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Abstract. Let M be a smooth Riemannian manifold with the metric (gij) of

dimension n, and let H =
1

2
gij(q)pipj + V (t, q) be a smooth Hamiltonian on

M, where
(
gij

)
is the inverse matrix of (gij). Under suitable assumptions we

prove the existence of heteroclinic orbits of the induced Hamiltonian systems.

1. Introduction and statement of the main results. The existence of ho-
moclinic and heteroclinic orbits for Hamiltonian systems by using the variational
methods and critical point theory has been studied by many authors (see for in-
stance, [4]–[6], [10, 11], [14]–[18] and [20]). We must say that Rabinowitz has given
fundamental contributions to this field. Our present work is motivated by [14] and
[11].

In [14] Rabinowitz studied the autonomous second order Hamiltonian system

q̈ + Vq(q) = 0, q = (q1, . . . , qn) ∈ Rn, (1)

with the function V : Rn → R satisfying the assumptions

(R1) V ∈ C1(Rn, R), and V (q) ≤ 0 for all q ∈ Rn.
(R2) V is periodic in qi with a period Ti, 1 ≤ i ≤ n.
(R3) The set U = {y ∈ Rn; V (y) = 0} consists only of isolated points.

Then for every x ∈ U , there exist at least two heteroclinic orbits of (1) joining x
to U \ {x}. Moreover, at least one of these orbits emanates from x and at least one
terminates at x. As mentioned in [11] Rabinowitz’s proof strongly depends on the
fact that the system is autonomous.
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Izydorek and Janczewska [11] extended Rabinowitz’s result to the non–autonomous
second order Hamiltonian system

q̈ + Vq(t, q) = 0, t ∈ R, q = (q1, . . . , qn) ∈ Rn, (2)

with V : R× Rn → R and W ⊂ Rn satisfying the assumptions

(A1) V ∈ C1(R× Rn, R), and V ≤ 0 on R× Rn,
(A2) #W ≥ 2 and γ := 1

3 inf{|x− y|}; x, y ∈ W, x 6= y} > 0,
(A3) for every 0 < ε ≤ γ there is a δ > 0 such that for all (t, z) ∈ R × Rn, if

d(z,W) ≥ ε then −V (t, z) ≥ δ,
(A4) −V (t, z) → ∞, if |t| → ∞, uniformly on every compact subset of Rn \W ,
(A5) for every x ∈ W,

∞∫

−∞

−V (t, x)dt ≤ γ
√
2α,

where α := inf{−V (t, z); t ∈ R, d(z,W) ≥ γ}.
They proved that for every x ∈ W there exists at least one heteroclinic solution
of (2) such that q(−∞) = x and q(∞) ∈ W \ {x}, i.e. q emanates from x and
terminates at a point in W \ {x}.

We note that for n = 1 the function V (t, q) =: V1(t, q) = (1 + e−ct2)(cos q − 1)
satisfies the assumptions (R1)−(R3) of [14] if c = 0, and satisfies the five conditions
(A1)− (A5) if c < 0. We also note that Izydorek and Janczewska’s result cannot be
applied to the function V1(t, q) with c > 0, because it does not satisfy the assumption
(A4). In this paper we want to extend the results of [14, 11] to Hamiltonian systems
on a manifold with the potential function V being in a broad class.

Let M be a C1 smooth connected Riemannian manifold of dimension n with a
complete metric g = (gij(q)), where q ∈ M. Then on its cotangent bundle T ∗M
there exists a natural symplectic structure. Assume that H is a Hamiltonian on M
given by

H =
1

2
gij(q)pipj + V (t, q), (3)

where (gij(q)) is the inverse matrix of (gij(q)) and V is a C1 smooth potential
function. We note that the Hamiltonian function (3) on M has been studied by
several authors, see for instance [2] page 647. The aim of this paper is to study the
existence of heteroclinic orbits of the following Hamiltonian systems

q̇i =
∂H

∂pi
= gij(q)pj ,

ṗi = −∂H
∂qi

= −1

2

∂gkl

∂qi
pkpl −

∂V

∂qi
,

i = 1, . . . , n (4)

where we have used the Einstein summation. Suppose that

(a) V ∈ C1(R×M, R), and V (t, q) ≤ 0 in R×M.
(b) Let V = {q ∈ M : V (t, q) = 0 for all t ∈ R} and assume that

(b1) #V ≥ 2 and σ = 1
3 min{ρ(x, y) : x, y ∈ V, x 6= y} > 0, where ρ(·, ·)

denotes the Riemannian distance of two points on M;
(b2) for q 6∈ V, V (t, q) 6= 0 for any t ∈ R.

(c) In any compact subset of M\V we have
∫∞
0
V (t, q)dt =

∫ 0

−∞ V (t, q)dt = −∞.

(d1) In any compact subset of M\ V we have −V (t, q) → ∞ if |t| → ∞.
(d2) For any ε > 0 there exists a δ > 0 such that if q ∈ Bδ(V) then −V (t, q) ≤ ε.
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We remark that our condition (c) is weaker than (A3), because

V (t, q) := V2(t, q) =
1

1 + t2/3
(sin q − 1),

satisfies (c) but not (A3). We note that for n = 1 the functions V1(t, q) and V2(t, q)
both satisfy the conditions (a), (b) and (c). But V1 with c < 0 satisfies (d1) but not
(d2). The functions V1 with c > 0 and V2 both satisfy (d2) but not (d1).

Our main result is the following.

