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CAPACITARY FUNCTION SPACES

JOAN CERDÀ, JOAQUIM MARTÍN, AND PILAR SILVESTRE

Abstract. These notes are devoted to the analysis on a capacity space,
with capacities as substitutes of measures in the study of function spaces.
The goal is to extend to the associated function lattices some aspects of
the theory of Banach function spaces, to show how the general theory
can be applied to classical function spaces such as Lorentz spaces, and to
complete the real interpolation theory for these spaces included in [15]
and [14].

1. Introducction

The purpose of this paper is to present some basic developments connected
with properties of function spaces defined on capacity spaces, instead of
measure spaces. It is our feeling that these developments, because of their
relations with important aspects of mathematical analysis on one hand and
their simple and basic character on the other, deserve to be widely known.

The emphasis of our exposition is placed upon the study of the essential
functional analytic elements such that a satisfactory theory can be developed
in the context of quasi-Banach spaces. One of the main problems is that
we are forced to work with a non-additive integral, the Choquet integral, so
that the dual spaces are not easily identifiable and some basic properties,
such as the dominated convergence theorem, are not longer available.

In the literature, a capacity on a space Ω is usually supposed to be an
increasing set function C : Σ→ [0,∞], with Σ a family of subsets in Ω, with
different properties depending on the context, and the Choquet integral is
defined as ∫

f dC :=

∫ ∞
0

C{f > t} dt

if f ≥ 0 is a measurable function in the sense that {f > t} ∈ Σ for every
t > 0.

In many important examples of capacities the domain Σ of C is a σ-
algebra. This is the case of the variational capacities, and of the Fuglede [18]
and Meyers [21] capacities of nonlinear potential theory. They are countably
subadditive set functions on all subsets of Rn which include the Riesz and
the Bessel capacities. Although they are not Caratheodory metric outer
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measures, they satisfy a Fatou type condition and, by a general theorem due
to G. Choquet (cf. [16, Chapter VI]), every Borel set B ⊂ Rn is capacitable,
this meaning that

sup{C(K); K ⊂ B, K compact} = C(B) = inf{C(G); G ⊃ B, G open}.

Then the class of all Borel sets turns out to be a convenient domain for all of
them. We refer to [2] and [20] for an extended overview of these capacities.

Another well known class of capacities are the Hausdorff contents. If h
is a continuous increasing function on [0,∞) vanishing only at 0, which is
called a measure function in [11], denote µh the corresponding Hausdorff
measure on Rn, and let I or Ik represent a general cube in Rn with its sides
parallel to the axes. The use of the corresponding Hausdorff capacity or
Hausdorff content,

Eh(A) := inf
A⊂

⋃∞
k=1 Ik

{ ∞∑
k=1

h(|Ik|)
}
,

is often more convenient than µh, and Eh(A) = 0 if and only if µh(A) = 0.
If h(t) = tα (α > 0), it is customary to write H∞α instead of Eh, and this

capacity is called the α-dimensional Hausdorff content. The case h(x) :=
x log(1/x) on [0, 1/e] corresponds to the Shannon entropy considered in [17].

New examples appear when studying interpolation properties of function
spaces as in [15]. If E is a quasi-Banach function space on the measure space
(Ω,Σ, µ), then

CE(A) := ‖χA‖E (A ∈ Σ) (1)

defines a capacity and, as in the case of Hausdorff capacities, there is a
measure µ such that CE(A) = 0 if and only if µ(A) = 0.

The goal of these notes is to clearly set the basic properties of the capacity
spaces (Ω,Σ, C) and their associated Lebesgue spaces Lp(C) and Lp,q(C),
to show how the general theory can be applied to function spaces such as
classical Lorentz spaces, and to complete the real interpolation theory for
these spaces started in [15] and [14].

Further applications of the use of these capacities will appear in forth-
coming work. In [3] it will be shown how they are a useful tool to extend
the Riesz-Herz estimates concerning the Hardy-Littlewood operator.

The notation A . B means that A ≤ γB for some absolute constant
γ ≥ 1, and A ' B if A . B . A. We refer to [7] for general facts concerning
function spaces.

2. Capacitary function spaces

Let (Ω,Σ) be a measurable space. Sets will always be assumed to be in
the σ-algebra Σ and functions will be real mesurable functions on (Ω,Σ).

From now on, by a capacity C we mean a set function defined on Σ
satisfying at least the following properties:
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(a) C(∅) = 0,
(b) 0 ≤ C(A) ≤ ∞,
(c) C(A) ≤ C(B) if A ⊂ B, and
(d) Quasi-subadditivity: C(A ∪B) ≤ c(C(A) +C(B)), where c ≥ 1 is a

constant.

If c = 1, we say that the capacity is subadditive.
If C is a capacity on Σ, we will say that (Ω,Σ, C) is a capacity space.

It will play the role of a measure space (Ω,Σ, µ) in the theory of Banach
function spaces. We are going to check which of the properties for measure
spaces are still satisfied by capacity spaces.

The distribution function Cf and the nonincreasing rearrangement f?C are
defined as in the case of measures by

Cf (t) := C{|f | > t},

and

f?C(x) := inf{t; C{|f | > t} ≤ x} =

∫ ∞
0

χ[0,C{|f |>t})(x) dt,

since {t; C{|f | > t} ≤ x} is the interval [f?C(x),∞] .
Many of the basic properties remain true in this capacitary setting. The

following ones are easily proved:

(a) (χA)?C = χ[0,C(A)).

(b) If s =
∑N

k=1 akχAk , Ak ∩ Aj = ∅ if k 6= j and a1 > a2 > · · · > aN >

0 = aN+1, then s?C =
∑N

k=1(ak − ak−1)χ[0,C(A1∪···∪Ak)).
(c) If ψ : [0,∞) → [0,∞) is nondecreasing and right-continuous, then

ψ(|f |)?C = ψ(f?C). For instance, (|f |p)?C = (f?C)p (p > 0).

Note that

(f + g)?C(x) ≤ f?C
( x

2c

)
+ g?C

( x
2c

)
. (2)

Indeed, let λ := f?C(x1) + g?C(x2) <∞ and x1, x2 ≥ 0. Then

C{|f + g| > f?C(x1) + g?C(x2)} ≤ cCf (f?C(x1)) + cCg(g
?
C(x2)) ≤ cx1 + cx2,

so that

(f + g)?C(cx1 + cx2) ≤ (f + g)?C(x) ≤ λ = f?C(x1) + g?C(x2).

In particular, (f + g)?C(x) ≤ f?C(x/2c) + g?C(x/2c) as announced.
A property is said to hold quasi-everywhere (C-q.e. for short) if the

exceptional set has zero capacity.
Pointwise convergence fn → f will mean C({fn 6→ f}) = 0. Similarly,

fn ↑ f that fn → f and C({fn > fn+1}) = 0. Also, we write An ↑ A or
An ↓ A when χAn ↑ χA or χAn ↓ χA in the above sense, respectively.

If f ≥ 0, the Choquet integral∫
f dC :=

∫ ∞
0

C{f > t} dt ∈ [0,∞]
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satisfies
∫
f dC = 0 if and only if f = 0 C-q.e. and it is positive-homogeneous,∫

αf dC = α

∫
f dC (α > 0).

