used in psychophysical experi- 

ments. (b) Correlation between model prediction and psychophys- 

ical data. The solid line represents the model linear regression fit 

and the dashed line is the ideal fit.  Since measurements involve 

dimensionless measures and physical units, they were arbitrarily 

normalized to show the correlation. 

0 0 

forming  asymmetric color matching tasks rather than tasks 

involving brightness.  Some example color stimuli used in 

these experiments are shown in Figure 3(a). 

Our saliency estimation model is based on the previous 

stages we have just described.  However,  to obtain parame- 

ters for the intensity  and color EC SF (z, s) functions, we 

used the psychophysical data, which was provided to us by 

the authors of [2] and [13], to perform  a least squares re- 

gression in order to select the parameters of the functions. 

Our results are given in table 1. Both fitted EC SF (z, s) 

functions  maintain  a high correlation  rate (r = 0.9) with 

the color and lightness  psychophysical  data, as shown  in 

Figure 3(b). Note that both chromaticity channels share the 

Table 1: Parameters for EC SF (z, s) obtained using least square 

regression. 
 

 

3. Building saliency maps 
 

In the previous section we described  a low-level visual 

representation that predicts color appearance phenomena. 

This model concluded with equation 9 which can be re- 

written  as 

same EC SF (z, s) function. The profiles of the resulting 

optimized EC SF (x, s) functions for brightness and chro- 
I perceived −1 {αx,y,s,o · ωx,y,s,o } (10) 

maticity channels are shown in Figure 4.  The functions 

enhance contrast  energy  responses in a narrow passband 

and suppresses contrast energy for low spatial scales (high 

spatial frequencies).   The magnitude of the enhancement 

or suppression increases with the magnitude of the center- 

surround contrast energy, z. 

where I perceived is a new version of the original channel 

in which image locations may have been modified  by the 

α weight, either by a blurring or an enhancing effect. The 

colors of modified  locations have either been assimilated 

(averaged) to be more similar to the surrounding color or 

contrasted (sharpened) to be less similar to the surround. 
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Figure 4: Weighting functions for (a) intensity and (b) chromaticity  channels: Bluer colors represent lower values while redder colors 

indicate higher values. (c) shows a slice of EC SF (z, s) for chromaticity  channels, for z = 0.9. For a wavelet coefficient corresponding 

to a scale between approximately  3 and 6, its center-surround contrast energy is boosted.  Coefficients outside this passband are either 

suppressed (for low spatial scales) or remain unchanged (for high spatial scales). 
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method is the integration of multi-scale information by the 

inverse wavelet transform, and the use of the EC SF , whose 

parameters are biologically justifiable. However, there are 
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Figure 5: Schematic of our saliency approach. Red sections of the 

center-surround filters correspond to the central filters while blue 

sections correspond to the surround filters. 
 
 

To obtain predictions of saliency using this color repre- 
sentation, we hypothesize that image locations that undergo 
enhancement are salient, while locations that undergo blur- 
ring are non-salient. In this sense we can define the saliency 
map of an specific image channel by the inverse wavelet 
transform of the α weight. Thus the saliency map, Sc , of 

the image channel Ic  at the location x, y can be easily esti- 

mated as 
 

Sc (x, y) = W T −1 {αx,y,s,o }. (11) 

By removing the wavelet coefficients ωx,y,s,o  and per- 

forming the inverse transform solely on the weights com- 

puted at each image location we provide an elegant and di- 

rect method for estimating image saliency from a general- 

ized low level visual representation. 

To combine the maps for each channel  into the final 

saliency map, S, we compute the Euclidean norm S  = 

 
surround inhibition defined by Equation 4 is highly depen- 

dent on the size of the binary hj  filters, which define the 

extent of the local central and surround regions of a wavelet 

coefficient ωx,y . We posit that the central region around a 

feature ought to span the responses to that feature in the 

wavelet plane. However, the extent of the wavelet response 

to a feature differs with each spatial scale. Therefore we de- 

signed the size of the central region to be just large enough 

to span wavelet  responses for a feature  at the most salient 

spatial scale. The most salient spatial scale was taken to 

be the scale to which both EC SF (z, s) functions are most 

sensitive, approximately s = 4. 
 

We consider the central region encompassing a feature to 

be a Region  Of Interest (ROI). Therefore, we estimate the 

required size of the central region by determining the typical 

size of a ROI for this dataset. To determine this size we first 

created a Gaussian Mixture  Model (GMM) of the locations 

of the eye fixations for a subset of 20 images from the Bruce 

& Tsotsos dataset [3], one of the datasets we will use to 

evaluate our model. The GMMs contained 5 components, 

each of which clusters the locations of a set of eye-fixations 

and thus represents an ROI. The standard deviation of each 

component is therefore interpreted to be the radius of an 

ROI. Across all images, the average radius of a Gaussian 

component was 53 pixels. At s = 4, the radius would now 

be 2(53/2s−1 ) = 2(53/8) = 13.25. Therefore we set the 

size of the local central region to be twice this radius, or 

27 pixels. The size of the surround region was set to be 54  
S2 2  2

 

O1 + SO2 + SO3 . The steps of the saliency model are 
illustrated in Figure 5. 