Theorem 1.1. Suppose that the conditions (a), (b), (c) and either (d1) or (d2)
hold. Then for any x ∈ V there exists y ∈ V \{x} for which the Hamiltonian system
(4) has a heteroclinic orbit connecting x and y, i.e. there exists a complete solution
q(t) of (4) satisfying

q(−∞) := lim
t→−∞

q(t) = x and q(∞) := lim
t→∞

q(t) = y.

In the next section we will prove this theorem. Now we give an application of
Theorem 1.1 to a classical non–autonomous Hamiltonian on the cotangent bundle
of a two–dimensional torus.

Let T 2 be the two–dimensional torus in R3 parametrized by (θ1, θ2) ∈ R2/(2π, 2π)
through the representation

x = (r + cos θ2) cos θ1, y = (r + cos θ2) sin θ1, z = sin θ2, (5)

with r > 1. The Riemannian metric tensor on T 2 is G = (r + cos θ2)
2dθ21 + dθ22,

which is induced from the canonical Riemannian metric tensor G̃ = dx2+dy2+dz2

of R3 (see e.g. [7]). Consider the Hamiltonian defined on T 2 given by

H(θ1, θ2, p1, p2) =
p21

(r + cos θ2)2
+ p22 + V (t, θ1, θ2),

with

V = V1(t, θ1, θ2) =
(
1 + et

2
)
(sin(2θ1) + cos(3θ2)− 2),

or

V = V2(t, θ1, θ2) =
1

1 + t2/3
(sin(2θ1) + cos(3θ2)− 2).

We check with

V = {(π/4, 0), (π/4, 2π/3), (π/4, 4π/3), (5π/4, 0), (5π/4, 2π/3), (5π/4, 4π/3)},
that the potential V = V1 satisfies the assumptions (a), (b), (c) and (d1), and that
the potential V = V2 satisfies the assumptions (a), (b), (c) and (d2). So for any
one of the potentials, by Theorem 1.1 the Hamiltonian system defined on T 2 has
heteroclinic orbits connecting any point in V to some other point of V.

2. Proof of Theorem 1.1. From [1] the Hamiltonian system (4) is equivalent to
the Lagrangian system

d

dt

∂L

∂q̇i
=
∂L

∂qi
, L(t, q, q̇) =

1

2
gij(q)q̇

iq̇j − V (t, q), i = 1, · · · , n (6)

via the Legendre transformation

pT = (gij(q)) q̇
T ,
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where p = (p1, · · · , pn), q̇ = (q̇1, · · · , q̇n) and T denotes the transpose of a matrix.
The solution of the Lagrangian system (6) is a critical point of the functional

I(q) :=

∞∫

−∞

(
1

2
gij(q(t))q̇

i(t)q̇j(t)− V (t, q(t))

)
dt, (7)

in the Hilbert space

H :=



q ∈W 1,2

loc
(R, M);

∞∫

−∞

|q̇|21dt <∞



 ,

with the norm

‖q‖2 = |q(0)|2 +
∞∫

−∞

|q̇|21dt, (8)

where |q̇|21 = gij(q)q̇
iq̇j and | · | is one of the equivalent norms in the n–dimensional

Euclidean space. Recall that W 1,2

loc
(R, M) consists of functions belonging to the

Hilbert space W 1,2(J, M) where J ⊂ R has compact closure in R (see e.g. [9]
page 154). We note that if q ∈ H, then q ∈ C(R, M), the space of continuous
functions having images in M. In what follows we use the notation →w to denote
the convergence of sequences in H under the weak topology induced by the norm of
H. But the notation → denotes the convergence of sequences in H under the strong
topology induced by the L∞ norm of L∞(R, M). Recall that L∞(R, M) denotes
the Banach space of bounded functions (see e.g. [9] page 145).

In what follows we try to find some critical points of the functional I(q) by
minimizing it in H. The proof of Theorem 1.1 follows from a series of lemmas. We
must say that we extend the ideas of the proof of [11] and [14] to our Hamiltonian
systems.

For ε > 0 let

αε := inf{−V (t, q); t ∈ R, q ∈ M \Bε(V)}.

Then αε > 0, it follows from either the assumption (d1) or (d2).

Lemma 2.1. For 0 < ε ≤ σ. Assume that q ∈ H and q(t) ∈ M \ Bε(V) for
t ∈ ∪k

i=1[ai, bi] with k ∈ N and [ai, bi] ∩ [aj , bj ] = ∅ for i 6= j. Then

I(q) ≥
√
2αε

k∑

i=1

l(q[ai, bi]),

where l(q[ai, bi]) denotes the length of the curve q(t) when t arranges from ai to bi.

Proof. From the definition of the length of a curve on a Riemannian manifold (see
e.g. [8] page 43 or [3] page 117), by direct calculations we get that

l :=
k∑

i=1

l(q[ai, bi]) =

∫

∪k
i=1[ai, bi]

|q̇(t)|1dt ≤ s1/2




∫

∪k
i=1[ai, bi]

|q̇(t)|21dt




1/2

,
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where s =
k∑

i=1

(bi − ai), and we have used the Cauchy–Schwartz inequality. So we

have

I(q) ≥
∫

∪k
i=1[ai, bi]

(
1

2
|q̇(t)|21 − V (t, q)

)
dt ≥ l2

2s
+ αεs ≥ l

√
2αε.

Under the assumptions of Lemma 2.1, it follows that

I(q) ≥
√
2αε

k∑

i=1

ρ(q(ai), q(bi)). (9)

Lemma 2.2. For any q ∈ H we have

(l(q[a, b]))2 ≤ 2(b− a)I(q), for all a, b ∈ R, a < b.