Moreover, by Fubini’s theorem,∫ ∞
0

f?C(x) dx =

∫
f dC. (3)

The relation {f+g > t} ⊂ {f > t/2}∪{g > t/2} shows that this integral,
defined on nonnegative functions, is quasi-subadditive with constant 2c,∫

(f + g) dC ≤ 2c
(∫

f dC +

∫
g dC

)
. (4)

Observe that, if f = g C-q.e. and C is subadditive, then
∫
f dC =

∫
g dC

since, if A = {f 6= g}, then

C{f > t} ≤ C
(

({f > t} ∩Ac) ∪ ({f > t} ∩A)
)
≤ C{g > t}.

This will be also true if C(An) → C(A) whenever An ↑ A. In this case
we say that C has the Fatou property (or that it is a Fatou capacity).

If C is a Fatou capacity, the countable unions of C−null sets are also
C−null. Indeed, C(A1∪· · ·∪An) ≤ cn(C(A1)+· · ·+C(An)) = 0 if C(Ak) = 0
(k ∈ N), and then C(

⋃∞
k=1Ak) = limn→∞C(A1 ∪ · · · ∪An) = 0.

If χA = χB C-q.e., then C(A) = C(B) by the Fatou property, since
fn := χA → χB C-q.e. and C(A) ≤ C(B). Similarly, C(B) ≤ C(A).

We consider equivalent two functions, f and g, if they are equal C-q.e. In
this case

∫
|f | dC =

∫
|g| dC, since C{|f | > t} = C{|g| > t} for every t ≥ 0.

Thus,
∫
|f | dC = 0 if and only if f = 0 C-q.e.

Note that if a Fatou capacity is subadditive, then it is σ-subadditive.
The Fatou property can be presented in several equivalent ways:

Theorem 1. The following properties are equivalent:

(a) C is a Fatou capacity.
(b) |f | ≤ lim infn |fn| =⇒ f?C ≤ lim infn(fn)?C .
(c)

∫
(lim infn |fn|) dC ≤ lim infn

∫
|fn| dC.

(d) 0 ≤ fn ↑ f =⇒ (fn)?C ↑ f?C .

Proof. (c) follows from (b) and (3), and (a) follows from (c) by taking
fn = χAn .

Suppose now that C satisfies (a) and that |f | ≤ lim infn |fn|. Let At :=
{|f | > t} and Atn := {|fn| > t}. Then,

At ⊂ lim inf
n

Atn =
∞⋃
m=1

∞⋂
n=m

Atn

and, by (a),

C(At) ≤ lim
m
C
( ∞⋂
n=m

Atn

)
≤ lim inf

n
C(Atn),



CAPACITARY FUNCTION SPACES 5

so that χ[0,C(At)) ≤ lim infn χ[0,C(Atn)) and (b) follows:

f?C(x) =

∫ ∞
0

χ[0,C(At))(x) dt ≤ lim inf
n

∫ ∞
0

χ[0,C(Atn))(x) dt = lim inf
n

(fn)?C(x).

Moreover, (d) implies (a) by taking fn = χAn and f = χA.
Finally, suppose now that C satisfies (a) and that 0 ≤ fn ↑ f . Then

(fn)?C ≤ f?C and hence limn→∞(fn)?C(x) ≤ f?C(x). Let Atn := {|fn| > t} and
At := {|f | > t}. From (a) we obtain that C(At) = limn→∞C(Atn) and

f?C(x) =

∫ ∞
0

χ[0,C(At))(x) dt =

∫ ∞
0

lim
n→∞

χ[0,C(Atn))(x) dt ≤ lim
n→∞

(fn)?C(x).

Theorem 2. If 1 ≤ p ≤ ∞ and p′ = p/(p− 1), then the following versions
of Hölder and Minkowski inequalities hold:∫

Ω
|fg|dC ≤ 2c

(∫
Ω
|f |pdC

)1/p(∫
Ω
|g|p′dC

)1/p′

and (∫
Ω
|f + g|pdC

)1/p
≤ 4c2

[( ∫
Ω
|f |pdC

)1/p
+
(∫

Ω
|g|pdC

)1/p]
.

If the Choquet integral is subadditive (cf. Section 4), then the Hölder and
the Minkowski inequalities are satisfied with constant 1:∫

Ω
|fg|dC ≤

(∫
Ω
|f |pdC

)1/p(∫
Ω
|g|p′dC

)1/p′

(5)

(∫
Ω
|f + g|pdC

)1/p
≤
(∫

Ω
|f |pdC

)1/p
+
(∫

Ω
|g|pdC

)1/p
(6)

Proof. We write |fg| = (|f |p)1/p(|g|p′)1/p′ . Since the inequality a ≤ bθc1−θ

holds if and only if a ≤ θεθ−1b+ (1− θ)εθc for all ε > 0, by taking θ = 1/p,

a = |fg|, b = |f |p, c = |g|p′ we obtain |fg| ≤ θεθ−1|f |p + (1− θ)εθ|g|p′ .
Hence, in the subadditive case (in the general case the proof is the same

but the constant 2c from (4) has to be included), we have∫
Ω
|fg| dC ≤ θεθ−1

∫
Ω
|f |p dC + (1− θ)εθ

∫
Ω
|g|p′ dC.

Denote A =
∫

Ω |f |
p dC, B =

∫
Ω |g|

p′ dC and γ(ε) = θεθ−1A+ (1− θ)εθB we
have that

∫
Ω |fg| dC ≤ γ(ε), and γ(ε) ≥ γ(ε0) with ε0 = A/B. Hence∫

Ω
|fg| dC ≤ γ(ε0) =

Aθ

Bθ−1
=
(∫

Ω
|f |p dC

)1/p(∫
Ω
|g|p′ dC

)1/p′

.

The Minkowski inequality (6) follows from (5) in the usual way.
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One could wonder if these estimates are always true with constant 1. We
will see in Section 4 that subadditivity holds only if C is concave. It is easily
checked that Hölder’s inequality is always true for sets, since∫

χAχB dC = C(A ∩B) ≤ C(A)1/pC(B)1/p′ ,

but the following example shows that it is not longer true for functions:

Example 1. Consider the “Lorentz-type” capacity C(A) :=
∫ |A|

0 w(t) dt on
(0, 1) with w(t) = tχ(0,1)(t), and the functions

f(x) = x−1/2, g(x) = x1/2 (on (0, 1)).

Then ∫
f2 dC

∫
g2 dC <

(∫
fg dC

)2
.

Just note that
∫
fg dC = C

(
(0, 1)

)
= 1/2,

∫
f2 dC =

∫ 1
0 f(x)2x dx = 1

and
∫
g2 dC =

∫ 1
0 (1− x)2x dx = 1/6.

Hence, there is no hope to obtain the Hölder and Minkowski inequalities
with constant 1 in the general case. We do not know whether the subadditiv-
ity of the Choquet integral is a necessary condition to get Hölder’s estimate
with constant 1.

3. Lebesgue capacitary spaces

From now on, C will represent a Fatou capacity on (Ω,Σ) and c ≥ 1 its
subadditivity constant.

In this section we study the completeness of the spaces Lp,q(C) (p, q > 0)
defined by the condition

‖f‖Lp,q(C) :=
(
q

∫ ∞
0

tq−1C{|f | > t}q/pdt
)1/q

<∞

if q <∞. If q =∞, ‖f‖Lp,∞(C) := supt>0 tC{|f | > t}1/p.
Observe that ‖f‖Lp,q(C) = 0 if and only if f = 0 C-q.e. and equivalent

functions (in the sense of C-q.e. identity) have the same ‖ · ‖Lp,q(C)-norm.
Moreover ‖λf‖Lp,q(C) = |λ|‖f‖Lp,q(C) and ‖f + g‖Lp,q(C) ≤ 2c(‖f‖Lp,q(C) +
‖g‖Lp,q(C)).

