
DARBOUX INTEGRATING FACTORS: INVERSE PROBLEMS

COLIN CHRISTOPHER1, JAUME LLIBRE2, CHARA PANTAZI3 AND SEBASTIAN WALCHER4

Abstract. We discuss planar polynomial vector fields with prescribed Darboux inte-
grating factors, in a nondegenerate affine geometric setting. We establish a reduction
principle which transfers the problem to polynomial solutions of certain meromorphic
linear systems, and show that the space of vector fields with a given integrating factor,
modulo a subspace of explicitly known “standard” vector fields, has finite dimension.
For several classes of examples we determine this space explicitly.

1. Introduction

Given a planar polynomial vector field, there is the classical problem (going back to
Darboux and Poincaré) to determine an integrating factor of Darboux type, or to verify
that no such factor exists. The papers and survey papers by Schlomiuk [14, 15, 16] give
a good introduction to this field of research. A preliminary question is to determine
the invariant algebraic curves of the vector field, or to ensure that no such curves exist.
Several results, mostly for settings with certain additional conditions, are known; we
mention Cerveau and Lins Neto [4], Carnicer [3], Camacho and Sad [2], Zoladek [20], and
Esteves and Kleiman [10]. An elementary approach, which also discusses integrating
factors, is given in [19]. However, it seems that a general solution of this problem is still
not within reach. Considering and solving the corresponding inverse problems seems
to be essential in order to obtain a proper understanding of the situation. Considering
and solving the corresponding inverse problems seems to be essential in order to obtain
structural insight and a proper understanding of the situation. These inverse problems
are not trivial, but they are accessible.

The solution of the inverse problem for curves in the projective plane, in the case that
all irreducible curves are smooth and all intersections transversal, has been considered
by several authors. An elementary exposition is given in [7]. The nondegenerate affine
setting with smooth irreducible curves and only transversal intersections was resolved,
some years ago, using mainly tools from elementary commutative algebra; see [5] and
[18]. A complete solution for the general problem in the affine plane - modulo standard
tasks of algorithmic algebra - is presented in [6]. In the cited papers the strategy
was to start with a linear space of vector fields that are known to admit the given
curves. Then one proceeded to show that the list is already complete, or at least that
the quotient space of all vector fields admitting the curves modulo the known ones
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has finite dimension. The remaining finite-dimensional problem is then amenable to
methods of algorithmic algebra.

The inverse problem for integrating factors, which we will discuss in the present
paper, seems harder to tackle. In [12] and [5] the case of inverse polynomial integrating
factors was settled if the above-mentioned affine nondegeneracy conditions hold for
the underlying curves. Moreover, in the nondegenerate projective setting the case of
arbitrary exponents was resolved. Similar to the strategy for curves, the basic approach
was to obtain a sufficiently large inventory of vector fields that admit a given integrating
factor, and then to prove that no further ones exist.

The main theme of the present paper is a general characterization of vector fields
with prescribed integrating factors in the affine nondegenerate geometric scenario. (In
other words, the underlying projective curves may have degenerate singular points in
the projective plane as long as they are restricted to one line.) The main result is
that, modulo a subspace of ‘known’ vector fields admitting a prescribed integrating
factor, only a finite dimensional problem remains. To obtain this result, we will employ
a quite simple reduction principle, which leads to a system of meromorphic linear
differential equations for functions of one variable, and more precisely to polynomial
solutions of this system. Since the solution space of this meromorphic system is finite
dimensional, finite dimensionality of our quotient space follows. Moreover, one obtains
a computational access to the determination of the quotient space. For several classes
of examples we will prove that the dimension of the quotient space is zero, but we will
also exhibit cases when the dimension is positive.

The remaining open problem is the degenerate affine setting; including irreducible
curves with singularities as well as non-transversal intersections. In the final section of
the paper we show that this problem can in part be addressed by extending the space
of vector fields from polynomials to the larger class whose entries are polynomial in one
variable and rational in the other. Variants of the arguments from previous sections
show finite dimension of the corresponding quotient space modulo “known” vector
fields, and examples illustrate that explicit results can be obtained by computation.
But transferring results back to the case of polynomial vector fields is a nontrivial
problem.

We will further investigate the degenerate affine setting in forthcoming work. In
addition to continuing the approach from Section 7 of this paper we will also employ
sigma processes to remove degenerate singular points from the affine plane.

2. Basics and known results

We consider a complex polynomial vector field

(1) X = P
∂

∂x
+Q

∂

∂y
,

on C2, sometimes also written as

X =

(
P
Q

)
,

and irreducible pairwise relatively prime polynomials f1, . . . , fr, with f := f1 · · · fr. The
degree of f will be denoted by δ(f); the degree ofX is defined here as max {δ(P ), δ(Q)}.
We will also consider degrees δx, δy with respect to the individual variables.
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The question we will address in the present paper is the following: Given nonzero
complex constants d1, . . . , dr, under which conditions does X admit the Darboux inte-
grating factor f−d1

1 · · · f−dr
r ?

It is well known (see, e.g. [7] and [5]) that the complex zero set of f (which is
generally a reducible curve in C2) is then invariant for the vector field; equivalently
there are polynomials L1, . . . , Lr such that

Xfi = Li · fi, 1 ≤ i ≤ r.

We will briefly say that in this case the vector field X admits f , or admits the curve
given by f = 0. The vector field X admits the Darboux integrating factor above if and
only if

d1 · L1 + · · · dr · Lr = divX.

The respective zero sets of f and the fi in C2 will be denoted by C and Ci. As usual,
we call a point z with f(z) = fx(z) = fy(z) = 0 a singular point of C, and analogously
for the Ci. The Hamiltonian vector field of f is defined by

Xf = −fy
∂

∂x
+ fx

∂

∂y
.

For given f , the vector fields admitting f form a linear space Vf . We are interested
in the structure of the subspace of Vf whose elements admit the Darboux integrating

factor fd1
1 · · · fdr

r . First, let us collect some facts and properties that are known from
previous work. (See [18], [7], [12], [5]). Clearly, vector fields of the type

(2) X =
∑

i

ai
f

fi
·Xfi + f · X̃

with polynomials ai and a polynomial vector field X̃, admit f . These vector fields form
a subspace of Vf which will be denoted V1

f . Following [12], but reorganizing a little, we
introduce two generic nondegeneracy conditions:

(ND1) Each Ci is nonsingular.
(ND2) All singular points of C have multiplicity one (thus when two irreducible com-
ponents intersect, they intersect transversally, and no more than two irreducible com-
ponents intersect at one point).

Note that - in contrast to [5] - there is no condition with regard to the behavior at
infinity. The following result is from [7], with an improvement in [5], Theorem 3.4 (in
conjunction with Theorem 3.6); see also [12] and [6].

Theorem 1. If the conditions (ND1) and (ND2) hold then Vf = V1
f .