Proof. It follows from the fact that

I(q) ≥
∞∫

−∞

1

2
|q̇(t)|21dt ≥

b∫

a

1

2
|q̇(t)|21dt,

and

(l(q[a, b]))2 =




b∫

a

|q̇(t)|1dt




2

≤ (b− a)

b∫

a

|q̇(t)|21dt.

In order to simplify notations we will use q(a, b) to denote the set {q(t); t ∈ (a, b)}
for any a, b ∈ R and a < b.

Lemma 2.3. If q ∈ H and I(q) <∞, then q ∈ L∞(R, M).

Proof. If the manifold M is bounded, the conclusion follows easily from the defini-
tion of L∞(R,M). We assume that M is unbounded.

Firstly we claim that the orbit q(R) intersects at most finitely many elements
of {∂Bσ(x); x ∈ V}. Otherwise there exist sequences a1 < b2 ≤ a2 < . . . <
bn ≤ an < bn+1 ≤ an+1 < . . . and {ξi} ⊂ V with ξi 6= ξj for i 6= j such that

q(ai−1, bi)∩Bσ(V) = ∅, and q(bi), q(ai) ∈ ∂Bσ(ξi). It follows from Lemma 2.1 and
(9) that for any m ∈ N

I(q) ≥
√
2ασ

m∑

i=1

ρ(q(ai), q(bi+1)) ≥ mσ
√
2ασ.

This means I(q) = ∞, a contradiction. The claim follows.
On the contrary if q 6∈ L∞(R, M) we can choose a base point q0 ∈ M and

a real number R > 0 such that q(R) ∩ BR(q0) 6= ∅ and q(t1, ∞) ∩ Bσ(V) = ∅,
where t1 := sup{q(t) ∈ ∂BR(q0)}. For any n ∈ N there exists a tn ∈ R such that
ρ(q(tn), q(t1)) > n and t1 < tn < tn+1 → ∞ as n→ ∞. By Lemma 2.1 and (9) we
have

I(q) ≥
√
2ασ l(q[t1, tn]) ≥

√
2ασρ(q(t1), q(tn)), n ∈ N.

This means that I(q) = ∞. The contradiction shows that q ∈ L∞(R, M).

Lemma 2.4. If q ∈ H and I(q) < ∞, there exist ξ, η ∈ V such that q(−∞) = ξ
and q(∞) = η.
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Proof. Set

α(q) := {α ∈ M; ∃{tn} ⊂ R with tn → −∞ as n→ ∞ and lim
n→∞

q(tn) = α},
β(q) := {β ∈ M; ∃{tn} ⊂ R with tn → ∞ as n→ ∞ and lim

n→∞
q(tn) = β},

where the limit is taken in the topology induced by the Riemannian metric on M.
We call α(q(t)) and β(q(t)) the α and ω limit sets of q(t), respectively. By Lemma
2.3, α(q(t)) 6= ∅ and β(q(t)) 6= ∅ because q(t) is bounded on M. We now prove that
β(q) ⊂ V and that it contains a unique point. The same conclusion holds for α(q).

On the contrary we assume that β(q) * V, then there is a ζ ∈ β(q) but ζ /∈ V. So
there exists ε > 0 such that Bε(ζ)∩Bε(V) = ∅ and there exists {tn} ⊂ R with tn →
∞ as n → ∞ such that lim

n→∞
q(tn) = ζ. This implies that there is an N > 0 such

that for n > N we have q(tn) ∈ Bε(ζ). Set Dζ := {t ∈ [tN+1, ∞); q(t) ∈ Bε/2(V)},
and Tζ := supDζ . In the case Dζ = ∅, we set Tζ = tN+1.

If Bε/2(V) intersects at most finitely many elements of {q[tn, tn+1]; n = N +
1, N + 2, . . .}, then Tζ < ∞. Hence by (c) it follows from the boundedness of q(t)
that

I(q) ≥
∞∫

Tζ

−V (t, q(t))dt = ∞,

a contradiction.
If Bε/2(V) intersects infinitely many elements of {q[tn, tn+1]; n = N + 1, N +

2, . . .}, there exist [ank
, bnk

] ⊂ [tnk
, tnk+1], k = 1, 2, . . ., for which

q(ank
) ∈ ∂Bε(ζ), q(bnk

) ∈ ∂Bε/2(V), q(ank
, bnk

) ∩Bε/2(V) = ∅.
We get from Lemma 2.1 that for any k ∈ N

I(q) ≥ ε

2
k
√

2αε/2.

This means that I(q) = ∞, a contradiction. Hence we should have β(q) ⊆ V.
If ξ, η ∈ β(q) and ξ 6= η. For 0 < ε ≤ σ, there exist [an, bn] ⊂ R, n = 1, 2, . . .,

with [ai, bi] ∩ [aj , bj ] = ∅ for i 6= j such that q(an) ∈ ∂Bε(ξ), q(bn) ∈ ∂Bε(η) and
q(an, bn)∩Bε(V) = ∅. Then an analogous argument as in the last paragraph implies
that I(q) = ∞. This contradiction forces that β(q) has a unique element.

We denote by q(∞) (resp. q(−∞)) the unique point of the ω (resp. α) limit set
of q(t). Then q(∞), q(−∞) ∈ V.