We write Lp(C) = Lp,p(C) if p < ∞ with ‖f‖Lp(C) =
( ∫

Ω |f |
pdC

)1/p
.

L∞(C) is defined as usually by the condition

‖f‖∞ := inf{M > 0; |f | ≤M C-q.e.} <∞.

As for function spaces, there are several descriptions of these “norms”:

Theorem 3. ‖f‖Lp(C) = ‖f?C‖p = ‖|f |p‖1/p =
(
p
∫∞

0 tp−1C{|f | > t} dt
)1/p

.
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Proof. Let ψ(t) = tp. Then
∫∞

0 ψ(f?C(t)) dt =
∫∞

0 ψ(|f |)?C(t) dt and, if we
denote g = ψ(|f |), an application of Fubini theorem gives∫ ∞

0
g?C(t) dt =

∫ ∞
0

∫ ∞
0

χ[0,C{g>x})(t) dx dt

=

∫ ∞
0

∫ ∞
0

χ[0,C{g>x})(t) dt dx =

∫ ∞
0

C{g > x} dx,

this is,
∫∞

0 ψ(f)?C(t) dt =
∫∞

0 C{ψ(|f |) > t} dt.
Also, if x = ψ(t), then∫ ∞
0

C{|f | > t} dψ(t) =

∫ ∞
0

C{|f | > ψ−1(x)} dx =

∫ ∞
0

C{ψ(|f |) > x} dx

and
∫∞

0 C{|f | > t} dψ(t) =
∫∞

0 C{ψ(|f |) > t} dt.

Theorem 4. ‖·‖ := ‖·‖Lp(C) is quasi-subadditive, with constant cp = (2c)1/p

if 1 ≤ p <∞ and cp = c1/p2(2−p)/p if 0 < p < 1.

Proof. Suppose 1 ≤ p <∞. By (2),

‖f + g‖p ≤
∫ ∞

0

(
f?C

( x
2c

)
+ g?C

( x
2c

))p
dx = 2c‖f?C + g?C‖pp

and the results follow from the estimates for Lp(R+).
If p < 1, then, since ap + bp ≤ 21−p(a+ b)p (a, b ≥ 0), we conclude that

‖f?C + g?C‖pp ≤
∫ ∞

0
f?C(y)p dy +

∫ ∞
0

g?C(y)p dy ≤ 21−p(‖f∗C‖p + ‖g∗C‖p)p,

and ‖f + g‖ ≤ (2c)1/p2(1−p)/p(‖f‖+ ‖g‖).
Now, recall that if ‖ · ‖ is a quasi-seminorm with constant c ≥ 1 and

(2c)% = 2 then, by Aoki’s theorem (cf. Section 3.10 of [8]),

‖f‖∗ := inf
{ n∑
j=1

‖fj‖% : n ≥ 1,
n∑
j=1

fj = f
}
,

is a 1-norm ‖ · ‖∗ such that

‖f‖∗ ≤ ‖f‖% ≤ 2‖f‖∗, (7)

and it follows that∥∥∥∑
i

|fi|
∥∥∥ ≤ 21/%

(∑
i

‖fi‖∗
)1/%

≤ 21/%
(∑

i

‖fi‖%
)1/%

. (8)

In the special case fi = χAi and p = 1 we obtain

C
( ∞⋃
i=1

Ai

)%
≤ 2

∞∑
i=1

C(Ai)
%. (9)

We say that {fn} converges to f in capacity if C{|fn − f | > ε} → 0 as
n→∞, for every ε > 0.
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Note that if the sequence {fn} converges in capacity, then it is a Cauchy
sequence in capacity, that is, for every ε > 0, C{|fp − fq| > ε} → 0 as
p, q →∞. The converse is also true:

Theorem 5. A sequence {fn} is convergent in capacity to a function f if
and only if it is a Cauchy sequence in capacity. In this case, the sequence
has a subsequence which is C-q.e. convergent to f .

Proof. If {fn} is a Cauchy sequence in capacity, then there exists nk ∈ N
so that

C{|fp − fq| > 2−k} < 2−k (p, q ≥ nk > nk−1).

Denote Ak := {|fnk − fnk+1
| > 1/2k} and Fm :=

⋃
k≥mAk. If j ≥ i ≥ m,

then |fni − fnj | ≤ 1/2m−1 on Ω \ Fm. So {fnk} is uniformly Cauchy on
Ω \ Fm and it is simply convergent to a function f on E :=

⋃∞
m=1(Ω \ Fm).

By (8) and the Fatou property,

C(Ω \ E) ≤ lim
m→∞

C(Fm) = lim
m→∞

‖χFm‖L1(C) = lim
m→∞

‖χ⋃
k≥m Ak‖L1(C)

≤ lim
m→∞

‖
∑
k≥m

χAk‖L1(C) ≤ lim
m→∞

21/%(
∑
k≥m
‖χAk‖

%
L1(C)

)1/%

= lim
m→∞

21/%(
∑
k≥m

C(Ak)
%)1/% = 0.

By the Fatou property

C{|fnk − f | > η} = C{ lim
j→∞

|fnk − fnj | > η} ≤ lim
j→∞

C{|fnk − fnj | > η} < ε.

Since {fn} is a Cauchy sequence in capacity which has a subsequence
which is convergent in capacity to f , {fn} converges also to f in capacity.

The topology and the uniform structure of Lp(C) are given by the metric
d(f, g) := ‖f − g‖∗, where ‖ · ‖∗ is associated to ‖ · ‖Lp(C) as in (7).

Theorem 6. Lp(C) (0 < p <∞) is complete.

Proof. We follow some usual arguments of measure theory combined
with (9):

Let {fn} ⊂ Lp(C) be a Cauchy sequence. For each k ∈ N, pick nk > nk−1

so that

‖fm − fn‖p =

∫
|fm − fn|p dC <

1

3k
(m,n ≥ nk).

If Ak = {|fnk+1
− fnk |p > 1/2k}, then C(Ak) < 2k/3k since

C(Ak)

2k
≤
∫
Ak

|fnk+1
− fnk |

p dC <
1

3k
.

Note that
∞∑
k=1

|fnk+1
(t)− fnk(t)| <∞ ∀t 6∈

⋃
k>N

Ak



CAPACITARY FUNCTION SPACES 9

because |fnk+1
(t)− fnk(t)| ≤ 1/2k/p if k > N . Therefore, there exists

f(t) := fn1(t) +
∞∑
k=1

(
fnk+1

(t)− fnk(t)
)

= lim
k
fnk(t) ∀t 6∈ A =

∞⋂
N=1

⋃
k>N

Ak

and C(A) = 0 since, by (9),

C(A)% ≤ C
( ⋃
k>N

Ak

)%
≤ 2

∑
k>N

(2

3

)%k
and

∑
k>N (2/3)%k <∞. Put f(t) := 0 if t ∈ A.

As nk →∞, |fnk(t)− fn(t)|p → |f(t)− fn(t)|p C-q.e. and∫
|f − fn|p dC ≤ lim inf

k

∫
|fnk − fn|

p dC ≤ ε

for n large enough.

The proof of completeness of Lp(C) can be easily adapted to show that
all Lp,q(C)-spaces are also complete.

Remark 1. The absence of additivity for the Choquet integral makes it
difficult to give a description of the dual of Lp(C). See for instance [1,
Section 4], where duality in the case of Hausdorff and Bessel capacities is
studied.