This is our starting point for turning to integrating factors. As above, fix complex
constants d1, . . . , dr, all of them nonzero. The vector fields with Darboux integrating
factor

(3)
(
fd1
1 · · · fdr

r

)−1

form a linear space Ff = Ff (d1, . . . , dr), which is a subspace of Vf . Let us first exhibit
some of its elements; cf. [18] and [5]. Given an arbitrary polynomial g, define

Zg = Z(d1,...,dr)
g

to be the Hamiltonian vector field of

g/
(
fd1−1
1 · · · fdr−1

r

)
.
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Lemma 2. The following statements hold.

(a) The vector field

(4) fd1
1 · · · fdr

r · Zg = f ·Xg −
r∑

i=1

(di − 1)g
f

fi
·Xfi

is polynomial and admits the integrating factor (fd1
1 · · · fdr

r )−1. The vector fields
of this type form a subspace F0

f = F0
f (d1, . . . , dr) of Ff (d1, . . . , dr).

(b) Given e1, . . . , er such that every di − ei is a nonnegative integer, one has

Z(e1,...,er)
g = Z

(d1,...,dr)
g∗ , with g∗ := f

(d1−e1)
1 · · · f (dr−er)

r · g
and therefore

f
(d1−e1)
1 · · · f (dr−er)

r ·
(
fe1
1 · · · fer

r · Z(e1,...,er)
g

)
= fd1

1 · · · fdr
r · Z(d1,...,dr)

g∗ ,

whence

f
(d1−e1)
1 · · · f (dr−er)

r F0
f (e1, . . . , er) ⊆ F0

f (d1, . . . , dr).

Proof. Obvious. ¤

There exist vector fields in Ff (1, . . . , 1) that are not in F0
f (1, . . . , 1): For all constants

αi and every vector field X̂ with divergence zero, the vector field

(5) X =
∑

i

αi
f

fi
·Xfi + f · X̂

clearly admits the integrating factor f−1. More generally, if d1, . . . , dr are all nonneg-
ative integers then

(6) X = fd1
1 · · · fdr

r

(
r∑

i=1

αi

fi
·Xfi + Z

(d1,...,dr)
h

)
,

with constants αi and some polynomial h, admits the integrating factor (fd1
1 · · · fdr

r )−1.
The following result was shown in [5]; see also Section 3 below.

Theorem 3. Suppose that conditions (ND1) and (ND2) hold, and that d1, . . . , dr are

positive integers. Then a vector field X admits the integrating factor (fd1
1 · · · fdr

r )−1 if
and only if X is of the form (6).

The case of Darboux integrating factors that are not inverse polynomials has been
resolved completely in [5] when additional nondegeneracy conditions at infinity hold:

Proposition 4. Suppose that conditions (ND1) and (ND2) hold, and moreover that
the homogeneous highest degree terms of f1, . . . , fr have no multiple prime factors and
are pairwise relatively prime. Then a vector field X admits the integrating factor (3),
with some d` not a nonnegative integer, if and only if X has the form (4), thus X =

fd1
1 · · · fdr

r · Zg for some polynomial g.

One also knows some results about degenerate settings. The following is a special
case of Prop. 3.4 of [18].
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Proposition 5. Let f1, . . . , fr be irreducible homogeneous (thus linear) polynomials.
Then a vector field X admits the integrating factor (3) if and only if

X = b ·
(

x
y

)
+ fd1

1 · · · fdr
r · Zg

with a homogeneous polynomial b of degree
∑

di − 2, and some polynomial g.

The methods employed in the proofs of Theorem 3 and Propositions 4 and 5 do
not seem to be applicable for more general settings. Our goal for the present paper
is to explore the scenario of Proposition 4 when no additional conditions at infinity
are imposed. This requires different techniques. Achieving this goal may be a critical
step since in the affine plane the nondegeneracy conditions (ND1) and (ND2) can be
enforced by a series of sigma processes, due to a theorem by Bendixson and Seidenberg.

3. A reduction principle

We start with an elementary observation from [5], which also was at the basis for
the proofs of Theorem 3 and Proposition 4.

Lemma 6. Let X be of the form (2), namely

X =
r∑

i=1

ai
f

fi
·Xfi + f · X̃ ∈ V1

f

and assume that X admits the integrating factor (3), with some d` 6= 1. Then

X +
1

d` − 1
· fd1

1 · · · fdr
r · Za` = f` ·X∗,

and X∗ admits the integrating factor
(
fd1
1 · · · f (d`−1)

` · · · fdr
r

)−1
.

Therefore, modulo F0
f (d1, . . . , dr) the vector field X is congruent to some f` · X∗,

withX∗ ∈ Ff (d1, . . . , d` − 1, . . . , dr). Lemma 2 shows that this principle may be applied
repeatedly. We can therefore note:

Lemma 7. In order to investigate the structure of the quotient space

F(d1, . . . , dr)/F0
f (d1, . . . , dr)

one may replace di by 1 if di is a positive integer, and by di − ki with any positive
integer ki otherwise. In particular we may assume that each di has real part ≤ 1.

We use this to outline the proof of Theorem 3. By Lemma 7 one may assume
d1 = · · · dr = 1. Now step 3 of the proof of Theorem 4.2 of [5] applies. The proof in [5]
also uses reduction, under stronger hypotheses, which are not needed in this particular
case.

In the general case, one may try to achieve degree reduction for the vector fields
involved. But without additional hypotheses it is impossible to keep these degrees
under control when passing from X to X∗ in Lemma 6. Generally, such a degree
reduction strategy will not work, and moreover, Proposition 5 shows that the conclusion
of Proposition 4 is not always true.

But there exists a general reduction strategy which relies on a weaker principle.
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Proposition 8. Given f1, . . . , fr, let nj := δy(fj) be the respective degree in y, n :=∑
nj = δy(f), and assume that each fj = αj · ynj + . . . with nonzero constants αj,

1 ≤ j ≤ r.

(a) Then any vector field X ∈ V1
f which admits f = f1 · · · fr has a representation

X =
r∑

i=1

ãi
f

fi
·Xfi + f · ˜̃

X

such that δy(ãi) < ni for i = 1, . . . , r.
(b) Assume that X admits the integrating factor (3), with some d` 6= 1.

(b1) If δy(X) > n+ n` − 1, then

X +
1

d` − 1
· fd1

1 · · · fdr
r · Zã` = f` ·X∗ and δy(X

∗) = δy(X)− n`.

(b2) If δy(X) ≤ n+ n` − 1, then

X +
1

d` − 1
· fd1

1 · · · fdr
r · Zã` = f` ·X∗ and δy(X

∗) ≤ n− 1.

Proof. Given a representation

X =
r∑

i=1

ai
f

fi
·Xfi + f · X̃,

as in (2), then whenever δy(aj) ≥ δy(fj) one has aj = ãj+bj ·fj with polynomials ãj and
bj , and δy(ãj) < nj . Substituting this in (2) and rearranging terms shows statement
(a).

To prove part (b1), from (a) we have that δy(ã`) < n`. Now observe

δy

(
ã`

f

fi
·Xfi

)
≤ n+ n` − 2,

due to fi = αiy
ni + · · · with αi constant, and

δy (f ·Xã`) ≤ n+ n` − 1.

Thus
δy

(
fd1
1 · · · fdr

r · Zã`

)
≤ n+ n` − 1.