For any given 0 < ε ≤ σ and fixed x ∈ V, choose any y ∈ V \ {x}. Set
Hε(y) := {q(t) ∈ H; q(−∞) = x, q(∞) = y, q(R) ∩Bε(V \ {x, y}) = ∅}.

The set Hε(y) is non-empty, because it contains the function: q(t) = x for t ∈
(−∞, 0), q(t) = y for t ∈ (1, ∞), and q[0, 1] consists of a piece-wise smooth curve
having a finite length, connecting x and y, and with q(0, 1) ∩ Bε(V \ {x, y}) = ∅.
Define

µε(y) := inf
q∈Hε(y)

I(q). (10)

Then 0 < µε(y) <∞ and µε(y) → ∞ if y → ∞ by Lemma 4.

Lemma 2.5. There exists a qε,y ∈ Hε(y) such that I(qε,y) = µε(y).
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Proof. Set

H1,ε(y) := {q ∈ Hε(y); I(q) ≤ µε(y) + 1}.
First we claim that H1,ε(y) is bounded in H. Indeed, for any q ∈ H1,ε(y)

µε(y) + 1 ≥ I(q) ≥
∞∫

−∞

1

2
|q̇(t)|21dt.

In addition there exists a c > 0 such that ρ(q(0), x) ≤ c for all q ∈ H1,ε(y).
Otherwise for any k ∈ N there is a qk ∈ H1,ε(y) such that ρ(qk(0), x) ≥ k. Set
tk := max{t < 0; qk(t) ∈ ∂Bε(x)}. By Lemma 2.1 and (9) we have

I(qk) ≥
√
2αερ(qk(0), qk(tk)) → ∞, as k → ∞,

a contradiction. This implies that there exists a c∗ such that |q(0)|2 ≤ c∗ for all
q ∈ H1,ε. Hence from (8) we have

‖q‖2 ≤ 2(µε(y) + 1) + c∗ :=M1.

Recall that | · | and ‖ · ‖ are the norm defined in (8) and in the paragraph following
it. This proves the claim.

Second the set H1,ε(y) is bounded in the strong topology. It follows from the
norm ‖q − x‖L∞ := max{ρ(q(t), x), t ∈ R} and the fact that

ρ(q(t), x) ≤ I(q)√
2αε

+ ε+ ρ(x, y).

We now prove this last inequality. If q(t) ∈ Bε(x) then ρ(q(t), x) ≤ ε. If q(t) ∈
Bε(y) then ρ(q(t), x) ≤ ε + ρ(x, y). If q(t) 6∈ Bε(x) ∪ Bε(y) and {q(s), s ≤ t} ∩
Bε(y) = ∅, we have ρ(q(t), x) ≤ ρ(q(t), q(tx)) + ρ(q(tx), x) ≤ I(q)√

2αε
+ ε, where tx =

max{s < t; q(s) ∈ ∂Bε(x)}. If q(t) /∈ Bε(x) ∪ Bε(y) and {q(s), s ≤ t} ∩ Bε(y) 6= ∅,
then ρ(q(t), x) ≤ ρ(q(t), q(ty)) + ρ(q(ty), y) + ρ(x, y) ≤ I(q)√

2αε
+ ε + ρ(x, y), where

ty = max{s < t; q(s) ∈ ∂Bε(y)}. This completes the proof of the inequality.
Third we claim that any sequence of H1,ε(y) are equicontinuous. Indeed, for any

q ∈ H1,ε(y), and any r, s ∈ R, Lemma 2.2 implies

ρ(q(s), q(r)) ≤
√

2I(q)|s− r| ≤
√

2(µε(y) + 1)
√
|r − s|.

The claim follows.
Let {qm} be a minimizing sequence for (10). Then from the definition of H1,ε(y)

and the fact that lim
m→∞

I(qm) = µε(y), we can assume without loss of generality

that {qm} ⊂ H1,ε(y). Then {qm} is bounded in H, and consequently there is a
subsequence which is convergent to some element, saying qε,y, of the Hilbert space
H under the weak topology. In order to simplify the notation we suppose without
loss of generality that qm →w qε,y, otherwise instead of {qm} we must have a
subsequence. From the last two claims, the sequence {qm} is uniformly bounded
and equicontinuous. It follows from the Arzela–Ascoli Theorem (see e.g. [19] page
245) that qm → qε,y in L∞

loc(R, M).
Next we prove that I(qε,y) ≤ µε(y). For any fixed a, b ∈ R and a < b, define

Ia,b(q) :=

b∫

a

(
1

2
|q̇(t)|21 − V (t, q(t))

)
dt. (11)
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Then it follows from Lemma 3.1 of the Appendix that Ia,b(q) is lower semi-continuous
in the weak topology of H. Since

Ia,b(qm) ≤ I(qm) ≤ µε(y) + 1,

we have

Ia,b(qε,y) ≤ lim inf
m→∞

Ia,b(qm) ≤ lim
m→∞

I(qm) = µε(y) ≤ µε(y) + 1.

Since qε,y ∈ H, and so is continuous in R. By the arbitrary of a, b ∈ R, we should
have I(qε,y) ≤ µε(y) by letting a→ −∞ and b→ ∞.

Finally we prove that qε,y ∈ Hε(y). We claim first that {qε,y(t); t ∈ R} ∩
Bε(V \ {x, y}) = ∅. Otherwise there exist ξ ∈ V \ {x, y} and t0 ∈ R such that
qε,y(t0) ∈ Bε(ξ), then there existsM > 0 so that form > M we have qm(t0) ∈ Bε(ξ)
because qm → qε,y uniformly on any given neighborhood of t0 under the strong
topology. This is in contradiction with qm ∈ Hε(y). Hence the claim follows.

