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Abstract

We begin by studying the dynamic generated by iteration of birational maps in Rk

with k − 1 independent rational first integrals. We prove that each level curve can

be desingularized and compactified being homeomorphic to a finite union of disjoint

circles and open intervals. Furthermore, the map can be extended homeomorphically

in a natural way to this space. After, we focus our attention in the case that the map

has a rational invariant measure and we see that in most cases the orbit of a point or

it is periodic or it fulfills densely some connected components of its corresponding level

set. Some applications in dimension two and three are presented.
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1 Introduction

In this paper we study the dynamic generated by iteration of birational maps F (x) , x ∈ Rk

having k − 1 functionally independent rational first integrals.

A birational map is a map with rational components such that it has an inverse also

rational. Recall that a first integral of the dynamical system generated by a map F is a non-

constant R-valued function H which is constant on the orbits of F. That is, H(p) = H(F (p))

for all p such that the above equality has sense. A set H1,H2, . . . ,Hℓ of first integrals of

F is said to be functionally independent if the rank of the matrix (DH)(p) is ℓ for all p

(except perhaps for p belonging to a zero measure set) where H = (H1,H2, . . . ,Hℓ). Clearly,

∗The authors are partially supported by grants MTM2008-03437, MTM2008-01486 and 2009SGR-410.
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the maximum number ℓ of functionally independent first integrals for F is k. When ℓ = k

it can be proved that in most cases there exists some p ∈ N such that F p = Id, see [4].

The case ℓ = k − 1 is sometimes called in the literature, the integrable case. So we are

interested in integrable birational maps having rational first integrals. Examples of such a

maps are studied in a large number of papers, see for instance [1], [2], [9], [10], [12], [15],

[16],[17],[18],[19] and [26] for maps defined in R2 and [5],[7],[11],[14], [21], [22] and [23] for

maps defined in Rk with k > 2.

In general a birational map F is not defined in all Rk. In some points ||F || goes to infinity
when we approach to these points. This fact suggests to consider the extension of F on the

projective space P (Rk). But also in this case there are some points of indeterminacy, i. e.,

points in which F can not be extended in a continuous way. To avoid this problem most

of the above cited papers reduce the study on some invariant open regions of Rk in which

the birational map F is well defined. The goal of this paper is to determine the behavior

of the orbit of every point x ∈ Rk such that Fn(x) is well defined for all n. Our approach is

the study of the dynamics of F restricted to each invariant level, that in the integrable case

is a curve that can have several connected components. Roughly speaking our results say

that each level can be compactified and desingularized obtaining a finite union of disjoint

circles and intervals. Moreover F can be redefined in this compactified space in such a way

that it is a homeomorphism.

Although the results that we get could also be obtained by using results of real algebraic

geometry (see [9], [20] and [24] for the planar case), we prefer our approach which mainly

uses results and tools of dynamical systems.

To state the main results we need to introduce some notation.

For a birational map F we will denote by G its rational inverse. Assuming F birational

integrable on Rk, consider H1,H2, . . . ,Hk−1, a rational family of independent first integrals.

Clearly this family is also a rational family of independent first integrals for G. Given a first

integral H = P
Q with P and Q coprimes and c ∈ R the set {x ∈ Rk : P (x) = cQ(x)} will

be called the c level set of H and it will be denoted by the equation H(x) = c. We also

consider the case c = ∞ that corresponds to the set {x ∈ Rk : Q(x) = 0}. We denote by

R̄ = R ∪ {∞} and for any c = (c1, . . . , ck−1) ∈ R̄k−1 set

Σc = {x ∈ Rk : Hi(x) = ci, for i = 1, . . . k − 1}.

For any c ∈ R̄k−1 the set Σc will be called a c level set of H1,H2, . . . ,Hk−1. Note that

the level sets of H1,H2, . . . ,Hk−1 are F -invariants and also G-invariants. Note also that

generically these level sets are one dimensional algebraic sets (this is due to the fact that

H1,H2, . . . ,Hk−1 are functionally independents), and hence all the points except perhaps

a finite subset (the set of singular points) admit a neighborhood which is homeomorphic to
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an open interval of the real line. However for some values of c,Σc could have dimension

greater than one as algebraic set. For instance, consider the case where two first integrals

H1 and H2 have the same denominator (this occurs in the 3-dimensional Lyness equation,

see Section 3.3). In this setting the equations H1 = ∞ and H2 = ∞ are the same equation

and hence the level set c = (∞,∞, a3, . . . , ak−1) will be defined by at most k−2 polynomial

equations. Hence its dimension is at least 2. Nevertheless this situation can occur only in

a negligible subset of the levels. In fact for a level c consider x ∈ Σc such that the map

H = (H1,H2, . . . ,Hk−1) is well defined. Then either the rank of D(H)(x) is k − 1 and in

this case the implicit function theorem implies that Σc has dimension one locally at x, or

D(H)(x) has rank less than k − 1. In this last case Sard’s theorem implies that c belongs

to a negligible set in Rk−1.

Given a birational map F consider the determinant of the jacobian matrix of F at x,

which clearly is a rational function. Let C(F ) (respectively D(F )) be the set of points

x ∈ Rk such that det(DF )(x) = 0 (respectively det(DG) = 0). We say that the level set

Σc is regular if it has dimension one and Σc ∩ C(F ) and Σc ∩D(F ) are finite sets.

For a one-dimensional algebraic set X we denote by S(X) the set of singular points of

X. It is known that S(X) is a finite set. In all the paper “almost all p ∈ A” means for all

p ∈ A except, perhaps, for a finite subset of A.

We begin by distinguishing between two algebraic subsets of Σc, being one of them

the good set for the study of the iterates of F. After, we prove that this good set can be

desingularized and compactified in such a way that the study of F reduces to the study of

some orientation preserving homeomorphisms on circles and intervals.

Our main result is the following theorem:

Theorem A. Let F (x) , x ∈ Rk be a birational map having H1,H2, . . . ,Hk−1 rational first

integrals functionally independent, let G(x) be its rational inverse, and let Σc be a regular

level set of H = (H1,H2, . . . ,Hk−1). Then

1. Σc can be decomposed as the union of two algebraic sets Σ1
c and Σ2

c that do not share

irreducible components satisfying the following properties:

(a) For all points x ∈ Σ1
c \ Σ2

c the birational maps F and G are well defined at x.

Moreover for these points F (x), G(x) ∈ Σ1
c.

(b) For each x ∈ Σ2
c there exists n and m such that Fn and Gm are not defined at x.

2. Let x ∈ S(Σ1
c) not isolated in Σ1

c such that Fn(x) is defined for all n ≥ 0. Then

the orbit of x is periodic and contained in S(Σ1
c). Moreover in this case x has not

preimages outside S(Σ1
c).
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3. There exists a compactification Σ
1
c of Σ1

c \ S(Σ1
c) obtained by adding a finite set of

points to Σ1
c \ S(Σ1

c) and an extension F̄ : Σ
1
c −→ Σ

1
c of F such that:

(a) Σ
1
c has a finite number of connected components, which are, topologically, circles

and closed intervals:

Σ
1
c = (∪s

i=1 Si) ∪
(
∪r
j=1 Ij

)
.