The rest of statement (b1) and statement (b2) follows easily. ¤
Remarks.

(i) We will always assume in the following that the two nondegeneracy conditions
(ND1) and (ND2) hold.

(ii) The hypothesis on the fi can be achieved via a linear transformation of the
variables, with ni = δ(fi). In this sense the principle is universally applicable,
and the hypothesis will be assumed from now on. (Of course, one will gladly
consider cases with ni < δ(fi).)

Corollary 9. When conditions (ND1) and (ND2) hold and d` is not a positive in-
teger for some ` then the question whether some vector field X ∈ Ff (d1, . . . , dr) is
contained in F0

f (d1, . . . , dr) is reduced to the analogous question for a vector field

X̂ ∈ Ff (d1, . . . , d` − k`, . . . , dr) with

δy(X̂) ≤ n− 1

for some integer k` ≥ 0.
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Proof. This follows by repeated application of Proposition 8, Theorem 1, Lemma 6 and
the previous remarks. ¤

The usefulness of the reduction principle becomes manifest next, because there is an
approach to handling vector fields of bounded y-degree:

Theorem 10. Let m1 and m2 be positive integers, and consider vector fields

X = P ∂/∂x+Q∂/∂y

with δy(P ) < m1 and δy(Q) < m2. Then the following hold:

(a) There exist vector fields

Yi = vi ∂/∂x+ wi ∂/∂y, 1 ≤ i ≤ s,

that are linearly independent over C[x], satisfying the degree conditions δy(vi) <
m1, δy(wi) < m2, and all Yi admitting f , with the following property: The vector
field X admits f if and only if it has a representation

(7) X = u1(x) · Y1 + · · ·+ us(x) · Ys
with u1, . . . , us ∈ C[x]. Moreover the polynomials ui are uniquely determined.

(b) Assume that X is of the form (7). Given d1, . . . , dr, there exist matrices

V (x) and B(x) = Bd1,...,dr(x)

with entries in C[x] with the following property: X is contained in Ff (d1, . . . , dr)
if and only if

V (x) ·




u′1
...
u′s


 = B(x) ·




u1
...
us


 .

The matrices V and B have s columns and at most max{m1, m2} − 1 rows.
The entries of V do not depend on d1, . . . , dr.

Proof. (a) The vector fields of y-degree less than m1, m2 respectively in their compo-
nents form a free module over C[x], and among these the vector fields which admit f
obviously form a submodule. Since C[x] is a principal ideal domain, this submodule is
also free.
(b) Let Ki,j be the cofactor of fj with respect to Yi. For X as in part (a), the cofactor
of fj is then given by

Lj =
∑

i

ui ·Ki,j .

Note that δy(Ki,j) ≤ max{m1,m2} − 2. Evaluation of the integrating factor condition
divX =

∑
djLj gives

div
∑

ui · Yi =
∑

(ui · divYi + Yi(ui)) =
∑

(ui · divYi) +
∑

vi · u′i =
∑

djLj ,

and hence

(8)
∑

i

vi · u′i =
∑

i

ui


∑

j

dj ·Ki,j − div Yi


 .

We compare coefficients of powers of y (note that only powers from 0 to max{m1,m2}−2
may occur) to obtain the assertion. ¤
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In the following sections we will use this theorem to investigate particular geometric
settings. The principal computational problem that remains is to explicitly determine
the vector fields Yi. We are able to calculate the vector fields Yi in some settings, see
Sections 4, 5 and 6. But a general consequence for the structure of Ff/F0

f is worth
noting first.

Theorem 11. Let the setting of Theorem 10 be given. If some d` is not a positive
integer then

dim
(
Ff (d1, . . . , dr)/F0

f (d1, . . . , dr)
)
< ∞.

Proof. Under our assumptions we can apply Proposition 8, hence we may assume the
setting of Theorem 10 with all δy(Yi) ≤ n− 1.

We will first show that v1, . . . , vs are linearly independent over C[x]. Thus let
c1, . . . , cs ∈ C[x] such that c1v1 + · · ·+ csvs = 0. Since every Yi admits f , we have

vi · fx + wi · fy = Ki · f, 1 ≤ i ≤ s,

with Ki the cofactor corresponding to Yi. We obtain
(∑

i

ciwi

)
· fy =

(∑

i

ciKi

)
· f.

Due to our basic assumption f and fy 6= 0 are relatively prime, thus f must divide∑
ciwi. But if this sum is nonzero then it has y-degree less than n; a contradiction.

So, we conclude that
∑

ciwi = 0, and therefore
∑

ciYi = 0. Since the Yi are linearly
independent over C[x] we find that c1 = . . . = cs = 0.

We may now pass to C(x). In view of (8), the linear independence of v1, . . . , vs is
equivalent to the fact that the rankV = s. Thus one may choose an s × s-subsystem
with invertible matrix on the left-hand side, and obtain a meromorphic linear system

(9)




u′1
...
u′s


 = A(x) ·




u1
...
us


 .

The space of solutions of this system has finite dimension s, and so, a fortiori, contains
the subspace of polynomial solutions. The dimension of the latter is an upper bound
for the dimension of Ff/F0

f .
¤

In the following sections we will explicitly determine system (9) for several geomet-
ric scenarios, and use it to determine Ff/F0

f . We therefore recall some facts about
meromorphic linear systems. In Cn consider a system of linear differential equations

w′ = A(x) · w
with the entries of A meromorphic; thus each singular point x0 is (at most) a pole, and
we have a Laurent expansion

A(x) = (x− x0)
−` ·A−` + · · · A−` 6= 0,

with some integer ` and a constant matrix A−`. If there exists a solution that is
meromorphic in x0, i.e.

w(x) = (x− x0)
q wq + · · · wq 6= 0,
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with some integer q ≥ 0, then substitution into the differential equation leads to

q(x− x0)
q−1 · wq + · · · = (x− x0)

q−` ·A−`wq + · · ·
For ` > 1 we see that necessarily

A−` · wq = 0;

thus A−` admits the eigenvector wq with eigenvalue 0. For ` = 1 (the case of a weak
singular point) we obtain the necessary condition

A−1 · wq = q · wq,

thus A−1 admits the eigenvector wq with integer eigenvalue q. If the solution is holo-
morphic in x0 then q must be a nonnegative integer. There is an extensive theory for
weak singular points of meromorphic linear systems; see for instance Ch. 4 of Codding-
ton and Levinson [9]. In what follows we will only need the fact that the existence of
meromorphic solutions at singular points of A has implications for the eigenvalues of
A−`.

The singular point at infinity is of particular interest to us; see Coddington and
Levinson [9], Ch. 4, Sec 6. To analyze this point, introduce

v = x−1;
dw

dv
= − 1

v2
dw

dx
.

Hence
dw

dv
= −v−2A(v−1) · w = (v−`B−` + · · · ) · w,

and one considers the singularity of this system at v = 0. If ∞ is a weak singular
point of system w′ = A(x) · w then the eigenvalues of A∞ := B−1 are of particular
significance: If a polynomial solution

w = w0 + x · w1 + · · ·xm · wm

exists for w′ = A(x) · w then

w(v) = v−m · wm + · · ·+ v−1 · w1 + w0,

and the eigenvalue −m of A∞ is just the negative degree of the polynomial solution in
question.

