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Abstract. In this paper we deal with ordinary differential equations
of the form dy/dx = P (x, y) where P (x, y) is a real polynomial in the
variables x and y, of degree n in the variable y. If y = ϕ(x) is a
solution of this equation defined for x ∈ [0, 1] and which satisfies that
ϕ(0) = ϕ(1), we say that it is a periodic orbit. A limit cycle is an isolated
periodic orbit in the set of all periodic orbits. If ϕ(x) is a polynomial,
then ϕ(x) is called a polynomial solution.

We study the maximum number and the multiplicity of the poly-
nomial limit cycles of dy/dx = P (x, y) with respect to n. We prove
that this differential equation has at most n polynomial limit cycles and
that this bound is sharp. If n = 1 (linear equation), or n = 2 (Riccati
equation), we prove that the differential equation dy/dx = P (x, y) has
at most n polynomial limit cycles counted with their multiplicities. For
n = 3 (Abel equation) we show that at most three polynomial limit
cycles can exist whereas the multiplicity of a polynomial limit cycle can
be unbounded.

1. Introduction and statement of the main results

We consider ordinary differential equations of the form

(1)
dy

dx
= A0(x) + A1(x) y + A2(x) y

2 + . . . + An(x) y
n,

where x and y are real variables, Ai(x) are polynomials in R[x] for i =
0, 1, 2, . . . , n, and n is an integer number with n ≥ 1. We assume that An(x)
is not identically zero. We shall denote the derivative of y with respect x by
dy/dx or y′.

First we are interested in the polynomial solutions y = p(x) of the dif-
ferential equation (1), i.e. in the solutions y = p(x) of (1) where p(x) is a
polynomial.

A periodic solution of (1) is a solution y = ϕ(x) of (1) such that ϕ :
[0, 1] → R is C1 and ϕ(0) = ϕ(1). We say that such a periodic solution has
period 1. In order to define a periodic solution, we can choose any period,
but by an affine change of the independent variable x, there is no loss of
generality in searching for the periodic solutions of period 1.
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Let E be the space of the C1 functions from [0, 1] to R satisfying ϕ(0) =
ϕ(1) with the topology of the supremum. We say that a periodic solution
y = ϕ(x) of (1) is a limit cycle of (1) if in E there exists a neighborhood of
ϕ without any other periodic solution of (1); i.e. y = ϕ(x) is isolated in the
set of all periodic solutions of (1).

We denote by ψ(x; y0) the solution of the differential equation (1) such
that ψ(0; y0) = y0. The translation operator associated to equation (1) is
the function Ψ : R → R such that Ψ(y0) = ψ(1; y0) − y0. We see that
Ψ(y0) is defined if and only if the solution ψ(x; y0) exists for x ∈ [0, 1].
Clearly from this definition we have that Ψ(y0) = 0 if and only if equation
(1) has a periodic solution starting at y0. Therefore there is a one–to–
one correspondence between the zeros of the translation operator and the
periodic orbits of system (1). Following to Lloyd [8, 9] the multiplicity of a
limit cycle of (1) associated to the isolated zero y0 of the translation operator
is the multiplicity of y0 as a zero of Ψ(y0). A periodic solution of multiplicity
1 will be said to be simple, or hyperbolic.

We are mainly interested in the limit cycles, polynomial or not, that
a differential equation (1) can exhibit and in knowing the answers to the
following questions: When the limit cycles of the differential equation (1)
are polynomial? What are the maximum number of polynomial limit cycles
that the differential equation (1) can have with respect to n? Which can be
the multiplicities of such limit cycles?

The computation of exact solutions (such as polynomial and rational so-
lutions) of a nonlinear differential equation is of great interest to under-
stand the whole set of solutions and its dynamical properties. In 1936
Rainville [10] determines all the Riccati differential equations of the form
y′ = A0(x)+A1(x)y+ y2, with A0 and A1 polynomials, which have polyno-
mial solutions; and provides an algebraic method to compute those polyno-
mial solutions.