This process generalizes the color appearance model to 

one which estimates saliency.  The main advantage of our 

pixels, twice the size of the central region. The sizes of the 

central and surround regions were used when performing 

the evaluation  on both datasets introduced  in the upcoming 

section describing our experimental results. 
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An important point to consider is whether the peak spa- 

tial scales of the EC SF functions, approximately s = 4, 

are consistent with the peak spatial frequencies of the hu- 

man CSFs for chromatic  and achromatic channels, which 

have been estimated to be around 2 and 4 cycles per degree 

(cpd) respectively [11].  That is, are the spatial scales be- 

ing enhanced by the EC SF functions consistent with the 

spatial frequencies to which humans are most attuned?  If 

we assume that the ROI spans a feature  with a spatial  fre- 

quency between 2 and 4 cpd, 106 pixels contain 2-4 spa- 

tial periods.  The spatial scale that corresponds to 2 cpd is 

s = log2 (T )  = log2 (106/2)  = 5.7, while 4 cpd corre- 

sponds to s = 4.7. These spatial scales are indeed consis- 

tent with the peak EC SF spatial scales obtained by least 

squares regression. 

 

Model KL (SE) AROC (SE) 

Itti et al.[7] 0.1130 (0.0011) 0.6146 (0.0008) 

Bruce & Tsotsos[3] 0.2029 (0.0017) 0.6727 (0.0008) 

Gao et al.[4] 0.1535 (0.0016) 0.6395 (0.0007) 

Zhang et al.[17] 0.2097 (0.0016) 0.6570 (0.0008) 

Seo & Milanfar[14] 0.3432 (0.0029) 0.6769 (0.0008) 

Our method 0.4265 (0.0030) 0.7013 (0.0008) 

 
Table 2: Performance in predicting human eye fixations from the 

Bruce & Tsotsos dataset. 
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3.1. Experimental results 

 

We evaluated our model’s performance with respect to 

predicting  human eye fixation  data from two image datasets. 

To assess  the accuracy  of our model we used  both the 

well-known receiver  operating  characteristic  (ROC) and 

Kullback-Leibler (KL) divergence as quantitative metrics. 
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The ROC curve indicates how well the saliency map dis- 

criminates  between fixated and non-fixated locations for 

different binary saliency  thresholds while the KL  diver- 

gence indicates how well the method distinguishes between 

the histograms of saliency values at fixated and non-fixated 

locations in the image.  For both of these metrics,  a higher 

value indicates better performance. 

Zhang et al.  noted that several saliency methods have 

image border effects which artificially improve the ROC re- 

sults [17].  To avoid this issue and ensure a fair compari- 

son of saliency methods we adopt the evaluation framework 

described by Zhang et al.  [17], which involves modified 

metrics for both the area under the ROC curve (AROC) and 

KL divergence.  For each image in the dataset, true posi- 

tive fixations are fixations for that image, while false pos- 

itive fixations are fixations for a different  image from the 

dataset, chosen randomly.  This avoids the true positive fix- 

ations having a center bias with respect to the false positive 

fixations.  Because the false fixations for an image are ran- 

domly chosen, a new calculation of the metrics is likely to 

produce a different value. Therefore we computed the met- 

rics 100 times in order to compute the standard error. The 

saliency maps are shuffled  100 times. On each occasion, 

the KL-divergence  is computed between the histograms of 

saliency values at unshuffled fixation points and shuffled 

fixation points. When calculating  the area under the ROC 

curve, we also used 100 random permutations  of the fixation 

points. 

The first dataset we use was provided  by Bruce & Tsot- 

sos in [3].  This popular  dataset is commonly  used as the 

benchmark  dataset for comparing visual saliency predic- 

0  0.2  0.4  0.6  0.8  1 
False Positive Rate 

 
Figure 6: ROC curves for Bruce & Tsotsos, Seo & Milanfar, and 

the proposed method. 
 
 
 
 
tions between methods. The dataset contains 120 color im- 

ages of indoor  and outdoor  scenes, along with eye-fixation 

data for 20 different  subjects.  The mean and the standard 

error of each metric are reported in Table 2. We performed 

this evaluation on five state-of-the-art  methods  as well as 

our proposed method and as Table 2 shows, our method ex- 

ceeds the state-of-the-art  performance  as measured by both 

metrics. 
 