4. One irreducible factor - special curves

We will first apply the reduction principle and Theorem 10 to the case of one ir-
reducible curve. In the present section we will focus on the special class of smooth
irreducible curves defined by a polynomial

(10) f(x, y) = ym − p(x)

with m ≥ 2 an integer and p a polynomial in one variable with no multiple roots.
This class includes elliptic and hyperelliptic curves. We are interested in Ff (d) for
all nonzero d, and there only remains the case when d is not a positive integer; see
Theorem 3. Due to Lemma 7 we may assume that Re d < 1. By Corollary 9, modulo
F0
f it is sufficient to consider the problem for a vector field

Y =

(
b1
b2

)
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for some polynomials b1 and b2 of y-degree ≤ m − 1 (and still with Re d < 1). We
proceed as suggested by Theorem 10, and first determine the vector fields of this type
which admit the polynomial f .

Lemma 12. A vector field Y = b1 ∂/∂x + b2 ∂/∂y with δy(bi) ≤ m − 1 for i = 1, 2
admits f if and only if

Y = u0(x)Y0 + u1(x) · Y1 + · · ·+ um−1(x) · Ym−1

with polynomials u0, u1, . . . , um−1 in one variable, and

Y0 :=

(
mym−1

p′(x)

)
, Yj :=

(
mp(x)yj−1

p′(x)yj

)
for 1 ≤ j ≤ m− 1.

Proof. We start from

Y =
(
u0(x) + u1(x)y + · · ·um−1(x)y

m−1
)
·
(

mym−1

p′(x)

)
+ (ym − p(x)) ·

(
...

)
.

Rewrite this expression, replacing ym+k by p · yk in the first summand and changing
the second accordingly. This yields

u0(x) ·
(

mym−1

p′

)
+ u1(x) · Y1 + · · ·+ um−1(x) · Ym−1 + (ym − p(x)) ·

(
...

)
.

The last term must vanish by degree considerations, and the lemma follows. ¤

Theorem 13. Let d be nonzero, and not a positive integer. For any polynomial f as
in (10) one has Ff (d) = F0

f (d).

Proof. We may assume Re d < 1. Let Y be as in Lemma 12. Note that Y0 = Xf . The
vector field Yj admits f with cofactor equal to Kj := mp′(x)yj−1, 1 ≤ j ≤ m− 1, while

div (uj · Yj) =
(
mp(x)u′j(x) + (m+ j)p′(x)uj(x)

)
yj−1 (j ≥ 1),

div (u0 · Y0) = mu′0y
m−1.

Therefore the integrating factor condition

d ·
m−1∑

j=0

ujKj =
m−1∑

j=0

div(ujYj)

is satisfied if and only if u′0 = 0 and

dmp′(x)uj(x) = mp(x)u′j(x) + (m+ j)p′(x)uj(x), 1 ≤ j ≤ m− 1,

as follows from comparing powers of y. Thus u0 is constant.
If j ≥ 1 and uj 6= 0 then last equality is equivalent to

u′j
uj

= (d− 1− j/m) · p
′

p
, 1 ≤ j ≤ m− 1.

Therefore uj is a constant multiple of a power of p, with the exponent given by the
first factor on the right-hand side. Since we assume that uj 6= 0 this exponent must be
a nonnegative integer, due to the assumption on p. But this is impossible in view of
Re d < 1. Hence uj = 0 for 1 ≤ j ≤ m− 1, and this completes the proof. ¤
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5. One irreducible factor - general cubic curves

As for a second class of examples, we consider smooth irreducible cubic curves de-
termined (with no loss of generality) by a polynomial

(11) f = y3 + p1(x) · y + p0(x).

We imitate the strategy from the previous section. This leaves us with a vector field
X that admits f and can be written in the form

X = a ·Xf + f · X̃, δy(a) ≤ 2; δy(X̃) ≤ 1.

Lemma 14. Modulo F0
f (d) it is sufficient to investigate vector fields of type Y =

b1 ∂/∂x + b2 ∂/∂y with δy(b1) ≤ 1 and δy(b2) ≤ 2. Additionally, we may assume
Re d < 1.

Proof. We may assume that Re d < 1 by Lemma 7 and Theorem 3, and this property
persists in further applications of Lemma 6. Due to Corollary 9 we can reduce the
problem to vector fields X with δy(X) ≤ 2. Additionally, from Proposition 8(a) we
have

X = aXf + fX̃

with δy(a) < 3. So, δy(fX̃) = δy(X−aXf ) ≤ 4, which shows that X̃ = b̃1∂/∂x+b̃2 ∂/∂y

with δy(b̃1) ≤ 1 and δy(b̃2) ≤ 1.

Moreover fdZa = fXa − (d− 1)aXf and so we have

X = aXf + fX̃ =

(
1

d− 1
fXa −

1

d− 1
fdZa

)
+ fX̃,

and

X +
1

d− 1
fdZa = f

(
X̃ +

1

d− 1
Xa

)
.

Since δy(a) < 3 we can write a = a0(x) + a1(x)y + a2(x)y
2 and obtain

Xa =

( −2a2(x)y − a1(x)
a′2(x)y

2 + a′1(x)y + a′0(x)

)
.

Thus Xa = c1∂/∂x + c2∂/∂y with δy(c1) ≤ 1 and δy(c2) ≤ 2 and X̃ + 1
d−1Xa is as

desired. ¤

Lemma 15. A vector field Y = b1 ∂/∂x + b2 ∂/∂y with δy(b1) ≤ 1 and δy(b2) ≤ 2
admits f if and only if

Y = u1(x) · Y1 + u2(x) · Y2
with polynomials u1, u2 in one variable and

Y1 :=

(
3p0 + 2p1y
p′0y + p′1y

2

)
, Y2 :=

( −2p21 + 9p0y
2p′0p1 − 3p0p

′
1 − p1p

′
1y + 3p′0y

2

)
.

Proof. Computing modulo f we have y3 ≡ −p1y − p0 and y4 ≡ −p1y
2 − p0y. Thus for

suitable polynomials ai = ai(x) we get

Y ≡
(
a0 + a1y + a2y

2
)
·
( −3y2 − p1

p′1y + p′0

)

≡
(

(3a1p0 − p1a0) + (2a1p1 + 3a2p0) y + (2a2p1 − 3a0) y
2

(p′0a0 − p′1p0a2) + (p′0a1 + p′1a0 − p′1p1a2) y + (p′0a2 + p′1a1) y
2

)
.
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Considering degrees with respect to y one sees that Y actually must be equal to the last
vector field in this chain of equivalences, and moreover that 3a0 = 2a2p1. Set a1 = u1,
a2 = 3u2 and rearrange terms to obtain the assertion. ¤

Modulo F0
f there remains the investigation of the vector fields in Lemma 15. Fol-

lowing the strategy suggested by Theorems 10 and 11, we obtain a meromorphic linear
system.