Next we only need to prove that qε,y(−∞) = x and qε,y(∞) = y. Lemma 2.4
shows that qε,y(−∞) and qε,y(∞) both exist and belong to V. Moreover we get
from the last claim that qε,y(−∞), qε,y(∞) ∈ {x, y}. On the contrary we assume
that qε,y(∞) = x.
Case 1. The condition (d1) holds. Since qε,y(∞) = x, there is a t∗ ∈ R such that
if t ≥ t∗ we have qε,y(t) ∈ Bε/2(x). For any s > t∗, since qm → qε,y uniformly on
[t∗, s] under the strong topology, there exists M(s) > 0 such that qm(t) ∈ Bε(x)
for m > M(s) and t ∈ [t∗, s]. We choose one of such m’s, and denote it by m(s).
By the definition of Hε(y) we have qm(s)(∞) = y, so we can set t1(s) = max{t ∈
R; qm(s)(t) ∈ ∂Bε(x)} and t2(s) = min{t ∈ R; qm(s)(t) ∈ ∂Bε(y)}. Then we have
s < t1(s) < t2(s). Now we obtain

t2(s)− t1(s) ≥
(l(q[t1(s), t2(s)]))

2

2 (µε(y) + 1)
≥ σ2

2 (µε(y) + 1)
:= c > 0,

the first inequality follows from Lemma 2.2 and I(qm) ≤ µε,y + 1, and the second
from (b1).

So we get from the Mean Value Theorem for integration that

I(qm(s)) ≥
t2(s)∫

t1(s)

−V (t, qm(s)(t))dt

= −V (ts, qm(s)(ts))(t2(s)− t1(s)) ≥ −c V (ts, qm(s)(ts)),

where ts ∈ [t1(s), t2(s)]. Since qm(s)(ts) /∈ Bε(V) and ts > s, by the boundedness
of {qm} ⊂ H1,ε in the strong topology we obtain from the condition (d1) that
I(qm(s)) → ∞ as s→ ∞. This is in contradiction with the fact that I(qm) ≤ µε,y+1
for all m ∈ N. Hence we have qε,y(∞) = y. Working in a similar way we can prove
that qε,y(−∞) = x.
Case 2. The condition (d2) holds. First it is easy to check that the case qε,y(t) ≡ x
does not happen, because each qm connects x and y, and qm →w qε,y in H. Thus
we have a t0 such that qε,y(t0) 6= x. Then there exist k ∈ N, k ≥ 2 and t∗1 ∈ R
such that qε,y(t

∗
1) ∈ ∂Bε/(k−1)(x). By the assumption (d2) we can choose a δ > 0

satisfying δ < ε/(4k) and

2δ2 + max
ρ(q,x)≤2δ

(−V (t, q)) <
ε

4k

√
2αε/(2k). (12)
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Since qε,y(∞) = x there exists a t∗2 > t∗1 such that qε,y(t) ∈ Bδ(x) for all t ≥ t∗2.
The sequence qm → qε,y uniformly on [t∗1, t

∗
2] under the strong topology implies

that there is a M > 0 such that for m > M we have qm(t∗1) ∈ M \ Bε/k(x) and
qm(t∗2) ∈ B2δ(x). Consequently, for m > M

I(qm) ≥
√

2αε/(2k)
ε

2k
+

∞∫

t∗2

L(t, qm(t), q̇m(t))dt.

Set

Qm(t) =





x if t < t∗2 − 1,
gm(t) if t ∈ [t∗2 − 1, t∗2],
qm(t) if t > t∗2,

where gm(t) is the minimal geodesic connecting x to qm(t∗2), whose existence follows
from Corollary 10.8 of [12] via the δ being chosen sufficiently small. Clearly Qm ∈
Hε(y). Since |ġm(t)| ≡ constant and ρ(qm(t∗2), x) < 2δ, we have

t∗2∫

t∗2−1

gij(gm(t))ġim(t)ġjm(t)dt ≤ (2δ)2.

Since L(t, Qm, Q̇m) ≡ 0 on (−∞, t∗2 − 1], we get

I(Qm) =

t∗2∫

t∗2−1

(
1

2
gij(gm(t))ġim(t)ġjm(t)− V (t, gm(t))

)
dt

+

∞∫

t∗2

L(t, qm(t), q̇m(t))dt

≤ 1

2
(2δ)2 + max

ρ(q,x)≤2δ
{−V (t, q)}+ I(qm)−

√
2αε/(2k)

ε

2k

≤ I(qm)− ε

4k

√
2αε/(2k).

This implies

inf
q∈Hε(y)

I(q) ≤ lim inf
m→∞

I(Qm) ≤ lim
m→∞

I(qm)− ε

4k

√
2αε/(2k)

= inf
q∈Hε(y)

I(q)− ε

4k

√
2αε/(2k),

a contradiction. So we have qε,y(∞) = y.
Summarizing the above proof we get that qε,y ∈ H1,ε ⊂ Hε. Consequently

I(qε,y) = µε(y). This proves that qε,y is a minimal of I in Hε(y).

We now consider the regularity of the minimal.