(b) F̄ is a homeomorphism from Σ
1
c to itself. Thus, for all i = 1, . . . , s (respectively,

for all j = 1, . . . , r) there exists a natural number m such that Si (resp. Ij) is

invariant by F̄m and F̄m restricted to Si (resp. Ij) is an orientation preserving

homeomorphism.

Observe that all the maps studied in the above mentioned papers belong to the class

in which we are interested in, but all of them have an extra property: the existence of (at

least) one rational function µ satisfying:

µ(F (p)) = det (DF )(p) · µ(p) (1)

for all p such that F and µ are well defined.

The existence of a function µ satisfying condition (1) is related with the existence of an

invariant measure of F absolutely continous with respect the Lebesgue measure given by

m =
∫
λdx where λ = 1/µ, and λ is the Radon-Nikodym derivative of m with respect to

dx (see [[25], Section 0.4]).

A preliminary result related with these kind of integrable maps, is the next one.

Theorem. (See [6]). Let F : U → U be a diffeomorphism having k − 1 functionally

independent first integrals H1,H2, . . . ,Hk−1, where U is an open connected set U ⊂ Rk and

let µ be a function satisfying condition (1). Then the following statements hold:

(i) The vector fields

Xµ(p) =

{
µ(p) (−H1,y,H1,x) , if k = 2;

µ(p) (∇H1(p)×∇H2(p)× · · · × ∇Hn−1(p)) , if k > 2.
(2)

share with F the same set of functionally independent first integrals.

(ii) The function µ satisfies condition (1) if and only if the vector field Xµ satisfies

Xµ(F (p)) = (DF )(p) ·Xµ(p). (3)

(iii) For each p ∈ U there is a natural number m, such that the integral curve of Xµ passing

thought p, γp, is invariant by Fm and:
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(a) If γp is a critical point of ẋ = Xµ (x), then p is a fixed point of Fm.

(b) If γp is a periodic orbit of ẋ = Xµ (x), then F
m restricted to γp is conjugated to

a rotation of the circle.

(c) If γp is diffeomorphic to the real line then Fm restricted to γp is conjugated to a

translation of the line.

Some authors say the vector field Xµ in the above theorem is a Lie-symmetry of F

(see, for instance, [13]). This theorem cannot be applied directly to our context, because in

general, birational mappings are not defined in the whole Rk. However we can generalize it

to obtain a more precise description of the dynamics in the algebraics sets Σ1
c. In order to

state our result accurately we need to introduce some more notations.

Given an integrable birational map F on Rk with rational first integrals and given a

rational function µ satisfying condition (1), for each c such that Σc is a regular level, we

denote by

Ec = {x ∈ Σ
1
c : Xµ is not defined at x} ∪ {x ∈ Σ

1
c : Xµ(x) = 0},

where Σ
1
c is defined and constructed in Theorem A, and Xµ is the vector field defined in

Theorem 1. We call Ec the exceptional set of Σc. Notice that Ec contains the points in Σ1
c

at which the vector field Xµ is not defined as well as the points added to Σ1
c to compactify

and desingularize it.

On the other hand we say that a fixed point x of a map f is weakly-isolated if for any

neighborhood V of x there exists some y ∈ V such that f(y) 6= y. We will say that a n-

periodic point x of f is weakly-isolated if x is a weakly-isolated fixed point of fn. Notice

that if x is an isolated fixed point in the usual sense, then it is also a weakly-isolated fixed

point.

Theorem B. Let F (x) , x ∈ Rk be a birational map having H1,H2, . . . ,Hk−1 rational

first integrals functionally independent and an associated vector field given by (2) with µ a

rational function satisfying condition (1). Let Σc be a regular level, and let

Σ
1
c = (∪s

i=1 Si) ∪
(
∪r
j=1 Ij

)

be the set defined in Theorem A. Assume that Σ
1
c ∩Ec is a finite set. For i = 1, . . . s set mi

the smallest natural number such that F̄mi is an orientation preserving homeomorphism of

Si and for j = 1, . . . , r set lj the smallest natural number such that F̄ lj is an orientation

preserving homeomorphism of Ij . Then the following assertions hold:

(a) F̄mi |Si is either conjugated to a rotation or there is some weakly-isolated periodic orbit

contained in Ec ∩Si. In this last case all weakly-isolated orbits in Si are contained in
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Ec, the rotation number is rational, and the alpha and omega limit of all non-periodic

points are some of these weakly-isolated orbits.

(b) F̄ lj |Ij is either the identity or it has some weakly-isolated fixed point x. In this case

x ∈ Ec and the alpha and omega limit of all non-fixed points are some of these weakly-

isolated fixed points.

In the view of the result established in Theorem B, we give the following definition:

Definition 1. We say that the dynamic of a point p is standard if either, the orbit of p is

periodic or it fulfills densely some connected components of its corresponding level set.

We notice that if the exceptional set Ec does not contain finite invariant subsets, then

the dynamics of any point of Σ1
c is standard.

In order to do a description of the dynamic of a concrete birational integrable map

with rational first integrals and with a rational function µ(p) satisfying condition (1), it is

necessary to study the topology of its level curves and apply Theorems A and B. In Section

3 we give some examples in order to show how to apply the general results. Specifically, we

study the two and the three dimensional Lyness equation and a family of area preserving

mappings.

Finally we propose the following problem:

Open problem. Given a birational integrable map with rational first integrals, does al-

ways exists a rational function µ(p) satisfying condition (1), and therefore a rational Lie-

symmetry?

In all the exemples that we have found in the literature the above question has an

affirmative answer. On the other hand we point out that if the map is integrable but not

rational then there are examples with a negative answer to the problem, see [8].

The paper is organized as follows. In Section 2 we prove Theorems A and B while in

Section 3 some examples and applications are given.

Acknowledgements We want to thank Joaquim Roé for his advising in the results of Real

Algebraic Geometry and also to Armengol Gasull for stimulating and helpful indications.

2 Proofs of Theorems A and B

First of all we recall some notations and results on real algebraic geometry which we freely

will use trough the paper. An algebraic set X on Rk is the set of common real zeros of

a finite set of polynomials p1, . . . , ps ∈ R[x1, . . . , xk]. As usual we call X the variety of

p1, . . . , ps and we will write X = V (p1, . . . , ps). Clearly V (p1, . . . , ps) = V (< pi, . . . , ps >)
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where < p1, . . . , ps > denotes the ideal generated by p1, . . . , ps. We say that an algebraic

set X = V (I) is irreducible if X = Y ∪ Z with Y and Z algebraic sets, implies that either

X = Y or X = Z. It is well known that this occurs if and only if rad(I) is a prime real

ideal (see [3]). It is also well known that any algebraic set X decomposes as a finite union

of irreducible algebraic sets called the irreducible components of X.