Proposition 16. Let f be given as in (11) and assume that d is not a positive integer.
The vector field Y in Lemma 15 admits the integrating factor f−d, if and only if the
polynomials u1 and u2 satisfy

(12)

(
u′1
u′2

)
=

1

∆
·B(x)

(
u1
u2

)

with the discriminant ∆ = 27p20 + 4p31 of f , and

B(x) =

(
(3d− 4) · (9p0p′0 + 2p21p

′
1

)
(3d− 5) · (−3p1) · (3p0p′1 − 2p′0p1)

(3d− 4) · (3p0p′1 − 2p′0p1) (3d− 5) · (9p0p′0 + 2p21p
′
1

)
)
.

Moreover we have

dimFf (d)/F0
f (d) ≤ 1.

Proof. The cofactors of Y1 and Y2, respectively, are

K1 = 3p′0 + 3p′1y

K2 = −3p1p
′
1 + 9p′0y

while

div Y1 = 4p′0 + 4p′1y

div Y2 = −5p1p
′
1 + 15p′0y.

Evaluating the integrating factor condition

div (u1Y1 + u2Y2) = d · (u1K1 + u2K2)

yields
(

3p0 −2p21
2p1 9p0

)
·
(

u′1
u′2

)
=

(
(3d− 4)p′0 −(3d− 5)p1p

′
1

(3d− 4)p′1 (3d− 5) · 3p′0

)
·
(

u1
u2

)

and inverting the matrix on the left hand side we obtain the meromorphic linear system
(12). Therefore dimFf (d)/F0

f (d) ≤ 2. We note that the diagonal elements of B(x) are

(3d−4)·∆′/6 and (3d−5)·∆′/6, respectively and we may suppose that Re (d−3/2) < 0.

Now assume that dimFf (d)/F0
f (d) = 2. Then system (12) admits a polynomial

fundamental system with polynomial Wronskian w(x), and

w′(x) = tr B(x)
∆(x) · w(x)

= (d− 3/2) ∆′(x)
∆(x) · w(x).

But this implies that d − 3/2 is an nonnegative integer; a contradiction. Therefore
dimFf (d)/F0

f (d) < 2 and this completes the proof. ¤
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Remark. The meromorphic linear system has obvious solutions for some special values
of the exponent:

Y1 ∈ Ff (4/3) (u1 = 1, u2 = 0);
Y2 ∈ Ff (5/3) (u1 = 0, u2 = 1).

One verifies directly that Y1 is of the form (4) with g = −3y, and that Y2 is of the form
(4), with g = −9/2y2 − 3p1. One may proceed to show that

Ff (4/3 + k) = F0
f (4/3 + k) and Ff (5/3 + k) = F0

f (5/3 + k)

for every integer k ≥ 0.

In order to gain a general perspective, we turn to singular points of system (12).
These singular points are not necessarily weak singularities: First, the discriminant ∆
may have multiple roots even for a smooth and irreducible curve. (One example is given
by f = y3 + xy + x, with p0 = p1 = x.) Second, the upper right entry of the matrix
in Proposition 16 may have degree greater than or equal to the degree of ∆, which
implies the existence of a pole of order > 1 at infinity. (Generally, given polynomials
r and s with leading coefficients lc(r) and lc(s), the transform of the rational function
r(x)/s(x) will be

−v−2r(v−1)/s(v−1) = −vδ(s)−δ(r)−2 · (lc(r))/lc(s) + . . .)

with the dots indicating existence of terms of v of positive order).
One may distinguish various cases here, and we discuss two of them:

(i) Assuming that 2δ(p0) > 3δ(p1) (thus δ(∆) = 2δ(p0)), the upper right entry of
B(x) has precise degree 2δ(p1) + δ(p0) − 1, and this is smaller than δ(∆) if and only
if 2δ(p1) ≤ δ(p0). This later condition is necessary and sufficient for the existence of
a weak singular point at infinity. (The lower left element of B(x) causes no problem.)
For instance, in the case δ(p0) = 5 and δ(p1) = 3 the singular point at infinity of the
system is not weak.
(ii) Assuming that 2δ(p0) < 3δ(p1) (thus δ(∆) = 3δ(p1)), the upper right entry of
B(x) has precise degree 2δ(p1) + δ(p0)− 1, and this is smaller than δ(∆) if and only if
δ(p1) ≥ δ(p0). This later condition is necessary and sufficient for the existence of a weak
singular point at infinity. (Again, the lower left element of B(x) causes no problem.)
For instance, in the case δ(p0) = 4 and δ(p1) = 3 the singular point at infinity of the
system is not weak.

The remaining case 2δ(p0) = 3δ(p1) is more complicated, since one has to take
cancellations of highest-degree terms into account.

We do not aim at a complete discussion of all cubic curves in this section, but we
obtain quite definitive results for the cases (i) and (ii) above, assuming that there is a
weak singularity at infinity.

Proposition 17. The following statements hold for the polynomial f be given in (11).

(a) If δ(p0) ≥ 2δ(p1) then system (12) admits a first order pole at infinity, with the
coefficient matrix of v−1 being equal to

A∞ =

(
−3d−4

3 δ(p0) ∗
0 −3d−5

3 δ(p0)

)
.

Therefore, Ff (d) = F0
f (d) whenever d is not a positive integer.
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(b) If δ(p1) ≥ δ(p0) (and δ(p1) > 0) then system (12) admits a first order pole at
infinity, with

A∞ =

(
−3d−4

2 δ(p1) ∗
0 −3d−5

2 δ(p1)

)
.

Therefore, Ff (d) = F0
f (d) whenever d is not a positive integer.

Proof. (a) The diagonal entries of the matrix are (3d−4)∆′/(6∆) and (3d−5)∆′/(6∆).
By our assumption, the degree of ∆ is equal to 2δ(p0), the polynomial at the lower
left position in the matrix of Proposition 16 has degree less than 2δ(p0) − 1 and the
polynomial at the upper right has degree no more than δ(p0) − 1. This shows the
asserted form of A∞, and in particular both eigenvalues have positive real parts when
(as we may assume) Re (d) < 1. By the eigenvalue criterion (see the end of Section 3)
the system (12) has no nontrivial polynomial solutions. The proof of statement (b) is
analogous. ¤

Thus for large classes of cubic curves one has Ff (d) = F0
f (d) for any d. It would be in-

teresting to know whether there exist curves and exponents with dim
(
Ff (d)/F0

f (d)
)
=

1.

6. Several factors, all curves are graphs

We now consider a scenario involving several curves, with a quite simple geometric
setting: Given polynomials p1(x), . . . , pr(x) in one variable, we let

(13) fi := y − pi(x), 1 ≤ i ≤ r; f := f1 · · · fr,
thus each curve Ci is the graph of some polynomial in x, and condition (ND1) is
automatic. We will continue to assume that condition (ND2) holds. Thus for all i 6= j,
either pj − pi is a nonzero constant or pj − pi has no common roots with its derivative;
moreover for all pairwise different i, j, k the polynomials pj − pi and pk − pi have no
common root. As a first step, we apply Proposition 8 to the vector fields admitting
a given integrating factor. Since the case of inverse polynomial integrating factors is
known from Theorem 3, we may assume that not all di are positive integers. By Lemma
7 we may furthermore assume that di = 1 or Re (di) < 1 for all i when we study the
dimension of Ff (d1, . . . , dr)/F0

f (d1, . . . , dr).