Lemma 2.6. For every y ∈ V \{x}, the minimal qε,y of I in Hε(y) given in Lemma
2.5 is a C2 solution of system (4) in R \ R(ε, y), where R(ε, y) = {t ∈ R; qε,y(t) ∈
∂Bε(V \ {x, y})}.
Proof. : We only need to prove that qε,y is C2 in any interval (r, s) ⊂ R \ R(ε, y).
For φ ∈ H with suppφ ⊂ (r, s), and |δ| sufficiently small, we have qε,y + δφ ∈ Hε.
Hence

I(qε,y) ≤ I(qε,y + δφ),
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i.e. qε(y) is a local minimum of I(q). This implies that if the first variation exists,
it must vanish.

In the next step we prove the first variation exists. Indeed,

I(qε,y + δφ)− I(qε,y)

δ
=

∞∫

−∞

L(t, qε,y + δφ, q̇ε,y + δφ̇)− L(t, qε,y, q̇ε,y)

δ
dt

=

s∫

r

(
f(t, δ)φ̇+ g(t, δ)φ

)
dt,

where f(t, δ) =
1∫
0

Lq̇(t, qε,y+δφ, q̇ε,y+sδφ̇)ds and g(t, δ) =
1∫
0

Lq(t, qε,y+sδφ, q̇ε,y)ds.

Recall that L(t, q, q̇) is the Lagrangian function defined at the beginning of this
section, and Lq and Lq̇ denote the partial derivatives of L with respect to q and q̇,
respectively. For the second equality we have used the fact that φ has the compact
support belonging to (r, s).

From the form of L we get for |δ| ≪ 1 and s ∈ [0, 1] that on suppφ

|f(t, δ)| ≤ c1(1 + |q̇|+ |φ̇|), |g(t, δ)| ≤ c1(1 + |q̇|2 + |φ̇|2),
where c1 is a constant depending only on qε,y, φ and the given interval (r, s) This

implies that f(t, δ)φ̇, g(t, δ)φ ∈ L1[r, s], because the majorants c1(1+|ẋ|+|φ̇|)φ̇ and

c1(1+ |ẋ|2+ |φ̇|2)φ are Legesgue integrable. Moreover by the Lebesgue’s Dominated
Convergence Theorem (see e.g. [19] page 26) the limit lim

δ→0
(I(qε,y + δφ)− I(qε,y)) /δ

exists. Consequently the first variation vanishes.
The above proof yields

lim
δ→0

I(qε,y + δφ)− I(qε,y)

δ

=

∫ s

r

(
Lp(t, qε,y, q̇ε,y)φ̇+ Lq(t, qε,y, q̇ε,y)φ

)
dt

=

∫ s

r

(
Lp(t, qε,y, q̇ε,y)−

∫ t

r

Lq(ν, qε,y, q̇ε,y)dν + c

)
φ̇dt = 0

where c is a constant of integration. By the arbitrariness of φ we have

Lp(t, qε,y, q̇ε,y) =

∫ t

r

Lq(ν, qε,y, q̇ε,y)dν − c, for t ∈ [r, s], (13)

which is called the integrated Euler equation. We can check easily that the function
on the right hand side of (13) is absolutely continuous. Since Lq̇q̇ is positively
definite we get from the Implicit Function Theorem that q̇ε,y(t) is C

0 on [r, s], and
hence qε,y ∈ C1[r, s]. It follows that the function on the right hand side of (13) is C1.
Again by the Implicit Function Theorem we have q̇ε,y ∈ C1[r, s], and consequently
qε,y ∈ C2[r, s].

From the relation between the Euler equation and the Hamiltonian equation we
get that qε,y is a C2 solution of system (4) on the interval [r, s], and hence on
R \R(ε, y). This proves the lemma.

Lemma 2.7. For any M > 0 and y ∈ V \ {x}, if q ∈ {q ∈ H; q(−∞) = x, q(∞) =
y and I(q) ≤ M}, there exists constant K depending only on M , σ and ασ such
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that

ρ(q(t), x)) ≤ K :=
3M√
2ασ

+ 3σ.

Proof. For any given t ∈ R we assume without loss of generality that q(t) 6∈ Bσ(V).
Otherwise there is a τ ∈ R such that q(τ) 6∈ Bσ(V) and ρ(q(t), q(τ)) ≤ 2σ. Then we
can choose τ instead of the t in the following proof, because ρ(q(t), x) ≤ ρ(q(τ), x)+
2σ.

Set t0 = max{s ∈ R; q(s) ∈ ∂Bσ(x) and q(−∞, s) ∩ Bσ(V \ {x}) = ∅}. If t0 > t
there exists s0 satisfying t < s0 ≤ t0 such that s0 ∈ ∂Bσ(x) and q[t, s0]∩Bσ(x) = ∅.
So we have ρ(q(t), x) ≤ ρ(q(t), q(s0)) + σ ≤ M/

√
2ασ + σ, because by Lemma 2.1

we have M ≥ I(q) ≥ √
2ασρ(q(t), q(s0)) .

If t0 < t it follows from the continuity of q that q[t0, s] ⊂ M is compact. So there
exist finitely many points s0 = t0 < s1 ≤ t1 < s2 ≤ t2 < . . . < sk−1 ≤ tk−1 < sk = t
with 1 ≤ k ∈ N and ξi ∈ V with ξi 6= ξj for 1 ≤ i 6= j ≤ k−1 such that q(si), q(ti) ∈
∂Bσ(ξi) for i = 1, . . . , k − 1 and q(ti, si+1) ∩ Bσ(V) = ∅ for k = 0, 1, . . . , k − 1. By
Lemma 2.1 we have

I(q) ≥
√
2ασ

k∑

i=1

ρ(q(ti−1), q(si)) ≥
√
2ασ(k − 1)σ.