We will say that an algebraic set X has dimension 0 if it is a finite set. We will say that

an irreducible algebraic set X has dimension 1 if it is not a finite set of points and if any

algebraic set Y  X has dimension 0.We will say that an algebraic set has dimension 1 if all

its irreducible components have dimension 1 or 0 and at least one of them has dimension 1.

Let X be a one-dimensional algebraic set. It is well known that there exists a minimal

finite subset of X, S such that X \ S is a differentiable sub-manifold of Rk. The elements

of S are called the singular points of X.

Next proposition is the first step to prove Theorem A.

Proposition 2. Let F : Rk −→ Rk be a birational map having H1,H2, . . . ,Hk−1 ra-

tional first integrals functionally independent, and let Σc be a regular level set of H =

(H1,H2, . . . ,Hk−1). Then Σc can be decomposed as the union of two algebraic sets Σ1
c and

Σ2
c, that do not share irreducible components, satisfying the following properties:

(a) For each x ∈ Σ2
c there exists n and m such that Fn and Gm are not defined at x.

(b) The set Σ1
c ∩ Σ2

c is a finite set.

(c) For all points x ∈ Σ1
c\Σ2

c the birational maps F and G are well defined at x. Moreover

for these points F (x), G(x) ∈ Σ1
c.

Proof.

Denote by A (respectively B) the set of points where F (respectively G) is not defined.

Clearly A and B are algebraic sets. Let M be a irreducible one dimensional component of

Σc. Thus A ∩M ⊂ M is an algebraic set and since M is irreducible it follows that either

A∩M =M or A∩M is a finite set of points. Thus, given an irreducible componentM either

F is not defined at each point of M or F is defined in almost all points of M. The same

situation holds for G. We denote by F−1(M) the set F−1(M) = {x ∈ Σc : F (x) ∈ M}.
Note that F−1(M) = X \ A where X is a one dimensional algebraic set contained in Σc.

Note also that each irreducible component of X either is contained in A or cuts A in a finite

set. It implies that either F−1(M) is empty or adding a finite set of points to F−1(M) (in

fact, the closure of F−1(M) in the Zariski topology) we get an algebraic set. In this last

case we still denote by F−1(M) the algebraic set obtained adding these points. Clearly the

same situation holds for G.
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LetM be an irreducible one-dimensional component of Σc and assume that F is defined

on M. We claim that in the same sense as before (that is perhaps adding a finite set of

points) F (M) is an algebraic set having only one irreducible one dimensional component

of Σc. Since F is defined in M and Σc is regular it follows that F is defined at x and

det(DF )(x) 6= 0 for almost all x ∈M. Then from the inverse function theorem we get that

G is defined at F (x) and F−1(F (x)) = G(F (x)) = x for almost all x ∈ M. Set x ∈ M, not

isolated in M and such that F is defined at x. Also from the regularity of Σc it follows that

F (x) is not isolated on its level set and hence it belongs to some one-dimensional component

of the level. Then a neighborhood V of x in M has the property that F (V ) cuts at least

one dimensional irreducible component of Σc in one arc. Denoting this component by N

we claim that N ⊂ F (M). Note that from the previous observation G is defined on N and

G−1(M) is a one dimensional algebraic set which cuts N in one arc. Since N is irreducible

then N ⊂ G−1(M) and also from the above observation it follows that N ⊂ F (M). This

proves that F (M) is an algebraic set. Now to finish the claim it remains to prove that

F (M) has only one irreducible one dimensional component. Assume that F (M) has more

than one irreducible one-dimensional components, say N1, . . . , Nk. Then G(Ni) = M for

i = 1, . . . , k. This implies that almost all points on M have more than one preimage by G

which implies that det(DG) = 0 in these preimages which contradicts the regularity of Σc.

Thus the claim follows. Note also that the same argument proves that F−1(M) has at most

one dimensional irreducible component when M is irreducible.

Recall that Σc ∩ A is an algebraic set. Assume that it has some one dimensional irre-

ducible component M . We claim that there exists k ≥ 0 such that F−k(M) is a finite set

of points. If F−1(M) is not a finite set, then from the above observation it is an irreducible

component of Σc. Since the number of irreducible components is finite it follows that either

there exits k such that F−k(M) is a finite set or there exists r < s such that F−r(M)

and F−s(M) are irreducible one dimensional components and F−r(M) = F−s(M). In the

second case, it follows that M = F r−s(M). This is a contradiction, because by construction

F is defined at F r−s(M), and M ⊂ A. Thus the claim is proved.

Notice that if k is the first natural number such that F−k(M) is finite then for almost

all y ∈ F−k+1(M), G is not defined at y.

Let M1, . . . ,Mn be the set of irreducible components of Σc ∩ A. For j = 1, . . . , n let ij

be the largest natural number such that F−ij(Mj) is not a finite set. We define

Σ2
c = ∪n

j=1

(
∪ij
l=0F

−l(Mj)
)
.

By construction Σ2
c satisfies (a).

Let us denote by B the set of irreducible components of Σc not contained in Σ2
c. Then
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we define

Σ1
c = ∪Bi∈BBi.

Clearly Σ1
c is an algebraic set and Σc = Σ1

c ∪Σ2
c. Since by construction both algebraic sets

do not share irreducible components, statement (b) follows. This implies that F is defined

for all x ∈ Σ1
c except for the points in Σ1

c ∩ Σ2
c.

Set Bl ∈ B. We have that F (Bl) is also a 1-dimensional irreducible component. If

F (Bl) ⊂ Σ2
c then by construction Bl ⊂ Σ2

c which gives a contradiction. Thus F (Bl) ∈ B.
So F acts on B. Moreover this action is injective, because if F (Bi) = F (Bj) then JF is

identically 0 on Bi ∪Bj which contradicts the hypotheses.

To finish the proof it suffices to show that G also acts on B. Suppose to arrive a con-

tradiction that G is not defined at B ∈ B. Then since B1 = F (B) ∈ B it follows that

G−1(B) = B1. Iterating this argument and since F acts injectively on B we will obtain that

there exists k be such that G−k(B) = B. But this implies that G is defined on B which

gives a contradiction. This ends the proof of the proposition.

In order to illustrate how the decomposition established in Proposition 2 works, we

consider the three dimensional Lyness equation.

Example 1. Consider the three dimensional Lyness equation

F (x, y, z) = (y, z,
a+ y + z

x
),

which is a birational map of R3, having as a rational inverse

G(x, y, z) = (
a+ x+ y

z
, x, y).

Its first integrals are given by:

H1(x, y, z) =
(x+1)(y+1)(z+1)(a+x+y+z)

xyz ,

H2(x, y, z) =
(1+x+y)(1+y+z)(a+x+y+z+xz)

xyz .