Lemma 18. Let f be as in (13), and let d1, . . . , dr be given, not all of them positive
integers.
(a) The vector field X lies in Ff (d1, . . . , dr) if and only if there are nonnegative integers
k1, . . . , kr, polynomials b1(x), . . . , br(x) in one variable and a polynomial g such that

X = fk1
1 · · · fkr

r

(∑

i

bi(x)
f

fi
·Xfi

)
+ fd1

1 · · · fdr
r · Zg,

with

X̂ :=
∑

bi(x)
f

fi
·Xfi ∈ Ff (d1 − k1, . . . , dr − kr).

In addition, X ∈ F0
f (d1, . . . , dr) if and only if X̂ ∈ F0

f (d1 − k1, . . . , dr − kr).

(b) Moreover

X∗ =
∑

i

ai(x)
f

fi
·Xfi ∈ Ff (d1, . . . , dr)
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if and only if

−
∑

i

a′i ·
f

fi
=

∑

i,`: i<`

((d` − 1)ai − (di − 1)a`) ·
f

fif`
· (p′` − p′i).

Proof. Applying Proposition 8 we obtain

X = fk1
1 · · · fkr

r X̂ + fd1
1 · · · fdr

r Zg

and by Lemma 6 we get X̂ ∈ F0
f (d1 − k1, . . . , dr − kr). Additionally, from Proposition

8(a) we have

X̂ =
∑

bi(x)
f

fi
·Xfi + f ˜̃X

due to δy(bi) < 1. Now applying Corollary 9 we may assume δyX̂ < r − 1. Hence,
˜̃X = 0 and so X̂ is as desired.
For part (b), note that Xfi(fk) = p′k − p′i and Xfi(ai) = −a′i. Straightforward

computations show

X∗(f`) =


 ∑

i: i6=`

ai ·
f

fif`
· (p′` − p′i)


 · f` =: K` · f`,

divX∗ = −
∑

i

a′i ·
f

fi
+

∑

i,`: i<`

(ai − a`) ·
f

fif`
· (p′` − p′i),

and the integrating factor condition follows. ¤
It is convenient to abbreviate

(14) θi := di − 1, 1 ≤ i ≤ r

for the following. We may assume Re (θi) ≤ 0 for all i when discussing Ff/F0
f . The

particular incarnation of Theorems 10 and 11 in this section is as follows:

Theorem 19. One has

X∗ :=
∑

i

ai(x)
f

fi
·Xfi ∈ Ff (d1, . . . , dr)

if and only if the polynomials ai satisfy the meromorphic linear system

(15) a′i =
∑

j:j 6=i

(θjai − θiaj) ·
(pj − pi)

′

pj − pi
.

The nonzero constant solution a1 = θ1, . . . , ar = θr of system (15) yields a scalar

multiple of fd1
1 · · · fdr

r Z1. In particular

dim
(
Ff/F0

f

)
≤ r − 1.

Proof. To see necessity, start with the condition in part (b) of Lemma 18 and substitute
y 7→ pk(x) for fixed k. On the left hand side the only nonzero term is

a′k ·
∏

i6=k

(pk − pi).

On the right hand side

f

fjf`
(x, pk(x)) = 0 if k 6∈ {j, `},
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and there remains
∑

`: `>k

(θ`ak − θka`)
∏

i6=k

(pk − pi) ·
(pk − p`)

′

pk − p`
+

∑

j: j<k

(θkaj − θjak)
∏

i 6=k

(pk − pi) ·
(pj − pk)

′

pk − pj

as asserted.
As for sufficiency, assume that (15) holds. Then

−
∑

i

a′i ·
f

fi
=

∑

i,k: i6=k

(θkai − θiak)
(pk − pi)

′

pk − pi

f

fi

=
∑

i,k: i<k

(θkai − θiak)
(pk − pi)

′

pk − pi

(
f

fi
− f

fk

)

=
∑

i,k: i<k

(θkai − θiak)
(pk − pi)

′

pk − pi

f

fifk
(fk − fi)

and this is the assertion, in view of fk− fi = pi−pk. Finally, the solution space of (15)
has dimension r, and it contains a nontrivial element of F0

f . ¤
We proceed to investigate the constant solutions of (15) in greater detail. The

multiples of the constant solution exhibited in Theorem 19 will be called trivial constant
solutions.

Proposition 20. Assume that r > 1 and Re(θi) ≤ 0 for all i, but not all θi = 0. We
define the equivalence relation ∼ on pairs of indices by i ∼ j if and only if pj − pi is
constant. Then the following hold for the constant solutions of (15).

(a) If i and j are in different equivalence classes and θi 6= 0, then aj = ai · θj/θi is
uniquely determined by ai.

(b) If there are two equivalence classes I and J such that there is i ∈ I with θi 6= 0,
and j ∈ J with θj 6= 0 then every constant solution of (15) is trivial.

(c) There exist nontrivial constant solutions of (15) if and only if there is an equiva-
lence class I such that |I| > 1 and θj = 0 for all j 6∈ I. In this case, the constant
solutions are given by (α1, . . . , αr) with αj = 0 for all j 6∈ I and αi arbitrary
for i ∈ I. These correspond to the vector fields

∑

i∈I
αi

f

fi
·Xfi ∈ Ff (d1, . . . , dr),

and one has

dim
(
Ff (d1, . . . , dr)/F0

f (d1, . . . , dr)
)
= |I| − 1.

Proof. We first prove that θjai − θiaj = 0 whenever i and j are in different classes. To
verify this, note that

0 = a′i =
∑

j

(θjai − θiaj) ·
(pj − pi)

′

pj − pi
.

If pj − pi is not constant then any root x0 of this polynomial will be a pole of (pj −
pi)

′/(pj − pi). Due to condition (ND2) x0 is not a pole of any (pk − pi)
′/(pk − pi)

with k 6= j. Therefore the identity can hold only if all coefficients corresponding to
nonconstant pj − pi vanish, and (a) is proven.

Moreover statement (b) follows easily: ai determines all ak with k 6∈ I because of
statement (a). In particular aj is determined by ai. But aj in turn determines all a`
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with ` ∈ I. Thus there is only one solution, up to scalar multiples. A similar argument
proves all but the last assertion of (c).
There remains to prove that only the trivial constant solutions of (15) lie inF0

f (d1, . . . , dr).
Thus assume that there are constants ai and a polynomial g such that

∑
ai

f

fi
·Xfi = fd1

1 · · · fdr
r · Zg.