Campbell and Golomb [5] in 1954 provide an algorithm for finding all the
polynomial solutions of the differential equation B(x)y′ = A0(x)+A1(x)y+
A2(x)y

2, where B, A0, A1 and A2 are polynomials in x. More recently
Behloul and Cheng [1] gave another algorithm to look for all the rational
solutions of equations of the form

B(x)
dy

dx
= A0(x) +A1(x)y +A2(x)y

2 + . . .+An(x)y
n,

where B and Ai for i = 0, 1, 2, . . . , n are polynomials in x. They first simplify
this search to find the polynomial solutions of an easier equation. They show
that the polynomial solutions of this easier equation have degree lower than
a uniform bound and then, by imposing a polynomial of feasible degree, they
provide an algorithm for computing all the polynomial solutions.

The differential equations (1) for n = 3 are the Abel differential equa-
tions. These equations have been studied intensively, either looking for their
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centers, i.e. for a continuum of periodic orbits, see the works of Briskin,
Françoise and Yomdin [2, 3, 4]; or studying their periodic orbits, see for
instance [6] or [7].

The following result establishes the maximum number of polynomial solu-
tions and periodic polynomial solutions that a differential equation (1) can
have.

Theorem 1. The following statements hold.

(a) Any differential equation (1) has at most n polynomial solutions and
there are examples of equations (1) with exactly n polynomial solu-
tions.

(b) The difference between two polynomial solutions of equation (1) is a
constant.

(c) If (1) has a polynomial periodic solution, then all polynomial solu-
tions are periodic.

(d) Any equation of the form (1) has at most n polynomial periodic solu-
tions and there are examples of equations of the form (1) with exactly
n polynomial periodic solutions.

From Theorem 1 it follows immediately the next result.

Corollary 2. Any differential equation (1) has at most n polynomial limit
cycles and there are examples of equations (1) with exactly n of such cycles.

We are also interested in the multiplicity of the polynomial limit cycles
of the differential equations (1).

The number and multiplicity of limit cycles of the differential equations
(1) with n = 1 (linear equation) and n = 2 (Riccati equation) were studied
by Lloyd [8] and Lins Neto [7]. The next result shows that the upper bounds
described in these previous works are also realizable only taking into account
polynomial limit cycles.

Theorem 3. The following statement hold.

(a) Assume that a differential equation (1) with n = 1 (linear equation)

has a periodic solution. If α =

∫ 1

0
A1(x)dx 6= 0, then this periodic

solution is the unique limit cycle of equation (1) and it is hyperbolic.
If α = 0 the equation has a continuum of periodic solutions.

(b) Assume that a differential equation (1) with n = 2 (Riccati equa-
tion) has a periodic solution y = p(x). Define β = D1(1) and

γ =

∫ 1

0
eD1(s)A2(s)ds, where D1(s) =

∫ s

0
(A1(σ) + 2p(σ)A2(σ)) dσ.

If β2 + γ2 6= 0, then the equation has at most either two limit cycles
(both hyperbolic), or one limit cycle of multiplicity 2. In these two
last cases one of the limit cycles is the periodic orbit y = p(x). If
β = γ = 0, then the equation has a continuum of periodic solutions.
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While the number and multiplicity of limit cycles for the differential equa-
tions (1) with n = 1 and n = 2 is always bounded, this is not the case for
n ≥ 3. If we only take into account polynomial limit cycles, we have that
their number is bounded as Corollary 2 states, but not their multiplicity as
the next result shows. This result will be proved by using ideas from Lins
Neto [7], who proved the existence of an Abel differential equation with as
many limit cycles as desired. In the work [6] some sufficient conditions on
the coefficients of the Abel differential equation are given in order to bound
the number of its limit cycles.

Theorem 4. Given any integer number m with m ≥ 2, there exist poly-
nomials A2(x) and A3(x) such that y = 0 is a polynomial limit cycle of
multiplicity m of the Abel differential equation

dy

dx
= A2(x)y

2 +A3(x)y
3.

In the proof of this theorem, given in section 3, we give an example of an
Abel differential equation with A2(x) a polynomial of degree 1 and A3(x) a
polynomial of degree 2(m − 3) having y = 0 as a polynomial limit cycle of
multiplicity m.