We notice that the level (∞,∞) has dimension two and that the level (0, 0) contains the

line {(x, 1 − a,−1) , x ∈ R} where det(DF ) = 0 and also the line {(−1, 1 − a, z) , z ∈
R} where det(DG) = 0. Some simple computations imply that for all c = (c1, c2) with

(c1, c2) 6= (∞,∞) and (c1, c2) 6= (0, 0), Σc is a regular level.

Fix a level c = (c1, c2) which is defined trough

(x+ 1)(y + 1)(z + 1)(a+ x+ y + z)− c1xyz = 0,

(1 + x+ y)(1 + y + z)(a+ x+ y + z + xz)− c2xyz = 0.

The map F is not defined when x = 0. This implies that (y + 1)(z + 1)(a+ y + z) = 0 and

(1 + y)(1 + y + z)(a+ y + z) = 0. We get the two one-dimensional components:

M1 = {(0,−1, z) : z ∈ R} and M2 = {(0, y,−a − y) : y ∈ R}.
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The preimages of M1 are:

F−1(M1) = {(λ, 0,−1) : λ ∈ R , λ 6= 0},
F−2(M1) = {(−(a+ λ), λ, 0) : λ ∈ R , λ 6= 0},

and in general F−3(M1) has a finite number of points in Σc: these are the points (x,−(a+

λ), λ) with x 6= 0 and λ 6= 0 which satisfy H1 = c1 and H2 = c2. Only when λ + 1 = 0,

F−3(M1) has a continuum of points: the set {(x, 1 − a,−1)} which is contained in H1 =

0 , H2 = 0. The preimages of M2 are:

F−1(M2) = {(−1, 0, y) : y ∈ R},
F−2(M2) = {(λ,−1, 0) : λ ∈ R , λ 6= 0},

and the only point in F−2(M2) which has preimage is when λ = 1− a. In this case all the

straight line (x, 1− a,−1) collapses to (1− a,−1, 0) via F. If x 6= 0 then H1(x, 1− a,−1) =

0 = H2(x, 1 − a,−1), while the point (0, 1 − a,−1) ∈ Σc for all regular level c. Hence, in

general, F−3(M2) reduces to the point (0, 1 − a,−1). So, in this example,

Σ2
c =

(
∪2
l=0F

−l(M1)
)
∪
(
∪2
l=0F

−l(M2)
)
,

for all regular level c.

In the case that c = (0, 0) some simple computations show that the preimages of the

set in which F is not defined run all the set Σ(0,0), that is, the orbit of the points in Σ(0,0)

is not entirely defined.

Notice that from the above Proposition we see that if Σc is a regular level then the

dynamics of F and G are concentrate on the algebraic set Σ1
c. However there is a finite

subset of Σ1
c in which F or G are not defined.

Our next step is to extend F and G to these points. Recall that since Σ1
c is a one

dimensional algebraic set it has only a finite number of singularities.

Lemma 3. Let Σc be a regular level and let x be a non-singular point of Σ1
c. Assume that

F is not defined at x. Then either

lim
y→x,y∈Σ1

c

||F (y)|| = ∞

or

lim
y→x,y∈Σ1

c

F (y)

exists and F can be extended analytically at x.
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Proof. Since x is a non-singular point of Σc it follows that there exist neighborhoods U of

x in Σ1
c and I of 0 ∈ R and an analytic map ϕ : I −→ U such that ϕ(0) = x and ϕ′(0) 6= 0.

Let Fi, i = 1, . . . k to denote the components of F. Thus

lim
y→x,y∈Σ1

c

Fi(y) = lim
t→0

Fi(ϕ(t)).

The result follows from the fact that Fi(ϕ(t)) is a meromorphic function in one variable.

From now on we denote again by F the extension of F that ensures the above lemma. So

at this point we can assume that if F is not defined at x ∈ Σ1
c then either limy→x,y∈Σ1

c
||F (y)|| =

∞ or x is a singular point. Clearly the same situation holds for G. Next lemma shows that

when F is defined then it is a local homeomorphism.

Lemma 4. Let Σc be a regular level set and let x ∈ Σ1
c. Assume that F is defined at x and

x and F (x) are non singular points in Σ1
c. Then there exists an open neighborhood U of x

in Σc such that F maps homeomorphically U on its image.

Proof. Since F (x) is non singular we can consider a small neighborhood W of F (x) in Σ1
c

homeomorphic to an open interval. Since F is continuous at x there exists U, a neighborhood

of x in Σc, homeomorphic to an open interval, such that F (U) ⊂W. If F |U is not injective

then either, there is a subinterval of U in which F is constant or there is a subinterval of

W which is covered two times by F |U . In the first case U contains an interval in which the

det(DF ) is zero. In the second one we get the same situation forW and the det(DG). Both

conclusions contradict the properties of Σ1
c.

The next step is to desingularize and compactify Σ1
c. With this aim we denote by S(Σ1

c)

the set of singular points of Σ1
c.

Consider Σ1
c \ S(Σ1

c). This set can be described as

Σ1
c \ S(Σ1

c) = (∪r
i=1 Ii) ∪ (∪s

i=1 Si) , (4)

where each Ii is homeomorphic to an open interval of the line and each Si is homeomorphic to

a circle. We consider r disjoint open intervals Ji = (ai, bi) in R without common boundaries

with an homeomorphism ϕi from Ji to Ii for each i = 1, 2, . . . , k − 1. Set

Ωc = (∪r
i=1 Ji) ∪ (∪s

i=1 Si)

and

ϕ : Ωc −→ Σ1
c \ S(Σ1

c)

defined by
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ϕ(x) =

{
ϕi(x), if x ∈ Ji for some i

x, otherwise.

Clearly ϕ is a homeomorphism between Ωc and Σ1
c \ S(Σ1

c). Let F̃ = ϕ−1 ◦ F ◦ ϕ and

G̃ = ϕ−1 ◦G ◦ ϕ be the natural versions of F and G in Ωc. Since F (respectively F−1) and

F̃ (respectively F̃−1) are conjugated we fix our attention to the dynamics of F̃ and F̃−1.

Note that F̃ and F̃−1 are continuous and monotonic in the points where they are defined.

Set J i = [ai, bi] and Ωc =
(
∪r
i=1 J i

)
∪ (∪s

i=1 Si) . Then the boundary of Ωc, ∂(Ωc) =

∪r
i=1 {ai, bi}.

Definition 5. We say that a point x ∈ Σ1
c \S(Σ1

c) is a fork point for F if either, its image

under F is a singular point of Σ1
c or limy→x,y∈Σ1

c
‖F (y)‖ = ∞. If x is a fork point for F

we will say that ϕ−1(x) is a fork point for F̃ .