Now from (4) consider the explicit expression

fd1
1 · · · fdr

r · Zg =

(
−f1 · · · frgy + g

∑

i

θi
f

fi

)
∂

∂x
+

(
f1 · · · fr · gx − g

∑

i

θi
f

fi
p′i

)
∂

∂y
,

and compare degrees with respect to y. Assuming g = g0(x)·ym+· · · with a nonnegative

integer m, the leading term for the first entry of fd1
1 · · · fdr

r · Zg will be equal to

−
(
m−

∑
θi
)
g0(x)y

r+m−1 6= 0,

due to the condition on the real parts of the θi. On the other hand, the y-degree of
the first entry of

∑
aif/fi · Xfi is at most equal to r − 1. Therefore g = g0(x), and

comparing y-degrees of the second entries shows that g is constant. Thus the remaining
assertion in (c) is proven. ¤

Remark. It is worth looking at the particular case when all pj − pi are constant; thus
(15) has only constant solutions. Up to an automorphism of the affine plane (given by
x 7→ x and y 7→ y−p1(x)) we may assume that all pi are constant. Thus the curves are
just parallel straight lines, there are no singular points in the affine plane, and there is
only one (albeit quite degenerate) singular point at infinity. Due to Proposition 20(c)
the corresponding vector fields are precisely those of the form q(y)∂/∂x with δ(q) < r.
Given the hypotheses of Proposition 20, one has Ff (d1, . . . , dr) 6= F0

f (d1, . . . , dr) for
all r ≥ 2. Moreover it is easy to construct vector fields that are not integrable in an
elementary manner, by adding suitable vector fields of the form fd1

1 · · · fdr
r · Zg; see

Prelle and Singer [13], and also Singer [17].

From now on we assume that some pj − pi is not constant. We turn to analyzing
the singular points of system (15). As it turns out, this system admits only weak
singularities on the complex projective plane.

Lemma 21. The following statements hold.

(a) Any finite singular point x0 is a zero of pi − pj for exactly one pair of in-
dices. The eigenvalues of A−1, the coefficient matrix of (x− x0)

−1, are 0 with
multiplicity r − 1 and θi + θj with multiplicity one.

(b) Let mij := δ(pi−pj) for i 6= j. Then the coefficient matrix of v−1 for the system
at infinity is equal to

A∞ =




−
(∑

j 6=1m1jθj
)

m12θ1 · · · m1rθ1

m12θ2 −
(∑

j 6=2m2jθj
)

· · · m2rθ2
...

...
...

m1rθr m2rθr · · · −
(∑

j 6=r mrjθj
)



.

(c) One eigenvalue of A∞ equals 0, corresponding to the trivial constant solutions
in Theorem 19.
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Proof. Fix i and j such that pi − pj is nonconstant and denote the zeros by β1, . . . , βs
(each is of multiplicity one). Then

(pi − pj)
′

pi − pj
=

1

x− β1
+ · · ·+ 1

x− βs

and thus the finite singular points of (15) are just the zeros of the pk − p`. Evaluation
at some βn shows that A−1 is a matrix that has nonzero entries only at positions
(i, i), (i, j), (j, i), (j, j) and the entries are (in the same order) θi, −θj , −θi, θj . This
shows part (a). Moreover

−v−2 (pi − pj)
′

pi − pj
(v−1) = −v−1 ·

(
1

1− β1v
+ · · ·+ 1

1− βsv

)
.

Thus the contribution of the term in brackets to the coefficient of v−1 is equal to
s = δ(pi−pj), and (b) follows. As for (c) observe that the rows of A∞ add up to 0. ¤

Remark. The mij are related. If i, j and k are distinct then (pi−pj)+(pj −pk)+(pk−
pi) = 0 and therefore two of the degrees are equal and not smaller than the third.

A natural application of Lemma 21 is to investigate the dimension of Ff/F0
f . Suffi-

cient information on the eigenvalues of A∞ can be obtained in many cases.

Lemma 22. The following statements hold.

(a) If δ(pi − pj) = m > 0 for all distinct i and j (e.g., when all pi have the same
degree but pairwise distinct leading coefficients), then in case θ1 + · · ·+ θr 6= 0
the eigenvalues of A∞ are 0 (simple) and −m(θ1+ · · ·+ θr) (with algebraic and
geometric multiplicity r − 1).

(b) If δ(p1) > δ(p2) > · · · > δ(pr) then the eigenvalues of A∞ are 0 and

−
(
δ(p1) ·

∑r
j=1 θj

)
,

−
(
δ(p1) · θ1 + δ(p2) ·

∑r
j=2 θj

)
,

−
(
δ(p1) · θ1 + δ(p2) · θ2 + θ3 ·

∑r
j=3 θj

)
,

...

−
(
δ(p1) · θ1 + · · ·+ δ(pr−2) · θr−2 + δ(pr−1) ·

∑r
j=r−1 θj

)
.

(c) If all θi are real and nonpositive, then all eigenvalues of A∞ have non negative
real parts, and any eigenvalue with real part 0 is zero.

Proof. The proofs of (a) and (b) are elementary and will be omitted.
As for part (c) let B be the transpose of A∞. We will show that B is an M-matrix

in the sense of Berman and Plemmons [1], Ch. 6. According to [1] (Lemma 4.1. of
Ch.6, Sec. 4) it suffices to show that for every ε > 0 the matrix B + εI (with I the
unit matrix) is an invertible M-matrix. But B + εI has positive diagonal elements,
nonpositive entries outside the diagonal, and for every row the sum of its elements is
positive. Hence, from [1] (Theorem 2.3 of Ch.6, Sec. 2, criterion (M35), with D = I),
we have that B + εI is an invertible M-matrix.

Since B is an M-matrix, all eigenvalues of B have nonnegative real parts, and any
eigenvalue with real part 0 is zero. This also holds for the eigenvalues of the transpose
of B, hence the assertion follows. ¤
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Proposition 23. Let the polynomials pi be such that the hypothesis of Lemma 22 (a)
or (b) holds. If not all exponents d1, . . . , dr are positive integers, then Ff (d1, . . . , dr) =
F0
f (d1, . . . , dr).

Proof. One may use Lemma 7 to assume that all θi have real parts ≤ 0. Since the
only nonpositive integer eigenvalue of A∞ is 0, with multiplicity 1, the only polynomial
solutions of (15) are the trivial constant solutions. Now Theorem 19 shows the assertion.

¤
Theorem 24. Let d1, . . . , dr be arbitrary nonzero real constants, not all of them positive
integers. Then the following statements hold for the equivalence relation introduced in
Proposition 20.

(a) If every equivalence class contains just one element, then

Ff (d1, . . . , dr) = F0
f (d1, . . . , dr).

(b) If for every equivalence class I with |I| > 1 there exists an index j 6∈ I such
that dj is not a positive integer, then

Ff (d1, . . . , dr) = F0
f (d1, . . . , dr).

(c) If there exists an equivalence class I with |I| > 1 such that dj is a positive
integer for every j 6∈ I then

Ff (d1, . . . , dr) 6= F0
f (d1, . . . , dr).

The elements of Ff (d1, . . . , dr) have the explicit form

∏

i∈I
f
(ei−1)
i

∏

j 6∈I
f
(dj−1)
j ·

(∑

i∈I
αi

f

fi
Xfi

)
+ fd1

1 · · · fdr
r · Zg

with integers ei ≥ 1, constants αi and some polynomial g.