If p′ is the conjugate exponent of p ∈ [1,∞], Hölder’s inequality shows

that every g ∈ Lp
′
(C)+ defines a functional ug(f) :=

∫
fg dC which is

homogeneous and bounded on Lp(C)+,

ug(f) ≤ 2c
(∫

gp
′
dC
)1/p′(∫

fp dC
)1/p

,

but in general ug is not additive.

4. Subadditivity

The Choquet integral is subadditive on sets,∫
(χA + χB) dC ≤

∫
χA dC +

∫
χB dC,

if and only if

C(A ∪B) + C(A ∩B) ≤ C(A) + C(B).

Then the Choquet integral is also subadditive on nonnegative simple func-
tions. These facts were proved by Choquet in [16] (see also [15] or [14] for a
direct elementary proof).

In this case C is said to be strongly subadditive or concave.
Variational capacities and those of Fuglede and Meyers are examples of

concave capacities. Shannon entropy is concave if n = 1, but not if n > 1
(see [17]). In the case of the entropies CE associated to Banach function
spaces, examples and counterexamples of concave capacities are given in [15].
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Concave capacities give rise to normed Lp-spaces, since the Minkowski
inequality holds with constant 1, and a natural question is to determine
when, for a non-concave capacity C, Lp(C) is normable, this meaning that
there exists in Lp(C) a norm which is equivalent to ‖ · ‖Lp(C).

As for usual Lorentz spaces, one could try to substitute f?C by

f??(t) =
1

t

∫ t

0
f?C(s) ds,

but unfortunately this average function is subadditive precisely when Lp(C)
(p ≥ 1) are normed spaces:

Theorem 7. f?? is subadditive with respect to f if and only if C is concave.

Proof. It is clear that Ct(A) := min(C(A), t) is a Fatou capacity. For a
fixed t > 0, f??(t) is subadditive in f if and only if Ct is concave, since∫ t

0
f?C(s) ds =

∫ ∞
0

dy

∫ t

0
χ[0,C{f>y})(s) ds =

∫ ∞
0

min({C{f > y}, t) dy,

and the theorem follows.

We do not have a satisfactory sufficient normability condition. Let us see
a restrictive one, which extends a known result for classical Lorentz spaces.

In the rest of the section µ represents a measure on (Ω,Σ) such that
µ(Σ) = [0, µ(Ω)] ⊂ [0,∞], and we will suppose that C is µ-invariant, this
meaning that C(A) = C(B) if µ(A) = µ(B).

A capacity C on (Ω,Σ) will be said to be quasi-concave with respect
to µ if there exists a constant γ ≥ 1 such that, whenever µ(A) ≤ µ(B), the
following two conditions are satisfied:

• C(A) ≤ γ C(B), and

• C(B)
µ(B) ≤ γ

C(A)
µ(A) ,

that is, for all A,B ∈ Σ,

C(B) ≤ γmax
(

1,
µ(B)

µ(A)

)
C(A).

Example 2. If J : [0, µ(Ω)] → R is an increasing function such that
J(t)/t is decreasing, then it is readily seen that C(A) := J(µ(A)) defines
a µ-invariant and quasi-concave capacity with respect to µ. For instance,
C(A) := ϕX(µ(A)) when ϕX is the fundamental function of an r.i. space.
Note that ϕX is a quasi-concave function.

Theorem 8. If the capacity C is µ-invariant and quasi-concave with respect
to µ, then

C̃(A) := sup
{ n∑
i=1

λiC(Ai) : n ∈ N,
n∑
i=1

λi = 1, λi ≥ 0,

n∑
i=1

λiµ(Ai) ≤ µ(A)
}
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defines a concave capacity and

C̄(A) := inf
An↑A,An∈Σ

{
lim
n→∞

C̃(An)
}

a concave Fatou capacity. Both C̃ and C̄ are equivalent to C.

Proof. It is clear that C̃(A) ≥ 0 and it is readily seen that C̃ is increasing.
Let us show that

C(A) ≤ C̃(A) ≤ 2γC(A) (10)

Obviously C(A) ≤ C̃(A). On the other hand, if ε > 0 is given, we can find∑n
i=1 λiµ(Ai) ≤ µ(A) with

∑n
i=1 λi = 1 and λi ≥ 0 such that

C̃(A)− ε ≤
n∑
i=1

λiC(Ai) ≤ γ
n∑
i=1

λi max
(

1,
µ(Ai)

µ(A)

)
C(A) ≤ 2γC(A)

and (10) follows.

To prove that C̃ is concave, let 0 < θ < 1 and ε > 0. If A,B ∈ Σ, we can
find

∑n
i=1 λiµ(Ai) ≤ µ(A) with

∑n
i=1 λi = 1 and λi ≥ 0 such that

(1− θ)C̃(A)− ε

2
≤ (1− θ)

n∑
i=1

λiC(Ai)

and, similarly,

θC̃(B)− ε

2
≤ θ

m∑
j=1

λ′jC(Bj).

with
∑m

j=1 λ
′
jµ(Bj) ≤ µ(B) with

∑m
j=1 λ

′
j = 1 and λ′i ≥ 0.

Then (1 − θ)µ(A) + θµ(B) ≥
∑n

i=1(1 − θ)λiµ(Ai) +
∑m

j=1 θλ
′
jµ(Bj) and∑n

i=1(1 − θ)λi +
∑m

j=1 θλ
′
j = 1. We can choose D ∈ Σ such that µ(D) =

(1− θ)µ(A) + θµ(B), and then

(1− θ)C̃(A) + θC̃(B)− ε ≤
n∑
i=1

(1− θ)λiC(Ai) +

m∑
j=1

θλ′jC(Bj) ≤ C̃(D),

so that
(1− θ)C̃(A) + θC̃(B) ≤ C̃(D). (11)

Since C is µ-invariant, the same happens with C̃ and we may define

ϕ(s) := C̃(A) if s = µ(A), which is a concave function on [0, µ(Ω)], by (11).
We claim that, if x, y ≥ t > 0, then

ϕ(x+ y − t) + ϕ(t) ≤ ϕ(x) + ϕ(y), (12)

and the concavity of C̃ follows by taking t = µ(A ∩ B), x = µ(A) and

y = µ(B), since then ϕ(t) = C̃(A ∩ B), ϕ(x + y − t) = ϕ(µ(A) + µ(B) −
µ(A ∩B)) = ϕ(µ(A ∪B)) = C̃(A ∪B), and ϕ(x) + ϕ(y) = C̃(A) + C̃(B).

To prove the claim, we may assume that 0 < t < x ≤ y and write

x = (1− τ)t+ τ(x+ y− t), y = (1− τ ′)t+ τ ′(x+ y− t) (τ, τ ′ ∈ (0, 1)).
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Since ϕ is concave,(
1− x− t

x+ y − 2t

)
ϕ(t) +

x− t
x+ y − 2t

ϕ(x+ y − t) ≤ ϕ(x)

and (
1− y − t

x+ y − 2t

)
ϕ(t) +

y − t
x+ y − 2t

ϕ(x+ y − t) ≤ ϕ(y).

Finally, by addition we obtain (12).

Since C̃ is concave, it is also subadditive.
Let ε > 0 and A,B ∈ Σ. There exists {An} with An ↑ A such that

limn→∞ C̃(An) ≤ C̄(A) + ε. Since C̃ ' C then there exists c′ > 0 such that

for all C(A) ≤ c′C̃(A) for every set A; and hence,

1

c′
lim
n→∞

C(An) ≤ lim
n→∞

C̃(An) ≤ C̄(A) + ε

and limn→∞C(An) = C(A), since C has the Fatou property. We get the

equivalence of the capacities with the equivalence of C̃ to C.
Moreover there exist increasing sequences {An} and {Bn} such that

lim
n
C̃(An) ≤ C̄(A) + ε/2, lim

n
C̃(Bn) ≤ C̄(B) + ε/2.