Let x ∈ Σ1
c \S(Σ1

c) be a fork point for F. If F (x) is a singular point then F̃ is not defined

at ϕ−1(x). However limy→ϕ−1(x)+(F̃ (y)) and limy→ϕ−1(x)−(F̃ (y)) exist, and both belong to

∂(Ωc).We point out that these limits are distinct. Otherwise some points on the left and on

the right side of ϕ−1(x) have the same image under F̃ . This implies that there are infinitely

many points near F (x) in which G is not defined, a contradiction with the regular character

of Σc. Clearly the same situation occurs for ϕ−1(x) when limy→x,y∈Σ1
c
‖F (y)‖ = ∞. Then the

only possible continuous extension of F̃ at the fork points, gives us a bivaluated “function”.

Also when x ∈ ∂(Ωc) the map F̃ can be easily extended to x through F̃ (x) = limy→x F̃ (y).

This limit exists by compacity and monotonicity arguments. Note that if x ∈ ∂(Ωc) verifies

that F̃ (x) /∈ ∂(Ωc) then F̃ (x) is a fork point for G̃.

In short we have extended F̃ to Ωc with the pathology that it is bivaluated at the fork

points. Moreover in the non-fork points it is continuous and monotone. We have to do

some identifications in order to obtain a well defined function. First, we prove the following

lemma.

Lemma 6. Given a fork point x of F̃ there exists a finite number of pairs (Pi, Qi), i =

1, 2, . . . , l with Pi, Qi ∈ ∂Ωc and a fork point y of G̃ such that the following scheme works:

P1 → P2 → · · · → Pl

ր ց
x y

ց ր
Q1 → Q2 → · · · → Ql

(5)

where the arrows mean images under F̃ . Furthermore all the points Pi, Qi which appear in

(5) are distinct.
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Proof of Lemma 6. Take x a fork point and let P1, Q1 be the two lateral limits of F̃ (y)

when y → x. First of all we claim that there exits n ∈ N such that F̃n(P1) /∈ ∂(Ωc). If not,

since ∂(Ωc) is finite, in the sequence F̃n(P1) there are some repetitions. Let i > 0 the first

natural number such that F̃ i(P1) ∈ {P1, F̃ (P1), . . . , F̃
i−1(P1)} and let 0 ≤ j < i be such that

F̃ j(P1) = F̃ i(P1). If F̃
i(P1) 6= P1 we get that j ≥ 1 and then F̃ (F̃ j−1(P1)) = F̃ (F̃ i−1(P1)).

Note that by construction F̃ j−1(P1) 6= F̃ i−1(P1). This fact implies that points near F̃ j−1(P1)

have the same image that points near F̃ i−1(P1). Translating this behavior to Σc this implies

that there are infinitely many points in which G is not defined contradicting our assumption

that Σc is regular. If F̃ i(P1) = P1 we get the same situation related to points near P1 and

points in one side of x. Thus the claim follows.

Let n be the first natural number such that F̃n(P1) = y /∈ ∂(Ωc). Now we claim that

F̃n(Q1) = y and for all 0 ≤ i < n, F̃ i(Q1) ∈ ∂(Ωc). First of all note that since for all

0 ≤ i < n , F̃ i(P1) ∈ ∂(Ωc), we get that x is a fork point for F̃ i+1. This implies that

F̃ i(Q1) ∈ ∂(Ωc). On the other hand since one lateral limit of F̃n+1 at x is y /∈ ∂(Ωc)

this implies that the other lateral limit also is equal to y. Lastly the fact that all the

boundary points appearing in this scheme are different follows again from the fact that Σc

is regular.

Definition 7. Given P,Q ∈ ∂(Ωc), we say that P ∼ Q if and only if either, P = Q or it

exists a fork point x and a natural number k such that F̃ k(x) = {P,Q}.

Lemma 8. The relation P ∼ Q defined above in ∂(Ωc) is an equivalence relation. Each

equivalence class has at most two points.

Proof Assume that P ∼ Q and Q ∼ R, i. e., F̃ k(x) = {P,Q} and F̃ s(y) = {Q,R} for

certain k, s ∈ N and x, y fork points. From Lemma 6, using the local injectivity of F and

G, it follows that k = s, x = y and consequently P = R.

Let Σ
1
c be the set Ωc with the above identifications. We notice that since the points of

Ωc are unique in its equivalence class we can consider Ωc as a subset of Σ
1
c.

Proposition 9. With the above notations the following hold:

(1) Σ
1
c =

(
∪l
i=1Ki

)
∪ (∪m

i=1 Si) where Ki, i = 1, . . . l are disjoint closed intervals and

Si, i = 1, . . . ,m are disjoint topological circles. The connected components of Σ
1
c are

precisely K1, . . . ,Kl, S1 . . . , Sm.

(2) The map F̃ can be extended to a homeomorphism F̄ on Σ
1
c and for each connected

component M of Σc there exists a natural number k such that F
k
is an orientation

preserving map from M to itself.
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Proof. Statement (1) follows from the fact that Ωc = (∪r
i=1Ji) ∪ (∪s

i=1 Si) and we have

identified some of the boundary points of the intervals Ji. Since each boundary point can

be identified at most with another boundary point it follows that, with this procedure, we

only can obtain intervals or circles.

Now we prove (2). We begin by proving that F is well defined and injective on Σ
1
c.

Assume that x ∈ Σ
1
c is not a fork point for F̃ . Then F (x) = F̃ (x) and F is injective in

this set.

Let x be a fork point and consider its corresponding scheme (10). Then F (x) = P1 = Q1.

Since Pi = Qi for i = 1, 2, . . . , l we see that F is compatible with the identifications. We

notice that if x, y is a pair of distinct fork points, then F (x) 6= F (y).

Now assume that P ∈ ∂(Ωc) and that the equivalence class of P has two different

elements P and Q. Then, P,Q are contained in a scheme like (10), so they are identified

and F (P ) = F (Q). If two of such points have the same image, then necessarily they are in

the same equivalence class and so, they coincide.

Finally if a point P ∈ ∂(Ωc) is the only one in its equivalence class, then we define

F̄ (P ) = limx→P F̃ (x). In this case F (P ) ∈ ∂(Ωc) and also F (P ) is the only one in its

equivalence class. So F just gives a permutation on the set of these points. Moreover no

different points of this type can have the same image under F .

Until now we have seen that F is well defined and injective on Σ
1
c. For the same reason

the map G is well defined and injective on Σ
1
c. And of course, F (and G) are continuous

in Σ
1
c. Since F is an homeomorphism it must be a permutation in the set of connected

components. This ends the proof of the proposition.