Proof. We may assume that all θi ≤ 0, due to Lemma 7. Then Lemma 22 shows that
the only nonpositive integer eigenvalue of A∞ is 0 (possibly with multiplicity > 1).
Therefore, every polynomial solution of (15) is constant, and the assertion follows with
Theorem 19 and Proposition 20. ¤

It seems likely that the conclusion of Theorem 24 is always true, not only for real
exponents. To prove this, one would need more precise information about the eigenval-
ues of A∞. In any case, even allowing degeneracies for the geometric setting at infinity,
one still obtains Ff (d1, . . . , dr) = F0

f (d1, . . . , dr) in most scenarios. It seems reasonable

to conjecture that Ff 6= F0
f will always be an exceptional case.

7. Degenerate geometric settings

In this final section we briefly discuss the setting when the geometric nondegeneracy
conditions (ND1) and (ND2) no longer hold. We will only assume from now on that
the curves fi = 0 are irreducible and pairwise relatively prime.

As it turns out, variants of the results from the previous sections continue to hold in
this more general context if we consider the space of vector fields that are polynomial
in y and rational in x. Letting f = yn + · · · = f1 · · · fr be a polynomial as before, and
given nonzero constants di, we now consider the subspaces

F∗
f (d1, . . . , dr) and F∗

f
0(d1, . . . , dr)
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of this linear space. The former subspace consists of all vector fields admitting the
integrating factor (3), while the latter consists of all vector fields of the special form

fd1
1 · · · fdr

r · Zg

with g ∈ C(x)[y]. Mutatis mutandis, Lemma 2 obviously holds for these vector fields.
Our starting point, in lieu of Theorem 1, is now as follows:

Lemma 25. If a polynomial vector field X admits f then

(16) X =
∑

i

ai
f

fi
·Xfi + f · X̃,

where the ai lie in C(x)[y], and X̃ is rational in x and polynomial in y. More precisely,

there is h ∈ C[x], depending only on f , such that all ai can be chosen in C [x, y]
[
1
h

]
.

Proof. The proof follows essentially from Theorem 6.12 of [8]. (See also [5], Theorem
3.4.) In this theorem it was shown that for any polynomial vector field admitting f ,
and for every element h of a certain ideal I defined via f , there exist polynomials âi
and a polynomial vector field X̂ such that

h ·X =
∑

i

âi
f

fi
·Xfi + f · X̂.

By definition the ideal I contains the polynomials

f,
f

fi
· fiy (1 ≤ i ≤ n)

(see [8] or [5]) which do not have a common factor in view of f = yn + · · · . Hence the
zero set of I is finite, and there exists a polynomial h(x) ∈ I ∩ C[x]. ¤

Now Lemmas 6 and 7, Proposition 8 and Corollary 9 carry over to the present setting
with obvious modifications. (In order to apply Lemma 25, one may have to multiply
by powers of h, but this is harmless.) If all di are positive integers then we end up with
the case d1 = · · · = dr = 1, for which [5], Proposition 4.3 shows that

(17) X =
∑

i

βi
f

fi
·Xfi + f ·Xg

with constants βi and some rational function g. (This may be seen as a counterpart to
Theorem 3.) For the remaining exponents we can reduce to the case of vector fields X
with δy(X) ≤ n− 1.

Theorem 26. If some d` is not a positive integer then

dim
(
F∗
f (d1, . . . , dr)/F∗

f
0(d1, . . . , dr)

)
≤ n− 1.

Proof. Let X ∈ F∗
f (d1, . . . , dr), and δy(X) ≤ n− 1 with no loss of generality.

We start with some preliminary considerations. Let K ⊇ C(x) denote a splitting
field of f ∈ C(x)[y]; thus we have

f = (y − q1(x)) · · · (y − qn(x)) =: g1 · · · gn
over K, with algebraic functions q1, . . . , qn. Since f has no multiple prime factors
over C(x), and we are in characteristic zero, the qi are pairwise distinct, whence
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f/g1, . . . , f/gn are relatively prime. By Lagrange interpolation, every s ∈ K[y] with
degree ≤ n− 1 has a unique representation

s =
∑

i

ci ·
f

gi

with ci ∈ K. We note that

Xgi =

( −1
−q′i(x)

)

and so the vector field X can be written in the form

(18) X =
∑

i

âi(x)
f

gi
·Xgi +

∑

i

b̂i(x)
f

gi

∂

∂y
.

If X admits f then X(gk) is a multiple of gk for each k, thus

0 = X(gk) (qk) =
∑

i

b̂i(x)
f

gi
(qk) = b̂k(x)

f

gk
(qk)

and therefore b̂k = 0. So from (18) we obtain

(19) X =
∑

i

âi(x)
f

gi
·Xgi

similar to the setting of Lemma 18 and Theorem 19. Now an imitation of the proof of
Theorem 19 shows that the âi satisfy the differential equation

(20) â′i =
∑

j:j 6=i

(θj âi − θiâj) ·
(qj − qi)

′

qj − qi
,

analogous to equation (15). Here θi+1 equals the exponent of the factor f` of f which
is divided by gi. As in Theorem 19, the nonzero constant solution âi = θi (1 ≤ i ≤ n)

yields a scalar multiple of fd1
1 · · · fdr

r Z1 ∈ F∗
f
0. In summary, the dimension of the

quotient space is bounded by n− 1. ¤

For the case of polynomial vector fields, which is of principal interest to us, this
theorem provides a strong structural result, but some questions remain open. One
problem in this approach is to identify the polynomial vector fields in F∗

f
0(d1, . . . , dr);

another problem is to utilize the differential equation (20) beyond dimension estimates.
Our final result illustrates that the differential equation can be useful for finding vector
fields in some cases. We consider the case of a “degenerate hyperelliptic curve” (compare
Theorem 13 with m = 2).

Proposition 27. For f = y2 − p(x) the dimension of F∗
f (d)/F∗

f
0(d) is at most 1.

Furthermore, if d is not a positive integer then the most general first integral and
X ∈ F∗

f (d) with δy(X) = n − 1 is the sum of a Darboux function and a term of the

form
∫ y/

√
p(Z2 − 1)−d dZ.

Proof. It is straight forward to work back through the reduction process to show that
the first integral of the original system is of a similar form. The first part is just
Theorem 26 if d is not a positive integer, and a consequence of [5], Proposition 4.3
otherwise. For the second part we use that X has a representation (19), and from (20)
we obtain

â′1 = (d− 1)(â1 − â2)
p′

2p
, â′2 = (d− 1)(â2 − â1)

p′

2p
,
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noting q1 =
√
p = −q2. Thus â1 + â2 is a constant, which we may take to be 0 in view

of the last argument in the proof of Theorem 26. There remains

â′1 = 2(d− 1)â1
p′

ph
,

which gives
â1 = `pd−1, â2 = −`pd−1

for some constant `. Going back to (19), we find

(21)
1

(y2 − p(x))d
·X =

`pd−1

(y2 − p(x))d−1
·Xw

with

w := ln(
y −√

p

y +
√
p
).

This vector field admits the first integral

`

2

∫ y/
√
p dZ

(Z2 − 1)d
.

¤
We note that this candidate for an exceptional vector field can only work when pd−1

is a rational function.
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