Assume that C̄(A) + C̄(B) <∞. By the concavity of C̃,

lim
n→∞

[
C̃(An ∪Bn) + C̃(An ∩Bn)

]
≤ lim

n→∞
C̃(An) + C̃(Bn)

= lim
n→∞

C̃(An) + lim
n→∞

C̃(Bn) ≤ C̄(A) + C̄(B) + ε

and then, from the definition of C̄, since An∪Bn ↑ A∪B and An∩Bn ↑ A∩B,
we obtain

lim
n→∞

[
C̃(An ∪Bn) + C̃(An ∩Bn)

]
≥ C̄(A ∪B) + C̄(A ∩B)

and the concavity of C̄ follows.
To prove that C̄ has the Fatou property, if {An} with An ↑ A, we need

to prove C̄(A) ≤ limn→∞ C̄(An) if this limit is finite. For each n, there

exist An,m ↑ An so that limm→∞ C̃(An,m) ≤ C̄(An) + ε. Since An,n ↑ A as
n→∞,

C̄(A) ≤ lim
n→∞

C̃(Bn) = lim
n→∞

C̃(An,n) ≤ lim
n→∞

C̄(An) + ε

Remark 2. C̃ has the Fatou property if and only if C̄ = C̃. Hence, Lp(C) =
Lp(C̄) and Lp(C) (1 ≤ p ≤ ∞) is normable.

Indeed, suppose that C̃ has the Fatou property. If An ↑ A then

C̃(A) = lim
n→∞

C̃(An) ≥ C̄(A)

and there exist An ↑ A such that C̃(A) = limn→∞ C̃(An) < C̄(A) + ε.
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Remark 3. Suppose L1(C) = L1(Ĉ) with equivalent quasi-norms, ‖ · ‖ and

‖·‖∗, and suppose that Ĉ is concave. If ‖·‖∗ is µ-invariant (‖χA‖∗ = ‖χB‖∗
when µ(A) = µ(B)), then C is quasi-concave with respect to µ.

Indeed, in this case Ĉ(A) := ‖χA‖∗ is a µ-invariant capacity, Ĉ(A) '
C(A) and Ĉ is concave:

Ĉ(A ∪B) + Ĉ(A ∩B) ≤ Ĉ(A) + Ĉ(B).

We can suppose 0 ≤ µ(A∩B) < µ(A) ≤ µ(B) and define ϕ(µ(A)) := Ĉ(A).
Let t = µ(A ∩ B), x = µ(A) and y = µ(B), so that 0 < t < x ≤ y and

ϕ(x+ y − t) + ϕ(t) ≤ ϕ(x) + ϕ(y). In particular, if m ∈ N and r > 0, then
ϕ(mr) ≤ mϕ(r). Moreover, if a ≤ b, then there exists m ≥ 2 such that
(m− 1)a ≤ b ≤ ma and

ϕ(b)

b
≤ ϕ(ma)

b
≤ ma

b

ϕ(a)

a
≤ m

m− 1

ϕ(a)

a
.

But x ≤ y and there is some m ∈ N such that

ϕ(y)

y
≤ m

m− 1

ϕ(x)

x
,

which means that Ĉ is quasi-concave respect to the measure µ, with constant

γ = 2. Since Ĉ ' C, C is also quasi-concave with respect to µ.

5. Interpolation

If Ā = (A0, A1) is a couple of quasi-Banach spaces, 0 < θ < 1 and
0 < q ≤ ∞, the interpolation space Āθ,q is the quasi-Banach space of all
f ∈ A0 +A1 such that

‖f‖θ,q :=
(∫ ∞

0
(t−θK(t, f, Ā))q

dt

t

)1/q
<∞

where K(t, f, Ā) is the K-functional,

K(t, f ; Ā) := inf
{
‖f0‖A0 + t‖f1‖A1 ; f = f0 + f1

}
We refer to [8] and [10] for general facts concerning interpolation theory.

Here we are wishing to extend the results on real interpolation of ca-
pacitary Lp(C)-spaces included in [15] and [14], where the capacities were
supposed to be concave and p ≥ 1, since only Banach couples were allowed.

The capacities will be still supposed to be Fatou but the Choquet integral
will not be necessarily subadditive anymore, and 0 < p < 1 is also allowed.

For the sake of completeness we include the details of the proof of the es-
timates of K(t, f) = K(t, f ;Lp(C), L∞(C)) similar to those of [15] and [14].
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Theorem 9. If p > 0, then

K(t, f ;Lp(C), L∞(C)) ≈
(∫ ∞

0
yp−1 min(C{f > y}, tp)dy

)1/p

≈
(∫ tp

0
f?C(y)pdy

)1/p

.

Proof. Let 0 ≤ f ∈ Lp(C) + L∞(C). For t > 0 given, let

y∗ := inf{y > 0 : C{f > y} ≤ tp} = f?C(tp),

and consider

g0(x) :=

∫ ∞
y∗

χ{f>y}(x)dy, g1(x) :=

∫ y∗

0
χ{f>y}(x)dy.

Then f = g0 + g1 and {g0 > y} = {f > y + y∗}. So

‖g0‖pLp(C) =

∫ y∗

0
yp−1C{f > y + y∗}dy +

∫ ∞
y∗

yp−1C{f > y + y∗}dy

≤
∫ y∗

0
yp−1C{f > y∗}dy +

∫ ∞
y∗

yp−1C{f > y}dy

. tp(y∗)p +

∫ ∞
y∗

yp−1C{f > y}dy.

Hence,

K(t, f) ≤ ‖g0‖Lp(C) + t‖g1‖L∞(C)

≤
(
tp(y∗)p +

∫ ∞
y∗

yp−1C{f > y}dy
)1/p

+ ty∗

.

(
tp(y∗)p +

∫ ∞
y∗

yp−1C{f > y}dy
)1/p

+

(
tp
∫ y∗

0
yp−1dy

)1/p

.

(∫ ∞
y∗

yp−1C{f > y}dy + tp
∫ y∗

0
yp−1dy

)1/p

.

(∫ ∞
0

yp−1 min(C{f > y}, tp)dy
)1/p

.

For the reverse estimate we use that there exists Ωf (t) ⊂ Ω such that

K(t, f) ' ‖fχΩf (t)‖Lp(C) + t‖fχΩ\Ωf (t)‖L∞(C) = ‖f0‖Lp(C) + t‖f1‖L∞(C),

with f0 := fχΩf (t), f1 := fχΩ\Ωf (t) (just consider f = f0 + f1 such that

‖f0‖Lp(C) + t‖f1‖L∞(C) ≤ 2K(t, f) and take Ωf (t) = {|f0| ≥ |f1|}).
If f = χA, then

K(t, χA) ' inf{C(A0)+tC(A1); A = A0∪A1, A0∩A1 = ∅} ' min(C(A), t).
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Since f0, f1 are disjointly supported, χ{f>y} = χ{f0>y} + χ{f1>y}, and

min(C{f > y}, t) ' K(t, χ{f>y}) . C{f0 > y}+ t‖χ{f1>y}‖L∞(C)

and ‖f1‖L∞(C) = p1/p
(∫∞

0 yp−1‖χ{f1>y}‖L∞(C)dy
)1/p

. So

K(t, f) '
(∫ ∞

0
yp−1C{f0 > y}dy

)1/p

+

(
tp
∫ ∞

0
yp−1‖χ{f1>y}‖L∞(C)dy

)1/p

'
(∫ ∞

0
yp−1(C{f0 > y}+ tp‖χ{f1>y}‖L∞(C))dy

)1/p

≥
(∫ ∞

0
yp−1 min(C{f > y}, tp)dy

)1/p

.