In general it is not possible to integrate an Abel differential equation
if only one particular solution is known, whereas for a Riccati equation is
always possible as it is well–known (and as in particular we will show in the
proof of Theorem 3). Actually even the knowledge of a countable number
of explicit solutions of an Abel differential equation does not seem to imply
its explicit integration. This fact together with the iterated integrals that
appear in the determination of the multiplicity of a limit cycle, see Lemma
5, avoid that in general an Abel differential equation has a uniform bound
for the multiplicity of its polynomial limit cycles.

The rest of the paper is structured as follows. In section 2 we prove
Theorem 1, and in section 3 we provide the proofs of Theorems 3 and 4.

2. Polynomial limit cycles

In this section we mainly prove Theorem 1.

Proof of Theorem 1. Let y = p(x) be a polynomial solution of (1). We
consider the following affine change in the dependent variable y 7→ z with
z = y − p(x), which transforms equation (1) into

(2)
dz

dx
= Ã1(x)z + Ã2(x)z

2 + Ãn−1(x)z
n−1 +An(x)z

n,

where each Ãi is a polynomial depending on the Aj(x) for j = i, i+1, . . . , n
and on some powers of p(x), for i = 1, 2, . . . , n.

We observe that any polynomial solution of (1) gives rise to a polynomial
solution of (2), and vice versa any polynomial solution of (2) gives rise
to a polynomial solution of (1). In particular the constant solution z = 0
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corresponds to y = p(x) for (1). Let z = q(x) be another polynomial solution
of (2) different from z = 0, that is

q′(x) = Ã1(x)q(x) + Ã2(x)q(x)
2 + Ãn−1(x)q(x)

n−1 +An(x)q(x)
n.

Then, since q(x) divides the right–hand side of the latter expression, we have
that it also divides the left–hand side, that is, q(x)|q′(x). This fact implies
that q(x) is a constant and we denote it by q(x) ≡ ζ ∈ R. We have that any
polynomial solution of (2) needs to be a constant.

We deduce that the polynomial in z given by Ã1(x) z + Ã2(x) z
2 +

Ãn−1(x) z
n−1 + An(x)z

n is divisible by (z − ζ) and, since its degree in
z is n and z = 0 is already a root, we have that it has, at most, n differ-
ent constant roots. Going back to equation (1), we deduce that equation
(1) has at most n polynomial solutions and that the difference between two
polynomial solutions of (1) is a constant.

We remark that the differential equation

dy

dx
= y(y − 1)(y − 2) . . . (y − (n− 1)),

is of the form (1) and has exactly n polynomial solutions.

We have proved statements (a) and (b). We also remark that the latter
differential equation also provides the proof of statement (d) as any constant
solution is a periodic orbit. Finally note that statement (c) is a direct
consequence of statement (b). ¤

From the previous proof, we observe that if an equation (1) of degree n
in y has k, with k ≤ n, polynomial solutions, then it can be written (after a
polynomial transformation) into the form

dy

dx
= r(x, y) (y − c1) (y − c2) . . . (y − ck),

where ci ∈ R, i = 1, 2, . . . , k, and r(x, y) is a real polynomial of degree n− k
in y.

3. Limit cycles and their multiplicities

We are going to study the multiplicity of the limit cycles of the differential
equations (1) using ideas from [9].

Lemma 5. Consider the differential equation dy/dx = F(x, y) where F is
a function of class C5 on R2. Assume that y = ϕ(x) is a periodic orbit of
this equation. Then it is

(i) a hyperbolic limit cycle if and only if D1(1) 6= 0;
(ii) a limit cycle of multiplicity 2 if and only if, D1(1) = 0 and D2(1) 6= 0;
(iii) a limit cycle of multiplicity 3 if and only if D1(1) = D2(1) = 0 and

D3(1) 6= 0;
(iv) a limit cycle of multiplicity 4 if and only if D1(1) = D2(1) = D3(1) =