It yields that

k∑

i=1

ρ(q(ti−1), q(si)) ≤
M√
2ασ

, k ≤ M

σ
√
2ασ

+ 1.

By the triangular inequality we get

ρ(q(t), x) ≤
k∑

i=1

ρ(q(ti−1), q(si)) + (2k − 1)σ ≤ 3M√
2ασ

+ σ.

This proves the lemma.

We note that the bound K in Lemma 2.7 is independent of the choice of y.

Lemma 2.8. For 0 < ε ≤ σ, set

µε = inf {µε(y); y ∈ V \ {x}} .
Then there exist y ∈ V \ {x} and a sequence {εj} satisfying 0 < εj+1 < εj ≤ σ and
εj → 0 as j → ∞ for which I(qεj ,y) = µεj (y) = µεj .

Proof. Since µε is a constant and 0 < µε(y) → ∞ as y → ∞, there is a constant
Rε > 0 and a yε ∈ BRε(x)∩ (V \ {x}) such that µε = µε(yε). Recall that µε(y) was
defined in (10).

Choose a sequence {εj} satisfying ε1 ≤ σ, εj > εj+1 and εj → 0 as j → ∞.
Then µεj ≥ µεj+1

by µεj (y) ≥ µεj+1
(y) and there exists yεj ∈ V \ {x} such that

µεj = µεj (yεj ). Let qεj ,yεj
be the element ofHεj (yεj ) for which I(qεj ,yεj

) = µεj (yεj ).

Recall that the existence of qεj ,yεj
follows from Lemma 2.5. Since I(qεj ,yεj

) ≤ µε1

for all j ∈ N, it follows from Lemma 2.7 that the sequence {qεj ,yεj
}∞j=1 is uniformly

bounded. Consequently the sequence {yεj} ⊂ V\{x} is bounded, and so it possesses
a constant subsequence. Without loss of generality we assume that yεj = y ∈ V\{x}
for all j, otherwise instead of yεj we must have a constant subsequence. Then we
have I(qεj ,y) = µεj (y) = µεj . This proves the lemma.
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Lemma 2.9. For j ∈ N large enough qεj ,y is a heteroclinic solution of system (4)
connecting x and y.

Proof. For simplifying the notation, we set qj := qεj ,y. From Lemmas 2.5 and 2.6
it is sufficient to prove that qj(R)∩ ∂Bεj (V \ {x, y}) = ∅ for j ≫ 1. If not there is a
subsequence {jm} of {j}∞j=1 with jm → ∞ as m→ ∞, a time sequence {tjm}, and
{ηjm} ⊂ V \{x, y} such that qjm(tjm) ∈ ∂Bεjm

(ηjm) and qjm(−∞, tjm)∩∂Bεjm
(V \

{x, y}) = ∅. Since I(qjm) = µεjm
≤ µε1 , by Lemma 2.1 the sequence {ηjm} is

bounded. Otherwise lim sup
m→∞

I(qjm) = ∞, a contradiction. So the sequence {ηjm}
possesses a constant subsequence. Without loss of generality we assume that {ηjm}
is a constant sequence, and set ηjm = η for all m ∈ N. Now we distinguish two
cases.

Case (i): there exists a subsequence of {jm}, for simplicity to notation we denote
it by {jm} too, such that qjm(t) 6∈ ∂Bεjm

(y) for all t < tjm . Case (ii): there is a K ∈
N such that for each m > K there exists τjm < tjm for which qjm(τjm) ∈ ∂Bεjm (y).
We assume without loss of generality that qjm(−∞, τjm) ∩ ∂Bεjm (V \ {x}) = ∅.

In case (i) we set for m large enough

Qjm =





qjm(t) if t ≤ tjm ,
gjm(t) if tjm < t ≤ tjm + εjm ,
η if t > tjm + εjm ,

where gjm is the minimal geodesic connecting η and qjm(tjm), whose existence
follows from Corollary 10.8 of [12] and the fact that qjm(tjm) ∈ ∂Bεjm

(η) and
εjm → 0 as m→ ∞. Then Qjm ∈ Hεjm (η). Moreover we have

I(qjm)− I(Qjm)

=

∞∫

tjm

L(t, qjm , q̇jm)dt−
tjm+εjm∫

tjm

[
1

2
|Q̇jm(t)|21 − V (t, Qjm(t))

]
dt (14)

≥ σ
√
2ασ −

tjm+εjm∫

tjm

1

2
|ġjm(t)|21dt+

tjm+εjm∫

tjm

V (t, gjm(t))dt,

where in the first term we have used Lemma 2.1 and the fact that qjm intersects
∂Bσ(y) and ∂Bσ(η). Since |ġjm(t)|1 ≡ constant for t ∈ [tjm , tjm +εjm ] and εjm → 0
as m → ∞, it follows that the second term of (14) tends to zero as m → ∞. We
now prove that the third term of (14) also goes to zero as m→ ∞.

If condition (d2) holds, by the Mean Value Theorem for integration and the fact
that gjm [tjm , tjm + εjm ] ⊂ Bεjm

(η) is a geodesic, it follows that the third term of
(14) goes to zero as m→ ∞.