To prove that also K(t, f) '
(∫ tp

0 f?C(y)pdy
)1/p

, let

f0(x) :=

{
f(x)− f?C(tp) f(x)

|f(x)| , if |f(x)| > f?C(tp)

0, otherwise,

f1 := f − f0 and E := {x : f0(x) 6= 0} = {x : |f(x)| > f?C(tp)}. Then
C(E) ≤ tp and since f?C is constant on [C(E), tp],

K(t, f) ≤ ‖f0‖Lp(C) + t‖f1‖L∞(C)

=

(∫
E

(|f(x)| − f?C(tp))pdC

)1/p

+ tf?C(tp)

=

(∫ C(E)

0
(f?C(s)− f?C(tp))pds

)1/p

+

(∫ tp

0
f?C(tp)pds

)1/p

≤
(∫ tp

0
(f?C(s)− f?C(tp))pds

)1/p

+

(∫ tp

0
f?C(tp)pds

)1/p

.

{∫ tp

0
(f?C(s)− f?C(tp))pds+

∫ tp

0
f?C(tp)pds

}1/p

.

(∫ tp

0
f?C(s)pds

)1/p

.
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Conversely, consider f = g + h with g ∈ Lp(C) and h ∈ L∞(C). Then∫ tp

0
f?C(s)pds =

∫ tp

0
(|f |p(s))?Cds .

∫ tp

0
(|g|p + |h|p)?C(s)ds

.
∫ tp

0
[(|g|p)?C(s) + (|h|p)?C(s)]ds

=

∫ tp

0
(g?C(s))pds+

∫ tp

0
(h?C(s))pds

.
∫ tp

0
(g?C(s))pds+ tph?C(0)p . ‖g‖pLp(C) + tp‖h‖pL∞(C)

. (‖g‖Lp(C) + t‖h‖L∞(C))
p

and then
(∫ tp

0 f?C(s)pds
)1/p

. K(t, f).

Once we have the description of K(t, f), real interpolation follows easily
as in [8], Theorem 5.2.1:

Theorem 10. Suppose 0 < θ < 1, 0 < p0 < q ≤ ∞ or 0 < p0 ≤ q < ∞,
and 1

p = 1−θ
p0

. Then

(Lp0(C), L∞(C))θ,q = Lp,q(C)

Proof. We know from Theorem 9 that∫ ∞
0

yp−1 min(C{f > y}, tp)dy '
∫ tp

0
f?C(y)pdy

so that, using the integral Minkowski inequality (q/p0 ≥ 1),

‖f‖θ,q =
(∫ ∞

0
t−θqK(t, f)q

dt

t

)1/q

'
(∫ ∞

0
t−θq

(∫ tp0

0
f?C(s)p0ds

)q/p0 dt
t

)1/q

=
(∫ ∞

0

(
t−θp0+p0

∫ 1

0
f?C(ytp0)p0y

dy

y

)q/p0 dt
t

)1/q

.
∫ 1

0

(
yq/p0

∫ ∞
0

t(1−θ)q(f?C(ytp0))q
dt

t

)p0/q dy
y

.
(∫ ∞

0

(
s

1−θ
p0 f?C(s)

)q ds
s

)1/q
=
(∫ ∞

0

(
s1/pf?C(s)

)q ds
s

)1/q
.

Then ‖f‖θ,q . ‖f‖Lp,q(C) since ‖f‖Lp,q(C) '
( ∫∞

0

(
s1/pf?C(s)

)q
ds
s

)1/q
.
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Conversely,

‖f‖Lp,q(C) '
(∫ ∞

0

(
s1/pf?C(s)

)q ds
s

)1/q
=
(∫ ∞

0

(
s

1−θ
p0 f?C(s)

)q ds
s

)1/q

'
(∫ ∞

0

(
t1−θf?C(tp0)

)q dt
t

)1/q
=
(∫ ∞

0

(
t(1−θ)p0f?C(tp0)p0

)q/p0 dt
t

)1/q

.
(∫ ∞

0

(
t−θ
(∫ tp0

0
f?C(s)p0ds

)1/p0)q dt
t

)1/q
= ‖f‖θ,q,

where we have used that f?C is decreasing.

In the case of a single quasi-subadditive Fatou capacity, Theorem 10 is
extended by reiteration:

Corollary 1. Let 0 < p0, p1, q0, q1 <∞ and 0 < η < 1. Then

(Lp0,q0(C), Lp1,q1(C))η,q = Lp,q(C)

with 1/p = (1− η)/p0 + η/p1 and 1/q = (1− η)/q0 + η/q1.

Proof. Let r < min(p0, p1, q0, q1) and choose (1 − θi) := r/pi (i = 0, 1).
Then, if θ := (1− η)θ0 + ηθ1, since 1/p = (1− θ)/r, Theorem 10 gives

(Lp0,q0(C), Lp1,q1(C))η,q = ((Lr(C), L∞(C))θ0,q0 , (L
r(C), L∞(C))θ1,q1)η,q.

Then by reiteration (cf. [8], Theorem 3.11.5) we obtain

((Lr(C), L∞(C))θ0,q0 , (L
r(C), L∞(C))θ1,q1)η,q = (Lr(C), L∞(C))θ,q.

and, again from Theorem 10, (Lp0,q0(C), Lp1,q1(C))η,q = Lp,q(C).

We also want to consider interpolation with change of capacities. Let
(C0, C1) be a couple of capacities on the same measurable space with the
same null sets. Examples are given by Hausdorff capacities and the cor-
responding Hausdorff measures, or by couples of capacities associated to
quasi-Banach spaces, as in (1), on the same measure space.

We will denote

[C0 + tC1](A) := K(t, χA;L1(C0), L1(C1)),

which is a quasi-subadditive capacity.
In the proof of the following theorem we use the reiteration properties for

the triple (Lr(C0), Lr(C1), L∞) that we describe in the appendix.

Theorem 11. Let C0, C1 be a couple of quasi-subadditive Fatou capacities
with the same null sets and 0 < η < 1. If 0 < p0, p1 < ∞, 0 < q0, q1 ≤ ∞
and 1

q := 1−η
q0

+ η
q1

, 1
p := 1−η

p0
+ η

p1
, then

(Lp0,q0(C0), Lp1,q1(C1))η,q = Lp,q(Cηp/p1,q/p),

where Cθ,q(A) := ‖χA‖(L1(C0),L1(C1))θ,q .
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Proof. Choose 0 < r < min(p0, p1, q0, q1). Then, by Theorem 10, for
(1− α0)p0 = r and (1− α1)p1 = r we have

(Lp0,q0(C0), Lp1,q1(C1))η,q = ((Lr(C0), L∞)α0,q0 , (L
r(C1), L∞)α1,q1)η,q

and, if X̄ = (Lr(C0), Lr(C1), L∞), by reiteration (cf. Theorem 13),

((Lr(C0), L∞)α0,q0 , (L
r(C1), L∞)α1,q1)η,q = X̄(θ0,θ1),q

with θ0 = (1− α1)η, θ1 = α0(1− η) + α1η.
Since

K(t1, t2, f ; X̄) ' K(t2, f ;Lr([C0 + tr1C1]), L∞)

and K(t, f ;Lr(C), L∞(C)) = (
∫∞

0 yr−1 min(C{|f | > y}, tr)dy)1/r by Theo-
rem 9, we get

K(t1, t2, f ; X̄) '
(∫ ∞

0
yr−1 min([C0 + tr1C1]{|f | > y}, tr2)dy

)1/r
.