0 and D4(1) 6= 0;
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(v) a limit cycle of multiplicity ≥ 5 or it belongs to a continuum of
periodic orbits if D1(1) = D2(1) = D3(1) = D4(1) = 0.

where

D1(x) =

∫ x

0

∂F
∂y

(σ, ϕ(σ)) dσ,

D2(x) =

∫ x

0
eD1(s) ∂

2F
∂y2

(s, ϕ(s)) ds,

D3(x) =

∫ x

0
e2D1(s) ∂

3F
∂y3

(s, ϕ(s)) ds,

D4(x) =

∫ x

0
e3D1(s) ∂

4F
∂y4

(s, ϕ(s)) ds+

+2

∫ x

0
e2D1(s) ∂

3F
∂y3

(s, ϕ(s))

(∫ s

0
eD1(ξ) ∂

2F
∂y2

(ξ, ϕ(ξ)) dξ

)
ds.

Proof. We consider the differential equation dy/dx = F(x, y) and we assume
that y = ϕ(x) is a periodic solution of this equation. We take the following
change of the dependent variable z = y − ϕ(x) and we obtain the following
differential equation:

dz

dx
= F (x, z + ϕ(x)) − F (x, ϕ(x)) .

The periodic orbit y = ϕ(x) is transformed to the constant periodic orbit
z = 0. We denote by ψ(x; z0) the solution of the latter differential equation
with initial condition ψ(0; z0) = z0, and we obviously have that ψ(x; 0) ≡ 0.
We are interested in studying the behavior of the solutions of this equation
in a neighborhood of the periodic orbit z = 0, so we define the translation
operator Ψ(z0) = ψ(1; z0) − z0 and we study it near the point z0 = 0. In
case that Ψ(z0) is identically null, we deduce that the periodic orbit z = 0
belongs to a continuum of periodic orbits. If Ψ(z0) is not identically null,
by definition we have that the multiplicity of z0 = 0 as a zero of Ψ(z0)
corresponds to the multiplicity of z = 0 as limit cycle of the differential
equation. Through the change of variables z = y − ϕ(x), this multiplicity
coincides with the one of y = ϕ(x) for the initial differential equation.

We expand ψ(x; z0) in Taylor series in a neighborhood of z0 = 0:

ψ(x; z0) = h1(x) z0 + h2(x) z
2
0 + h3(x) z

3
0 + h4(x) z

4
0 + O(z50),

where hi(x), i = 1, 2, 3, 4, are differentiable functions with h1(0) = 1 and
h2(0) = h3(0) = h4(0) = 0, because ψ(0; z0) = z0. We have that ψ(x; z0)
satisfies the equality

∂ψ(x; z0)

∂x
= F (x, ψ(x; z0) + ϕ(x)) − F (x, ϕ(x)) ,
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which we expand in Taylor series in a neighborhood of z0 = 0. Since this
identity needs to be satisfied for any value of z0 in the considered neigh-
borhood, we can equate the coefficients of the same powers of z0. Thus, we
obtain the following system of differential equations for the functions hi(x),
i = 1, 2, 3, 4:

h′1(x) =
∂F
∂y

(x, ϕ(x)) h1(x),

h′2(x) =
∂F
∂y

(x, ϕ(x)) h2(x) − 1

2

∂2F
∂y2

(x, ϕ(x))h1(x)
2,

h′3(x) =
∂F
∂y

(x, ϕ(x)) h3(x) +
∂2F
∂y2

(x, ϕ(x))h1(x)h2(x) +

+
1

6

∂3F
∂y3

(x, ϕ(x))h1(x)
3,

h′4(x) =
∂F
∂y

(x, ϕ(x)) h4(x) +
∂2F
∂y2

(x, ϕ(x))

(
h2(x)

2

2
+ h1(x)h3(x)

)
+

+
1

2

∂3F
∂y3

(x, ϕ(x))h1(x)
2 h2(x) +

1

24

∂4F
∂y4

(x, ϕ(x))h1(x)
4.