If condition (d1) holds, we first prove that {tjm} is bounded. Otherwise we
assume without loss of generality that it is unbounded from below. Set sjm =
max{t ∈ R; qjm(t) ∈ ∂Bσ(x)} and rjm = min{t > sjm ; qjm(t) ∈ ∂Bσ(η)}. Then
sjm < rjm ≤ tjm . By Lemma 2.2 we have

rjm − sjm ≥ σ2/(2µjm) ≥ σ2/(2µj1) := c > 0.
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In addition

µj1 ≥ µjm = I(qjm) ≥
rjm∫

sjm

−V (t, qjm(t))dt

= −V (t∗jm , qjm(t∗jm))(rjm − sjm) ≥ −c V (t∗jm , qjm(t∗jm)),

where t∗jm ∈ [sjm , rjm ] comes from the Mean Value Theorem for integration. By
Lemma 2.7 {qjm} is bounded. So it follows from the fact qjm(t∗jm) 6∈ Bεjm (V) and
the condition (d1) that

µj1 ≥ lim sup
m→∞

(
−c V (t∗jm , qjm(t∗jm))

)
= ∞,

a contradiction, where we have used the fact that lim inf
m→∞

t∗jm = −∞. This proves

the boundedness of {tjm}.
Since {qjm(t)} and {tjm} are both bounded, we get from the continuity of V (t, q)

that {V (t, qjm(t)); t ∈ [tjm , tjm + εjm ],m ∈ N} is uniformly bounded. This implies
that the third term goes to zero as m→ ∞.

The above proofs show that for all m sufficiently large I(Qjm) < I(qjm) = µεjm
.

But since Qjm ∈ Hεjm (η), it follows from Lemma 2.8 that I(Qjm) ≥ µεjm (η) ≥
µεjm = I(qjm), a contradiction.

In case (ii) we can define a sequence of functions {Qjm(t)} as those given in case
(i), but instead of tjm by τjm , and of η by y. Then analogous arguments as those
in the proof of case (i) show that I(Qjm) < I(qjm) = µεjm

for m large enough, a
contradiction. We note that in this case {Qjm(t)} ⊂ Hεjm (y).

Summarizing the above proofs, we have obtained that qj(R)∩∂Bεj (V\{x, y}) = ∅
for j large enough. This proves the lemma.

Following Lemmas 2.8 and 2.9 we have finished the proof of the theorem.

3. Appendix.

Lemma 3.1. For any given a, b ∈ R with a < b, the functional Ia,b(q) defined in
(11) is lower semi–continuous in the weak topology restricted to H1,ε.

Proof. The main idea of the proof follows from [13]. We claim that for {qm} ⊂

H1,ε, if qm →w q in H as m → ∞ then
b∫
a

φ(qm − q)dt → 0 for φ ∈ L[a, b] and

b∫
a

φ(q̇m − q̇)dt→ 0 for φ ∈ L2[a, b].

First qm → q in C[a, b]. Indeed from the proof of Lemma 2.5 the sequence {qm}
is an equicontinuous family of uniformly bounded functions in C[a, b]. So combining
the Arzela–Ascoli Theorem and the assumption qm →w q, we obtain that qm → q
uniformly in C[a, b].

The first claim follows from∣∣∣∣∣∣

b∫

a

φ(qm − q)dt

∣∣∣∣∣∣
≤ ‖qm − q‖L∞

∣∣∣∣∣∣

b∫

a

|φ|dt

∣∣∣∣∣∣
,

and ‖qm−q‖L∞ → 0 uniformly as m→ ∞. Here and after, | · | denotes the absolute
value of real numbers or of real functions.

For the second claim if φ ∈ C1[a, b] the claim follows easily from the integration
by parts, the Schwartz inequality and the fact that qm → q uniformly in C[a, b].
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Since C1[a, b] is dense in L2[a, b], for any ε > 0 there exists ψ ∈ C1[a, b] such that
‖φ− ψ‖L2 < ε. Then we have

∣∣∣∣∣∣

b∫

a

φ(q̇m − q̇)dt

∣∣∣∣∣∣
≤

∣∣∣∣∣∣

b∫

a

ψ(q̇m − q̇)dt

∣∣∣∣∣∣
+ 4ε(µε(y) + 1),

where we have used the fact that qm, q ∈ H1,ε and the Cauchy–Schwartz inequality.
Taking the supremum limit on the lase inequality as m→ ∞, then the claim follows
from the arbitrariness of ε.

Recall that L(t, q, q̇) =
1

2
gij(q)q̇

iq̇j−V (t, q). By the Intermediate Value Theorem

we have

L(t, q, p1)− L(t, q, p2)− Lp(t, q, p2)(p1 − p2)

=
1

2

n∑

i,j=1

Lpipj (t, q, p)(p1,i − p2,i)(p1,j − p2,j) ≥ 0,

where p is located between p1 and p2. This yields

Ia,b(qm)− Ia,b(q)

=

b∫

a

(L(t, qm, q̇m)− L(t, q, q̇m) + L(t, q, q̇m)− L(t, q, q̇)) dt

≥
b∫

a

Lq(t, q̃, q̇m)(qn − q)dt+

b∫

a

Lq̇(t, q, q̇)(q̇m − q̇)dt,

where q̃(t) is located between qn(t) and q(t). By our assumption and the form of
L there exists a c > 0 such that |Lq| ≤ c

(
1 + |q̇|2

)
and |Lq̇| ≤ c (1 + |q̇|) on the

interval [a, b]. This implies that Lq ∈ L1[a, b] and Lq̇ ∈ L2[a, b]. Hence from the
claim at the beginning of the proof of this lemma we get that

lim inf
m→∞

(Ia,b(qm)− Ia,b(q)) ≥ 0.

This proves the lemma.
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