Proof of Theorem A. Statements (1) and (3) follow from Proposition 2 and Proposition

9. Now we prove statement (2). Assume that x ∈ S(Σ1
c) is not isolated in Σ1

c. Let l be the

number of branches of Σ1
c at x, that is the number of connected components of

(
Σ1
c \ {x}

)
∩V

where V is a small neighborhood of x in Rk. Clearly l > 2. If F (x) = x then the orbit of x

is periodic. Assume that F (x) 6= x. Since Σc is a regular level then the number of branches

at F (x) is greater or equal to l. Hence F (x) is a singular point. Iterating this argument it

follows that F i(x) is a singular point for all i ≥ 0. Denoting by li the number of branches

at F i(x) it also follows that li ≤ lj when i < j. Since the number of singularities is finite

it follows that there exists a first pair i < j such that F i(x) = F j(x) and from the above

observation li = lm = lj for all m between i and j. We claim that i must be 0. If not F i(x)

has two different preimages F i−1(x) and F j−1(x). Since li = lj−1 and li−1 > 2 the result

follows from the regularity of the level. So the claim is proved and the orbit of x is a periodic

orbit of singular points. Furthermore since x has a singular preimage with the same number

of branches, by the same argument as before, x can not have a regular preimage. This ends
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the proof of Theorem A.

In order to prove Theorem B, we consider the vector field Xµ defined in Theorem 1,

where the function µ satisfies the equation 1, i. e.:

µ(F (p)) = det (DF )(p) · µ(p) (6)

for all p such that F and µ are well defined. Then, the vector field Xµ satisfies:

Xµ(F (p)) = (DF )(p) ·Xµ(p), (7)

(see [6] for a proof). Let ϕ(t, p) be the solution of ẋ = Xµ(x) such that ϕ(0, p) = p defined

in its maximal interval Ip. Taking derivatives in respect to t and using condition (7) we

easily get

F (ϕ(t, p) = ϕ(t, F (p)) , ∀t ∈ Ip ∩ IF (p). (8)

Proof of Theorem B.

(a) First assume that Ec ∩Si = ∅. Then Si is a periodic orbit of the vector field Xµ. Fix

p ∈ Si and let τ be the less positive real number such that ϕ(τ, p) = F̄mi(p). Then, from

(8) we get that

F̄mi(ϕ(t, x)) = ϕ(t, F̄mi(x)) (9)

and hence ϕ(τ, x) = F̄mi(x) for any x ∈ Si. Thus F̄
mi is conjugated to the rigid rotation

R(eit) = ei(t+2πτ/T ) where T denotes the period of Si as a periodic orbit of the vector field

and being H(eit) = ϕ( T
2π t, p) the conjugation.

Now assume that Ec∩Si 6= ∅ and let y ∈ Ec∩Si. In the case that F̄mi(y) /∈ Ec, although

Xµ is not defined at y, we claim that we can extend the flow ϕ at the point y, in such a

way that condition (9) remains true.

To this end, for any t ∈ IF̄mi(y) we define

φ(t, y) = F̄−mi(ϕ(t, F̄mi(y)).

Let K and L be the two connected components of Si\Ec having y in its closure. Now we

are going to extend the flow ϕ at any point z ∈ K∪L. Set z ∈ K, and consider Iz = (t−z , t
+
z ),

the interval of definition of ϕ(t, z). Then we have that limt→t∗ ϕ(t, z)) = y where t∗ is one of

the endpoints of Iz. Assume for example that t∗ = t+z . Now we claim that t+z <∞. Clearly

it suffices to show that the right endpoint of Iw is finite for some w ∈ K. Since Ec ∩ Si is a
finite set, we can choose w ∈ K such that F̄mi(w) /∈ Ec. Furthermore we choose w near y in

such a way that F̄mi(y) and F̄mi(w) are in the same connected component of Si \Ec. Then

if t′ is such that ϕ(t′, F̄mi(y)) = F̄mi(w), it is clear that t′ = t+w and hence, t+w is finite.

15



Now for any t ∈ (t−z , t
+
z + t+

F̄mi(y)
) we define

φ(t, z) =





ϕ(t, z) if t ∈ Iz;

y, if t = t+z ;

F̄−miϕ(t− t+z , F̄
mi(y)) if t > t+z .

This new map φ is an extension of the previous ϕ and by construction it has the standard

properties of the flows and it satisfies condition (9). Iterating this procedure we can extend

the map ϕ to all the points in Ec except perhaps to a finite invariant set. If the map can

be extended to all Si then arguing as in the previous case we obtain that F̄mi is conjugated

to a rotation. If not this implies the existence of a finite invariant subset of Ec, which we

denote by P. In this case the rotation number of F̄mi restricted to Si is rational and all

the points of P are periodic points with the same period. If we denote by r its period we

get that F̄ rmi(p) = p for all p ∈ P. Although in this situation the map F̄ rmi could be the

identity map and F̄mi would be conjugated to a rotation. But, if it is not the case, there is

a weakly-isolated fixed point for F̄ rmi .

To end the proof of statement (a) it remains to prove that all the weakly-isolated orbits

are contained in Ec. But it is an easy consequence of condition (9): if p /∈ Ec, then the

equality F̄mi(ϕ(t, p)) = ϕ(t, F̄mi(p)) = ϕ(t, p) implies that ϕ(t, p) is a fixed point for any

t ∈ Ip, so p is not a weakly-isolated point of F̄ rmi .

(b) In the case of the interval we point out that by construction Īj ∩ Ec 6= ∅. Set
Jj = Īj \Ec. Clearly Jj is a finite union of disjoint open intervals. If F̄ lj is not the identity

map, then it exists some fixed point x of F̄ lj which is weakly-isolated. But as in the

previous case, condition (8) let us to deduce that if x /∈ Ec then x is not a weakly-isolated

fixed point.

3 Examples

3.1 The map F(x,y) = (y,−x+ (2y)/(a2 − y2)).

The area-preserving rational family of mappings

F (x, y) =

(
y,−x− βy2 + ǫy + ξ

αy2 + βy + γ

)
,

preserves the foliation

V (x, y) = αx2y2 + β(x2y + xy2) + γ(x2 + y2) + ǫxy + ξ(x+ y) = c,

and the dynamic of F is studied in some regions of R2 and for some values of the parameters

in different papers (see [2], [12], [17],[18],[19], for instance).
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The method established in the above sections make possible to know the full dynamic

of the map for all the values of the parameters. To avoid too many cases, we restrict our

attention to the uniparametric family

F (x, y) =

(
y,−x+

2y

a2 − y2

)
, with a > 1

which has the first integral

V (x, y) = x2y2 − a2(x2 + y2) + 2xy.

In order to implement our compactification let us introduce the following points, each

one of them having the natural meaning:

P1 = (a,−∞) , P2 = (−∞,−a) , P3 = (−a,∞) , P4 = (−∞, a)

Q1 = (a,∞) , Q2 = (∞,−a) , Q3 = (−a,−∞) , Q4 = (∞, a).

Furthermore note that when y2 = a2 the function F is not defined. Also when x2 = a2,

the formal inverse of F,

G(x, y) =

(
−y + 2x

a2 − x2
, x

)

is not defined. For all c we consider the four points in Σc :

xc =

(
c+ a4

2a
, a

)
, yc =

(
−a,−c+ a4

2a

)
, zc =

(
−c+ a4

2a
,−a

)
, tc =

(
a,
c+ a4

2a

)
. (10)

Lemma 10. With the notations introduced above, the following schemes work:

P1 → P2

ր ց
xc yc

ց ր
Q1 → Q2

(11)

and
P3 → P4

ր ց
zc tc,

ց ր
Q3 → Q4

(12)

where the arrows mean images under F̄ .