The solution of this system of differential equations satisfies:

h1(x) = eD1(x),

h2(x) = h1(x)D2(x)/2,

h3(x) = h1(x)D3(x)/6 + h2(x)
2/h1(x),

h4(x) = h1(x)D4(x)/24 − h2(x)
3/h1(x)

2 + 2h2(x)h3(x)/h1(x),

where the functions Di(x) are the ones that appear in the statement of the
lemma. We observe that h1(x) is strictly positive for any value of x, so the
former expressions are well-defined for any value of x. These expressions
imply that h1(1) = 1 if, and only if, D1(1) = 0. Moreover, fixed k ∈ {2, 3, 4}
we have that h1(1) = 1 and hi(1) = 0 for all i such that 2 ≤ i ≤ k if, and
only if, Di(1) = 0 for all i such that 1 ≤ i ≤ k.

We note that the translation operator reads for

Ψ(z0) = (h1(1)− 1) z0 + h2(1) z
2
0 + h3(1) z

3
0 + h4(1) z

4
0 + O(z50),

and therefore, z0 = 0 is a limit cycle of multiplicity m with m ∈ {1, 2, 3, 4}
if, and only if, Di(1) = 0 for all i such that 1 ≤ i < m and Dm(1) 6= 0.

Finally, if D1(1) = D2(1) = D3(1) = D4(1) = 0, we have that either
z = 0 is a limit cycle of multiplicity ≥ 5 or it belongs to a continuum of
periodic orbits. ¤
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Lemma 5 allows us to prove the following result which characterizes the
multiplicity of a periodic orbit in case of a linear or a Riccati differential
equation. The proof of this result is also given in [8, 7] and we include it
here for the sake of completeness. The limit cycles (with the corresponding
multiplicities) of a linear or a Riccati differential equation are realizable by
polynomial limit cycles as it is shown in the following proof.

Proof of Theorem 3. We first consider the linear differential equation

(3)
dy

dx
= A0(x) +A1(x)y.

Let y = ϕ(x) be a periodic solution of (3). By Lemma 5 we have that
y = ϕ(x) is a hyperbolic limit cycle if and only if α 6= 0. On the other hand,
y = 0 is a hyperbolic limit cycle of linear differential equation y′ = y. So
in order to complete the proof of statement (a) we claim that when α = 0
any periodic solution is contained in a continuum of periodic orbits. This
completes the proof of statement (a).

Now we prove the claim. We integrate equation (3) and we have that any
solution is given by

y(x) = e
∫ x

0
A1(σ)dσ

(
y0 +

∫ x

0
e−

∫ s

0
A1(σ)dσA0(s)ds

)
,

where y0 is a real constant. Since y = ϕ(x) is a solution of (3), ϕ(x) can
be written as in the previous expression with y0 = ϕ(0). Since α = 0 the

condition ϕ(0) = ϕ(1) implies that
∫ 1
0 e−

∫ s

0
A1(σ)dσA0(s)ds = 0. Therefore it

follows that any solution y(x) of (3) satisfies y(0) = y(1). We conclude that
y = ϕ(x) is contained in a continuum of periodic orbits. Hence the claim is
proved.

We consider now the Riccati polynomial differential equation, i.e.

dy

dx
= A0(x) +A1(x)y +A2(x)y

2.

We assume that y = ϕ(x) is a periodic solution of this differential equation
and we are going to see that it cannot be a limit cycle of multiplicity > 2.
By Lemma 5 we have that if ϕ(x) is a limit cycle of multiplicity > 2 then
β = D1(1) = 0 and γ = D2(1) = 0, where

D1(x) =

∫ x

0
A1(σ) + 2ϕ(σ)A2(σ)dσ,

D2(x) =

∫ x

0
eD1(s)A2(s)ds.

On the other hand since we know y = ϕ(x) a particular solution of the
Riccati equation, we have that any other solution of this equation is of the
form

(4) y(x) = ϕ(x) +
eD1(x)

z0 −
∫ x
0 eD1(s)A2(s)ds

,
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where z0 is a real constant. Since β = γ = 0, we deduce from (4) that any
solution of the Riccati equation is periodic and we conclude that y = ϕ(x)
is a non isolated periodic orbit.