The second dataset we used was introduced  by Judd et 

al.  in [8].   This dataset contains  1,003 images of vary- 

ing dimensions, along with eye fixation data for 15 sub- 

jects. In order to be able to compare fixations  across im- 

ages, only those images whose dimensions were 768x1024 

pixels were used, reducing the number of images examined 

to 463. This dataset is more challenging than the first as its 

images contain more semantic objects which are not mod- 

eled by bottom-up  saliency, such as people, faces and text. 

Therefore, as would be expected, the AROC  and KL diver- 

gence metrics  are lower for all bottom-up visual attention 

models. The results, obtained using the same evaluation 

method described previously,  are shown in Table 3 and in- 

dicate that once again our method exceeds state-of-the-art 

performance. 
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Figure 7:  Qualitative  analysis of results for Bruce &  Tsotsos 

dataset: Column A contains original image. Columns B, C, and D 

contain thresholded saliency maps obtained from Bruce & Tsot- 

sos, Seo & Milanfar and our method, respectively.  The saliency 

maps have each been thresholded to their top 10% most salient lo- 

cations. Yellow markers indicate eye fixations.  Our method is seen 

to be less sensitive to low-frequency edges such as street curbs and 

skylights, which is in line with human eye fixations. 

 
Model KL (SE) AROC (SE) 

Bruce & Tsotsos [3] 0.2629 (0.0025) 0.6501 (0.0008) 

Seo & Milanfar [14] 0.2700 (0.0025) 0.6462 (0.0007) 

Our method 0.2788 (0.0021) 0.6640 (0.0006) 

 
Table 3: Performance in predicting human eye fixations from the 

Judd et al. dataset. 
 
 
3.2. Discussion 

 

Figure 7 illustrates the benefit of our method when com- 

pared to Bruce & Tsotsos [3] and Seo & Milanfar [14]. The 

saliency maps have each been thresholded to their top 10% 

most salient locations and show that the most salient regions 

of our saliency map better correspond to the fixations of hu- 

man observers.  In addition, the ROC curves for the three 

methods in Figure 6 show that our method has fewer false 

positives at higher thresholds, indicating  that the proposed 

method is better able to detect the most salient regions of 

the image. 

Figure 8 shows qualitative results for the second dataset, 
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Figure 8: Qualitative  analysis of results for Judd et al.  dataset: 

Column A contains original image. Columns B, C, and D contain 

saliency maps obtained from Bruce & Tsotsos,  Seo & Milanfar 

and our method, respectively.  The saliency maps have each been 

thresholded to their top 10% most salient locations. 
 

 
provided by Judd et al.  [8].  Here there is also a higher 

correlation between the most salient regions of our saliency 

map, and human eye fixations, when compared with Bruce 

& Tsotsos and Seo & Milanfar. 

We attribute  our model’s  success to the fact that it is less 

sensitive to low-frequency edges in the images, such as sky- 

lines and road curbs. In addition, we avoid excessive sensi- 

tivity to textured regions by suppressing high-frequency in- 

formation using the weighting functions EC SF (z, s). As 

Figure 4 shows, the weighting function is more sensitive 

to mid-range frequencies. The previous methods included 

in Table 2 either select information  at one scale or combine 

scale information from subband pyramids by an unweighted 

linear combination while in our method, EC SF (z, s) acts 

as a bandpass filter in the image’s spatial frequency domain, 

and provides  a biologically plausible mechanism for com- 

bining spatial information. 

Finally, we also investigated how the performance of our 

saliency model changed depending on the peak spatial scale 

of EC SF (z, s) for the intensity channel, which is the chan- 

nel which contains the majority of the saliency information. 

Figure 9 shows that, as expected from psychophysical data, 

when low or high frequencies are enhanced and mid-range 



m
e

tr
ic

 

 
0.8 

 
0.7 

 
0.6 

 
0.5 

 
0.4 

 
0.3 

 
0.2 

 
0.1 

 
0 

 
 
 
 
 
 
 
 
 
 
 
AROC 

KL 

References 
 

[1]  C. Blakemore and F. W. Campbell. On the existence of neu- 

rons in the human visual system selectively sensitive to the 

orientation and size of retinal images. The Journal of Physi- 

ology, 203(1):237260, 1969. 2 

[2]  B. Blakeslee and M. E. McCourt. Similar mechanisms un- 

derlie simultaneous brightness contrast and grating induc- 

tion. Vision Research, 37(20):2849–2869,  1997. 4 

[3]  N. D. Bruce and J. K. Tsotsos.  Saliency based on informa- 

tion maximization.  In Y. Weiss, B. Schö lkopf, and J. Platt, 
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