So, the value of ‖f‖q
X̄(θ0,θ1),q

is∫
R2

+

[
t−θ01 t−θ12

(∫ ∞
0

yr−1 min([C0 + tr1C1]{|f | > y}, tr2)dy
)1/r]q dt2

t2

dt1
t1
,

where ∫ ∞
0

[
t−θ12

(∫ ∞
0

yr−1 min([C0 + tr1C1]{|f | > y}, tr2)dy
)1/r]q dt2

t2

=

∫ ∞
0

t−θ1q2 K(t2, f ;Lr([C0 + tr1C1]), L∞)q
dt2
t2

' ‖f‖q(Lr([C0+tr1C1]),L∞)θ1,q
= ‖f‖Lr/(1−θ1),q([C0+tr1C1])

'
∫ ∞

0
yq−1[C0 + tr1C1]{|f | > y}

(1−θ1)q
r dy,

by Theorem 10.
Thus

‖f‖q
X̄(θ0,θ1),q

'
∫ ∞

0
t−θ0q1

∫ ∞
0

yq−1[C0 + tr1C1]{|f | > y}
q(1−θ1)

r dy
dt1
t1

=

=

∫ ∞
0

∫ ∞
0

τ
−θ0q
r yq−1[C0 + τC1]{|f | > y}

q(1−θ1)
r dy

1

r

dτ

τ
=

=
1

r

∫ ∞
0

yq−1

∫ ∞
0

τ
−ηq
p1 [C0 + τC1]{|f | > y}q/pdτ

τ
dy =

=
1

r

∫ ∞
0

yq−1

∫ ∞
0

(
τ
−ηp
p1 [C0 + τC1]{|f | > y}

)q/pdτ
τ
dy

where

‖χ{|f |>y}‖
q/p
(L1(C0),L1(C1)) ηp

p1
,q/p

=

∫ ∞
0

(
τ
−ηp
p1 K(τ, χ{|f |>y};L

1(C0), L1(C1))
)q/pdτ

τ
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Hence, from the definition Cθ,q(A) := ‖χA‖(L1(C0),L1(C1))θ,q ,

‖f‖q
X̄(θ0,θ1),q

'
∫ ∞

0
yq−1‖χ{|f |>y}‖

q
p

(L1(C0),L1(C1)) ηp
p1
,
q
p

dy ' ‖f‖Lp,q(C ηp
p1
,
q
p

)

6. Some applications to classical Lorentz spaces

Let p, q > 0, µ a measure or weight on Rn, and w a weight on R+. The
Lorentz spaces Λp,qµ (w) are defined by the condition

‖f‖Λp,qµ (w) =
(∫ ∞

0
sq/pf∗µ(s)qw(s)

ds

s

)1/q
<∞.

Here f∗µ is the decreasing rearrangement of f with respect to µ,

f∗µ(s) := inf{t; µ{|f | > t} ≤ s}.

If p = q, Λpµ(w) = Λp,pµ (w) and

‖f‖Λpµ(w) =
(∫ ∞

0
f∗µ(s)pw(s) ds

)1/p
.

If w = 1, Λp,qµ (1) = Lp,q(µ) and Λp,pµ (1) = Lp(µ).
Some basic questions are to determine whether they are normed or quasi-

normed function spaces, to prove when Λp,q0µ (w) ⊂ Λp,q1µ (w) for 0 < q0 <
q1 ≤ ∞, and to find the weights for which classical operators, such as the
Hardy operator Sf(x) =

∫ x
0 f(x)dx, are bounded from Λp0µ0(w0) to Λp1µ1(w1).

Two good reference for these topics are [13] and [12].
Here we are going to show that, in fact, Lorentz spaces Λp are Lebesgue

capacity spaces.
Denote V (A) =

∫
A v(t) dt. Then we can write

‖f‖Λpµ(v) =
(∫ ∞

0
f∗µ(s)pv(s) ds

)1/p
=
(∫ ∞

0
ptp−1V ([0, µ{|f | > t})) dt

)1/p
,

so Λpµ(v) = Lp(C) with C(A) = V [0, µ(A)). It follows from our results that
Λpµ(v) is a normed space when C is concave, which means that V is concave.

But such a remark can be also applied to new Lorentz spaces obtained
from some other well known symmetrization method of analysis:

• Spherical symmetrization: f∗S(y) := f∗µ(σn|y|n) =
∫∞

0 χ{|f |>s}∗ if
χA∗ = χ∗A. Also for Steiner of order k (1 < k ≤ n).
• Multidimensional symmetrization f∗2 is defined in [6] as follows: For

a set A ⊂ R2, A∗2 = {(s, t); 0 < t < χ∗E(s)}, where E(s) is the s-

section {y ∈ R; (s, y) ∈ E}. Then s∗2 is defined for a simple function
s, and finally f∗2 := limk(sk)

∗
2.

‖f‖Λp2(v) := ‖f∗2 ‖Lp(v).

• Discrete rearrangements on trees as in [19].
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In [9], Boza and J. Soria consider increasing transformations A 7→ R(A)
on measure spaces with the Fatou property, An ↑ A⇒ R(An) ↑ R(A), that
allow to define the corresponding rearrangements of functions

f∗R(y) :=

∫ ∞
0

χR{|f |>t}(y) dt

that allow to unify various Lorentz spaces found in the literature, included
all the mentioned above:

‖f‖ΛpR(v) := ‖f∗R‖Lp(v) =
(∫ ∞

0
ptp−1V (R{|f | > t}) dt

)1/p

Obviously ΛpR(v) = Lp(CV,R) if we define the capacity CV,R as

CV,R(A) = V (R(A)),

and our results on capacities apply to this special case.

As a final example, let us show how interpolation of capacitary Lebesgue
spaces can be used in interpolation of Lorentz spaces, (Λp0(v0),Λp1(v1))η,p.

We know from Theorem 11 that if C0 and C1 have the same null sets,
0 < p0, p1 <∞, and 0 < η < 1, then(

Lp0(C0), Lp1(C1)
)
η,p

= Lp(Cηp/p1,1) (1/p = (1− η)/p0 + η/p1),

where
Cθ,q(A) := ‖χA‖(Λ(C0),Λ(C1))θ,q .

We start from the identity (Λ1(v0),Λ1(v1))θ,1 = Λ1(v), where V = V 1−θ
0 V θ

1 ,
and we consider Λpj (vj) = Lpj (Cj) with Cj = Vj ◦ R (j = 0, 1). Then

(Λp0(v0),Λp1(v1))η,p = (Lp0(C0), Lp1(C1))η,p = Lp(Cθ,1)

with θ = ηp/p1.
Recall that

Cθ,1(A) = ‖χA‖(L1(C0),L1(C1))θ,1 = ‖χA‖Λ1(v) = V ◦ R(A)

and Lp(Cθ,1) = Λp(v), so that

(Λp0(v0),Λp1(v1))η,p = Λp(v)

with
V = V 1−θ

0 V θ
1 = V

(1−η)p/p0
0 V

ηp/p1
1 .