We also need to show that if there are two different periodic solutions,
then they are either both hyperbolic limit cycles or they are contained in
a continuum of periodic solutions. We assume that y = ϕ(x) is a periodic
orbit such that β = 0 and that there exists another periodic orbit, that is,
there exists a value of z0 in (4) for which the solution is defined in x ∈ [0, 1]

and y(0) = y(1). Then for this solution z0−
∫ x
0 eD1(s)A2(s)ds 6= 0 for any x ∈

[0, 1]. Moreover the condition y(0) = y(1) implies that
∫ 1
0 eD1(s)A2(s)ds =

0, where we have used that ϕ(0) = ϕ(1). Therefore we conclude, by the
reasoning given in the previous paragraph, that there is a continuum of
periodic orbits in which y = ϕ(x) is contained.

In order to finish with the proof of statement (b) we remark that y′ = y(y−
1) is a Riccati equation with two polynomial hyperbolic limit cycles, and that
y′ = y2 is a Riccati equation with a polynomial double limit cycle. ¤

The following proof uses ideas of Lins Neto in the work [7].

Proof of Theorem 4. The Abel differential equation dy/dx = y2 + A3(x)y
3,

where A3(x) is any polynomial in R[x], has y = 0 as double limit cycle. This
statement is proved by a straight application of Lemma 5 since D1(x) ≡ 0
and D2(x) = 2x in this case.

We need to show that given any integer m with m ≥ 3, there exists a
differential equation dy/dx = A2(x)y

2 + A3(x)y
3 with A2(x) and A3(x)

polynomials in R[x] such that y = 0 is a limit cycle of multiplicity exactly
m. We fix A2(x) = 1− 2x and the differential equation reads for dy/dx =
(1 − 2x) y2 + A3(x) y

3. By Lemma 5 and for any polynomial A3(x) the
periodic orbit y = 0 is either a limit cycle of multiplicity ≥ 3 or it belongs
to a continuum of periodic orbits, because D1(x) ≡ 0, D2(x) = x−x2 and,
thus, D2(1) = 0. In order to simplify notation, we define A(x) := x− x2.

We observe that if A3(x) ≡ 0, then

ψ0(x; y0) =
y0

1−A(x)y0
,

is the solution of the differential equation dy/dx = (1 − 2x)y2 with initial
condition ψ(0; y0) = y0. Since A(x) = x−x2 is such that A(1) = 0, we have
that ψ(1; y0) = y0 and, therefore, y = 0 belongs to a continuum of periodic
orbits. We consider a perturbation with a real parameter ε, of the previous
equation with the continuum of periodic orbits and we will show that this
perturbation can be chosen so that y = 0 is a limit cycle of multiplicity m
with m ≥ 3.
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We choose an integer m with m ≥ 3 and we write

A3(x) = ε
m−3∑

i=0

b̃i(ε)A(x)
i,

which is a polynomial in x of degree 2(m−3) and where the functions b̃i(ε),
i = 0, 1, . . . ,m− 3 are analytic in a neighborhood of ε = 0, to be chosen in
order to get the desired multiplicity. Again, in order to simplify notation we
denote by b(x, ε) =

∑m−3
i=0 b̃i(ε)A(x)

i and by bi = b̃i(0), i = 0, 1, . . . ,m−3.
Thus, we are considering the family of differential equations

(5)
dy

dx
= (1− 2x) y2 + ε b(x, ε) y3,

where ε ∈ R with 0 < |ε| << 1. We are going to show that there always
exists a polynomial b(x, ε) and a punctured interval of ε = 0 such that the
periodic orbit y = 0 is a limit cycle of multiplicity m for equation (5).