The proof of Lemma 10 follows straightforward just taking limits on Σc.

From the above lemma we see that for each c ∈ R, we have to do the identifications:

Pi ∼ Qi for i = 1, 2, 3, 4.
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On the other hand we notice that since the family of maps F are preserving measure,

i.e., det (DF )(p) = 1 for all p, then any constant function µ satisfies condition (1) and we

can apply Theorem B. To this end we can consider the vector field X := (−Vy, Vx) which

has the following expression:

X(x, y) =
(
−2x2y + 2 a2y − 2x

) ∂

∂x
+
(
2xy2 − 2 a2x+ 2 y

) ∂

∂y
.

Its critical points are:

R± := (±
√
1 + a2,∓

√
1 + a2)

S± := (±
√
a2 − 1,±

√
a2 − 1),

O := (0, 0),

which correspond to the levels:

c1 := −(a2 + 1)2,

c2 := −(a2 − 1)2,

c3 := 0.

We point out that the points {R+, R−} form a two-periodic orbit of F while S+, S− and

O are fixed points of F.

From now on we write α(p) (respectively, ω(p)) to denote the α (respectively, ω) limit

set of the point p.

Theorem 11. Assume that a > 1 and let p be a point such that Fn(p) is defined for all

n ∈ Z. Then,

(1) For all c 6= c1, c2 the dynamic of p is standard.

(2) For p ∈ Σc1, α(p) = ω(p) = {R+, R−}.

(3) For p ∈ Σc2 either, ω(p) = S+ and α(p) = S− or viceversa.

Proof. For c 6= c1, c2 and with the above notations, the setEc reduces to Ec = {P1, P2, P3, P4}
(where we have identified Pi with Qi for i = 1, 2, 3, 4) and the set Σ

1
c is a finite union of

circles. Notice that the point O is isolated in the level curve Σ0. Therefore in spite of O is

a critical point of the differential equation, the set E0 does not contain O. From Lemma 10

the extended orbit of each one of Pi is not periodic. Hence, from Theorem B we know that

for each circle S of Σ
1
c there exists a natural number m such that S is invariant for F̄m and

F̄m restricted to S is conjugated to a rotation of the circle. So, statement (1) follows.

For c = c1 the following equality holds:

V (x, y)− c1 = (ax+ xy + ay + 1 + a2)(−ax+ xy − ay + 1 + a2).
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Let us call H1 := (ax + xy + ay + 1 + a2) and H2 := (−ax + xy − ay + 1 + a2). In the

intersection of H1 = 0 and H2 = 0 we find the singular points R±.

The curve H1 = 0 (respectively H2 = 0) is compactified by adding P2, P3, Q2, Q3 (re-

spectively P1, P4, Q1, Q4) and it contains xc, tc (respectively yc, zc.)

Simple calculations show that F sends the hyperbola H1 = 0 to H2 = 0 and that

F (R+) = R− , F (R−) = R+. Hence the points R± are two periodic by F.

Following the procedure explained in Section 2, each singular point R+ and R− must

be substituted by four points. Set Mi and Ni, i = 1, 2, 3, 4 for the end points of Σc, where

M1,M3 (respectively N2, N4) are the limits on H1 = 0 and M2,M4 (respectively N1, N3)

are the limits on H2 = 0. From Lemma 10 it can be seen that F̄ (Mi) = Ni and F̄ (Ni) =Mi

for i = 1, 2, 3, 4.

Calling I1 := [M1, N2] , I2 := [M2, N1] , I3 := [M3, N4] and I4 := [M4, N3] we get that

Σ
1
c is the union of these four intervals. Each interval Ii is invariant by F̄

2 and the action of

F̄ 2 is conjugated to a homeomorphism of the interval with the two boundary points fixed

and no other fixed points. So, one of the points is an attractor point and the other one is

a repellor point for F̄ 2.

Then the exceptional set Ec1 contains four isolated two-periodic orbits which are the

blow-up of the original two-periodic points R+, R−. So, statement (2) follows.

The proof of the last case follows in a similar way. The basic difference is that each

interval appearing in the decomposition is invariant by the map.

In order to illustrate better the procedure explained in Section 2 and since the sets

V (x, y) = c can easily be drawn, we can do a more accurate description of the dynamics

of F on Σc. This description is synthesized in Figure 1 (case a > 1) which we are going to

explain when c < c1 = −(1 + a2)2, see (a) of Figure 1.

From Lemma 10 and taking into account the identifications Pi ∼ Qi for i = 1, 2, 3, 4

we see that Σ
1
c is the union of two circles, one of them containing P1, P3 and yc, tc and

the other one containing P2, P4 and xc, zc. Again from Lemma 10 , we can see that each

circle is invariant by F 2, and that F 2 is conjugated to a rotation of the circle. Each one

of the circles either, it is densely covered by the orbits of F 2 when the rotation number is

irrational or it is full of periodic points of F 2.

3.2 The map F(x,y) = (y, (a+ y)/x).

The dynamic of the k-dimensional Lyness equation F (x1, x2, . . . , xk) = (x2, x3, . . . , (a+∑k
i=2 xi)/x1) has been studied in several papers, specially the 2 and 3 dimensional cases

and mainly when the parameter a and the initial conditions are positive. In this section we
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describe de behavior of all the orbits of the two dimensional case for all the values of the

parameter a. We recall that when a = 1, the above map is globally periodic of period five.

It is well know that it has the first integral

H(x, y) =
(x+ 1)(y + 1)(a+ x+ y)

xy
.

The vector filed X = −µ(x, y) ∂
∂yH(x, y) +µ(x, y) ∂

∂xH(x, y), with µ(x, y) = xy satisfies

(7).
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P1 = Q1

P3 = Q3

P2 = Q2

P4 = Q4

F←→

P1

P2

P3

P4

Q1

Q2

Q3

Q4
xc

yc

tc

zc

(a) c < −(1 + a2)2

P3

P2 = Q2 P4 = Q4

F←→

P1

P2

P4

Q1

Q2

Q3

Q4

Q1 = P1
Q3 = P3

F←→

I1 I2 I3 I4

xc

yc

tc

zc

(b) c = −(1 + a2)2

P1 = Q1

P2 = Q2 P4 = Q4

P1

P2

P3

P4

Q1

Q2

Q3

Q4 P3 = Q3

y Fy F

xc

yc tc

zc

(c) −(1 + a2)2 < c < −(a2 − 1)2
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I1 I2 I3 I4