7. Appendix: interpolation of triples

Let C0 and C1 be a couple of Fatou capacities on (Ω,Σ) having the same
null sets and X̄ = (Lr(C0), Lr(C1), L∞) with 0 < r < ∞, a triple of quasi-
Banach spaces. Here L∞ = L∞(C0) = L∞(C1) and we write Xi (i = 0, 1, 2)
for the components of X̄, which are continuously contained in the sum space
Σ(X̄) endowed with

‖f‖Σ := inf{‖f0‖0 + ‖f1‖1 + ‖f2‖2; f = f0 + f1 + f2}.
If ‖f‖Σ = 0, it is readily seen that f = 0 C-q.e. and ‖ · ‖Σ is a quasi-norm.
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For every f ∈ Σ(X̄), the K-functional K(t, f) = K(t, f ; X̄) is defined as

K(t, f) := inf{‖f0‖0+t1‖f1‖1+t2‖f2‖2; f = f0+f1+f2} (t = (t1, t2) ∈ R2
+).

If Θ = (θ0, θ1) with θ0, θ1 > 0 and θ0 + θ1 < 1, the interpolation space
X̄Θ,q;K is defined for every q > 0 by the condition

‖f‖Θ,q;K := ‖K(·, f)‖(Θ,q) <∞,
where

‖g‖(Θ,q) :=
(∫

R2
+

(t−θ01 t−θ12 g(t))q
dt1
t1

dt2
t2

)1/q
.

Also, the J-space X̄Θ,q;J is defined by the condition

‖f‖Θ,q;J := inf
{
‖J(·, u(·))‖(Θ,q); f =

∫
R2

+

u(t)
dt1
t1

dt2
t2

}
<∞,

where u : R2
+ → ∆(X̄) = X0 ∩ X1 ∩ X2 is any measurable function such

that, in Σ(X̄),

f =

∫
R2

+

u(t)
dt1
t1

dt2
t2
,

and J(t, x) = max(‖x‖0, t1‖x‖1, t2‖x‖2) if x ∈ ∆(X̄).
To show that one can apply to X̄ the methods of [4] and [5], let % ∈ (0, 1]

be the parameter in Aoki’s theorem corresponding to a common constant c
in the triangle inequality for the quasi-Banach spaces in X̄.

Denote

(Sρf)(t)ρ :=

∫
R2

+

[
min

(
1,
t1
s1
,
t2
s2

)
f(s)

]ρds1

s1

ds2

s2
(t ∈ R2

+),

a modified Calderón operator, which satisfies K(·, f) . SρK(·, f), and con-
sider the space

σ%(X̄) :=
{
f ∈ Σ(X̄); (S2

ρK(., f))(1) <∞
}
,

which allows to adapt the construction in [4] to our quasi-Banach triple,
since X̄Θ,q;K ↪→ XΘ,∞;K ↪→ σ%(X̄).

In our situation, the fundamental lemma with Sρ holds for X̄:

Lemma 1. Every f ∈ σ%(X̄) admits a representation as a sum in Σ(X̄),

f =
∑
k∈Z2

fk (fk ∈ ∆(X̄)),

where
∑

k∈Z2 ‖fk‖ρΣ(X̄)
<∞ and

J(2k, fk) ≤ C(SρK(·, f))(2k).

Proof. Exactly as in [4], one can find a family of sets B(k) (k = (k1, k2) ∈
Z2) such that the functions gk := |f |χB(k) satisfy

2kj‖gk‖j . (SρK(·, f))(2k) (j = 0, 1, 2 with k0 := 0)
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and, using Aoki’s theorem, a straightforward but lengthy argument, similar
to the computations in [4] (which corresponds to the case ρ = 1), shows that∑

k∈Z2

‖gk‖ρΣ(X̄)
. (Sρ[SρK(·, f)])ρ(1) <∞,

so
∑

k∈Z2 gk = g exists in Σ(X̄) and |f | ≤ g, and the decomposition is then
obtained by choosing fk = fgk/g.

Now the following equivalence theorem is proved as in the case ρ = 1 for
Banach function spaces:

Theorem 12. Let Θ = (θ0, θ1) with θ0, θ1 > 0 and θ0 +θ1 < 1, and consider
q ≥ 1. Then for the triple X̄ = (Lr(C0), Lr(C1), L∞) the identity

X̄Θ,q;J = X̄Θ,q;K

holds with equivalent quasi-norms and we may write X̄Θ,q;J = X̄Θ,q;K =
XΘ,q.

To obtain Theorem 13 we will use the following simple result concerning
triples X̄ = (X0, X1, X2) of quasi-Banach spaces (cf. [5]):

Lemma 2. If 0 < α0, α1, η < 1, and θ1 = η(1−α1) and θ2 = ηα1(1− η)α0,
then (

(X0, X2)α0,1;K , (X1, X2)α1,1;K

)
η,1;K

⊂ X̄Θ,1;K

and

X̄Θ,1;J ⊂
(
(X0, X2)α0,1;J , (X1, X2)α1,1;J

)
η,1;J

.

Finally, a reiteration theorem follows from the power theorem as in [5]:

Theorem 13. Let X̄ = (X0, X1, X2) = (Lr(C0), Lr(C1), L∞) where 0 <
r <∞ and 0 < q, q0, q1 <∞, and suppose that 0 < α0, α1, µ < 1. Then

X̄(θ0,θ1),q = ((X0, X2)α0,q0 , (X1, X2)α1,q1)µ,q,

with θ0 = (1− α1)η and θ1 = α0(1− η) + α1η.

Proof. Observe that, by the power theorem,

((X0, X2)α0,q0 , (X1, X2)α1,q1)qµ,q = ((X0, X2)q0α0,q0 , (X1, X2)q0α1,q1)η,1,

if η = µq/q1. We choose 0 < β0, β1 < 1 so that α0q0/β0 = α1q1/β1, and
if s0 = q0(1 − α0)/(1 − β0), s1 = q1(1 − α1)/(1 − β1) and s2 = q0α0/β0 =
q1α1/β1, then

((X0, X2)q0α0,q0 , (X1, X2)q0α1,q1)η,1 = ((Xs0
0 , X

s2
2 )β0,1, (X

s1
1 , X

s2
2 )β1,1)η,1.

From Theorem 12 and Lemma 2, it follows that

((Xs0
0 , X

s2
2 )β0,1, (X

s1
1 , X

s2
2 )β1,1)η,1 = (Xs0

0 , X
s1
1 , X

s2
2 )(λ1,λ2),1

with λ1 = η(1− β1) and λ2 = (1− η)β0 + ηβ1.
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Now an application of the power theorem for triples of quasi-Banach
spaces (cf. [22]) gives

(Xs0
0 , X

s1
1 , X

s2
2 )(λ1,λ2),1 = X̄(θ0,θ1),q

with θ0 = η(1− α1) and θ1 = (1− η)α0 + ηα1. Thus

((X0, X2)α0,q, (X1, X2)α1,q)η,q = X̄q
(θ0,θ1),q

as announced.
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[3] I. Asekritova, J. Cerdà and N. Krugljak, The Riesz-Herz equivalence for capacitary
maximal functions, to appear in Rev. Mat. Complut.

[4] I. Asekritova and N. Krugljak, On equivalence of K- and J-methods for (n+ 1)-tuples
of Banach spaces, Studia Math. 122 (1997), 99–116.

[5] I. Asekritova, N. Krugljak, L. Maligranda, L. Nikolova, L-E. Persson, Lions-Peetre
reiteration formulas for triples and their applications, Studia Math. 145 (2001), 219–
254.

[6] S. Barza, L.E. Persson and J. Soria, Multidimensional rearrangement and Lorentz
spaces, Acta Math. Hungar. 104 (2004), 203-224.

[7] C. Bennett and B. Sharpley, Interpolation of Operators, Academic Press Inc., 1988.
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