We consider y = ψ(x; y0, ε) the solution of equation (5) with initial condi-
tion ψ(0; y0, ε) = y0. By classical results on the dependence of parameters
and initial conditions, we know that ψ(x; y0, ε) is analytic in ε and in y0.
Since y = 0 is a periodic orbit of (5), we have that ψ(x; 0, ε) ≡ 0 for all
x, ε ∈ R. We fix an integer number m with m ≥ 3. We say that y = 0 is a
limit cycle of (5) of multiplicity m at first order in ε if

ψ(1; y0, ε) − y0 = ε
(
cym0 + O(ym+1

0 )
)
+ O(ε2),

with c ∈ R, c 6= 0. On the other hand, we say that y = 0 is a limit cycle of (5)
of multiplicity m (at any order of ε) if ψ(1; y0, ε)− y0 = f(ε) ym0 +O(ym+1

0 ),
where f(ε) is an analytic function in a neighborhood of ε = 0 with f(0) =
0 and f ′(0) 6= 0. In these definitions, we have taken into account that
ψ(1; y0, 0) = y0 because when ε = 0, the periodic orbit y = 0 belongs to a
continuum of periodic orbits.

The proof is made in two steps. First we show that the values bi = b̃i(0),
i = 0, 1, . . . ,m − 3, can be chosen so that y = 0 is a limit cycle of (5) of
multiplicity m at first order in ε. This part of the proof is the same as the
one given in [7], now in a particular case. The second step consists in using

the Implicit Function Theorem to show that we can find functions b̃i(ε),
i = 0, 1, . . . ,m− 3, such that y = 0 is a limit cycle of multiplicity m of (5),
at any order of ε.

We expand the function ψ(x; y0, ε) in Taylor series in a neighborhood
of ε = 0: ψ(x; y0, ε) = ψ0(x; y0) + εψ1(x; y0) + O(ε2). The condition
ψ(0; y0, ε) = y0 implies that ψ0(0; y0) = y0 and ψ1(0; y0) = 0. We expand
the equality

∂ψ(x; y0, ε)

∂x
= (1− 2x)ψ(x; y0, ε)

2 + ε b(x, ε)ψ(x; y0, ε)
3,

in power series of ε and we equate the coefficients of the powers ε0 and ε1.
We deduce that ψ0(x; y0) = y0/(1 − A(x)y0), as we have seen before, and
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that

ψ1(x; y0) = ψ0(x; y0)
2
∫ x

0
b(s, 0)ψ0(s; y0) ds.

We remark that y = 0 is a limit cycle of (5) of multiplicity m at first order
in ε if ψ1(1; y0) = c ym0 + O(ym+1

0 ) with c ∈ R, c 6= 0. We evaluate ψ1(x; y0)
in x = 1 and we recall that ψ0(1; y0) = y0. We have that

ψ1(1; y0) = y30

∫ 1

0

b(s, 0)

1−A(s)y0
ds.

We define the values Ik =

∫ 1

0
A(s)k ds, for any integer k with k ≥ 0. Since

b(s, 0) = b0 + b1A(s) + b2A(s)
2 + . . . + bm−3A(s)

m−3, we can write

ψ1(1; y0) = y30



∫ 1

0

(
m−3∑

i=0

biA(s)
i

)


m−3∑

j=0

A(s)j yj0 + O(y0)
m−2


 ds




= y30



m−3∑

j=0

(∫ 1

0

(
m−3∑

i=0

biA(s)
i+j

)
ds

)
yj0 + O(ym−2

0 )




= y30



m−3∑

j=0

(
m−3∑

i=0

bi Ii+j

)
yj0 + O(ym−2

0 )


 .

We consider the system ofm−2 linear equations with the (m−2)×(m−2)
matrix M = (mij) = (Ii+j), for 0 ≤ i, j ≤ m − 3, the vector of m − 2

unknowns (b0, b1, b2, . . . , bm−3) and independent vector (0, 0, . . .(m−3) , 0, 1).
If we show that the determinant ofM is different from zero, we will have that
this system always has a unique solution and, thus, we can always find values

of b0, b1, . . . , bm−3 for which ψ1(1; y0) = ym0 + O
(
ym+1
0

)
. We consider the

vector space S of real polynomials generated linear combinations of A(x)j ,
with j = 0, 1, . . . ,m− 3, and where we recall that A(x) = x− x2. Then

S =





m−3∑

j=0

cjA(x)
j : cj ∈ R



 ,

is a real vector space of dimension m − 2. Given f(x), g(x) ∈ S, we can

define the inner product of f(x) and g(x) by 〈f, g〉 =

∫ 1

0
f(x) g(x) dx. It is

clear that A(x)j , with j = 0, 1, . . . ,m − 3 forms a basis of S and that M
is the symmetric matrix of the metrics corresponding to this inner product.
Therefore det(M) 6= 0.

We have proved that we can always find a polynomial b(x, 0) such that
the differential equation (5) has y = 0 as limit cycle of multiplicity m, at
first order in ε. We will use b(x, ε) as a function in ε in order to show the
result at any order of ε. We consider again the solution y = ψ(x; y0, ε) of
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equation (5), which is analytic in a neighborhood of the initial condition
y0 = 0. We have that ψ(x; 0, ε) ≡ 0. We expand the function ψ(x; y0, ε) in
Taylor series in a neighborhood of y0 = 0:

ψ(x; y0, ε) = ϕ̃1(x; ε, b) y0 + ϕ̃2(x; ε, b) y
2
0 + O(y30),

where we remark the dependence on the parameters b. The condition
ψ(0; y0, ε) = y0 implies that ϕ̃1(0; ε, b) = 1 and ϕ̃2(0; ε, b) = 0. Equat-
ing the coefficients of y0 and y20 in the equality

∂ψ(x; y0, ε)

∂x
= (1− 2x)ψ(x; y0, ε)

2 + ε b(x, ε)ψ(x; y0, ε)
3,

we deduce that ϕ̃1(x; ε, b) ≡ 1 and ϕ̃2(x; ε, b) = A(x) = x − x2. On the
other hand, ψ(1; y0, 0) = y0, so we can write

ψ(1; y0, ε) = y0 + ε
m∑

i=3

ϕi(1; ε, b) y
i
0 + O(ym+1

0 ),

where we recall that A(1) = 0 and that ϕi(0; ε, b) = 0 for i ≥ 3. In order
to have y = 0 as a limit cycle of multiplicity m, we are going to show that
we can solve the following system of m − 2 equations ϕi(1; ε, b) = 0 for
i = 3, 4, . . . ,m − 1 and ϕm(1; ε, b) = 1. We consider the function Φ(ε, b) :
R× Rm−2 → R defined by Φ(ε, b) = (ϕ3(1; ε, b), ϕ4(1; ε, b), . . . , ϕm(1; ε, b)),

where we treat b as the m − 2 variables given by the coefficients b̃i, with
i = 0, 1, 2, . . . ,m− 3.

As we have defined ψ(x; y0, ε) = ψ0(x; y0) + εψ1(x; y0) + O(ε2), which
implies that

∑m
i=3 ϕi(1; ε, b) y

i
0 + O(ym+1

0 ) = ψ1(1; y0) + O(ε). In the pre-

vious paragraph we have shown that ϕi(1; 0, b) =
∑m−3

j=0 Ii+j bj + O(ε).

We consider the values b∗ = (b0, b1, . . . , bm−3) described in the previous
paragraph, that is, the solution of the linear system of equations with the
matrix M and independent vector (0, 0, . . .(m−3) , 0, 1). We deduce that

Φ(0, b∗) = (0, 0, . . .(m−3) , 0, 1) and that the Jacobian matrix DbΦ(ε, b) cor-
responding to the derivation only with respect to the variables b satisfies
DbΦ(0, b∗) = M. Thus its determinant is different from zero. By the Im-

plicit Function Theorem, we can ensure the existence ofm−2 functions b̃0(ε),

b̃1(ε), . . . b̃m−3(ε) analytic in a neighborhood of ε = 0, such that b̃i(0) = bi
for i = 0, 1, . . . ,m− 3, and which satisfy

Φ
(
ε, b̃0(ε), b̃1(ε), . . . , b̃m−3(ε)

)
≡ (0, 0, . . .(m−3) , 0, 1),

for any ε in a neighborhood of ε = 0. ¤
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