P3

P1

P2

P4

Q1

Q2

Q3

Q4

y F
Q2 = P2

Q3 = P3

Q4 = P4

Q1 = P1

y F y F y F

xc

yc

tc

zc

(d) c = −(a2 − 1)2

P3 = Q3

P1

P2

P3

P4

Q1

Q2

Q3

Q4

y FQ1 = P1 P4 = Q4

Q2 = P2

y F
xc

yc

tc

zc

(e) −(a2 − 1)2 < c < 0

P1

P2

P3

P4

Q1

Q2

Q3

Q4

y F

P3 = Q3

Q1 = P1 P4 = Q4

Q2 = P2

xc

yc

tc

zc

(f) c > 0

Figure 1: The level curves and its compactification

for the map F (x, y) = (y,−x,+ 2y
a2−y2

) with a > 1.
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The critical points, when they are defined, are

O1 = {(−1,−1) , (1− a,−1) , (−1, 1− a)},
O2 = {(1+

√
1+4a
2 , 1+

√
1+4a
2 )},

O3 = {(1−
√
1+4a
2 , 1−

√
1+4a
2 )},

O4 = {(−1±
√
4a−3

2 , −1∓
√
4a−3

2 )},

which belong to the levels:

c1 = 0,

c2 =
(3+

√
1+4a)2 (1+a+

√
1+4a)

(1+
√
1+4a)2

,

c3 =
(
√
1+4a−3)2 (1+a−

√
1+4a)

(
√
1+4a−1)2

,

c4 = a− 1,

respectively. The points of O2 ∪O3 are fixed points of F (x, y) while the points of O1 (resp.

O4) form a three (resp. two) periodic orbit of F (x, y).

The results that we obtain are summarized in the next theorem. Its proof follows in a

similar way that the proof of Theorem 11 and we omit the details for shortness.

Theorem 12. Assume that a 6= 1 and consider a point p ∈ Σc such that Fn(p) is defined

for all n ∈ Z. Then the following hold:

(1) Assume that a = −1/4. Then, if c /∈ {0, 27/4} then the dynamic of p is standard and

if c = 0 (resp. c = 27/4) then α(p) = ω(p) = O1, (resp. α(p) = ω(p) = O2 = O3).

(2) Assume that a < 3/4 , a 6= −1/4. Then, if c 6= 0 then the dynamic of p is standard

and if c = 0 then α(p) = ω(p) = O1.

(3) Assume that a = 3/4. Then, if c /∈ {0,−1/4} then the dynamic of p is standard. If

c = 0 (resp. c=−1/4) then α(p) = ω(p) = O1 (resp. α(p) = ω(p) = O3 = O4).

(4) Assume that a > 3/4. Then, if c 6= {0, a − 1} then the dynamic of p is standard and

if c = 0 (resp. c = a− 1) then α(p) = ω(p) = O1, (resp. α(p) = ω(p) = O4).

3.3 The map F(x,y, z) = (y, z, (a+ y + z)/x).

In this section we describe the dynamic of the Lyness equation for k = 3 considered in

the whole R3.

As we noticed in Example 1, the map F (x, y, z) =
(
y, z, a+y+z

x

)
has the two independent

first integrals:

H1(x, y, z) =
(x+1)(y+1)(z+1)(a+x+y+z)

xyz ,

H2(x, y, z) =
(1+x+y)(1+y+z)(a+x+y+z+xz)

xyz .
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On the other hand, the function

µ(x, y, z) = x(x+ 1)z(z + 1)− (a+ x+ y + z)y(y + 1)

satisfies condition (1), so we can apply Theorem B. The corresponding differential equation

is

X(x, y, z) =
[
x(x+ 1)(1 + y + z)(a + x+ y − yz) ∂

∂x + y(y + 1)(x − z)(a + x+ y + z + xz) ∂
∂y

+z(z + 1)(1 + x+ y)(a+ y + z − xy) ∂
∂z

]
/(xyz).

In order to state the results we need to introduce the following subsets of R3.

We denote by α1, α2 and α3 the curves

α1 = {(−1, t,−1) : t ∈ R \ {0, 1 − a}}
α2 = {(t,−1− t, t) : t ∈ R \ {0,−1, 1 − a}}
α3 = {{

(
t, a+t

t−1 , t
)
: t ∈ R \ {0, 1,−a} andP (t) ≤ 0}

,

where P (t) = (t+ 1)(2t2 + (3a− 1)t+ 1− a)(2t+ a− 1)(t2 + t+ a− 1)2.

Simple computations show that the points in α1 are 4-periodic for F and F 2(α1) ⊂ α1.

The points in α2 are 6-periodic for F and F 3(α2) ⊂ α2. Lastly points in α3 are 2-periodic

for F. Thus we also define the following invariant sets:

γ1 = α1 ∪ F (α1),

γ2 = α2 ∪ F (α2) ∪ F 2(α2),

γ3 = α3 ∪ F (α3).

,

And we denote by Ω1, Ω2 and Ω3 the surfaces :

Ω1 = {H1(x, y, z) = 0 , H2(x, y, z) ≥ −(a−1)2

4 , H2(x, y, z) 6= 0},
Ω2 = {H2(x, y, z) = 0 , H1(x, y, z) 6= 0},
Ω3 = {H1(x, y, z) = c1(t) , H2(x, y, z) = c2(t) : t ∈ R \ {0, 1,−a} and P (t) ≤ 0},

where c1(t) =
(a+2 t−1)2(t+1)2

t(t−1)(a+t) and c2(t) =
(t−1+t2+a)

3

t(a+t)(t−1)2
.

In our study we omit the case a = 1 and a = −1. The case a = 1 is the famous Lyness

map which is a periodic map of period eight. The case a = −1 is omitted because although

its behavior is very similar to the general case, the computations are very different.

The result that we prove is the following:

Theorem 13. Let p ∈ R3 be such that the orbit of p under F (x, y, z) = (y, z, a+y+z
x ) is

entirely defined, and assume that a 6= ±1.

(a) If p /∈ Ω1 ∪Ω2 ∪Ω3 then the dynamic of p is standard.
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(b) For i = 1, 2, 3, if p ∈ Ωi then the α and the ω limit of p coincide and it is a periodic

orbit contained in γi.

We will prove the above result by studying, first, the map F 2. The reason is because it

has a very simple first integral (see [22]), namely,

W (x, y, z) =
(x+ 1)(z + 1)

y
.

The three functions H1(x, y, z),H2(x, y, z) and W (x, y, z) are first integrals of F 2 and

they are functionally dependent. In fact, a simple computation shows that

(1 +W (x, y, z))H1(x, y, z) =W (x, y, z) (a− 2 +H2(x, y, z) −W (x, y, z)) . (13)

For each k /∈ {0,∞} the equation W (x, y, z) = k allow us to isolate y getting y =
(x+1)(z+1)

k . This fact makes possible to work in dimension two. In fact, by substituting the

expression of y in F 2(x, y, z) and in H1(x, y, z) we are going to study the corresponding

dynamic, i. e., the iterations of the two dimensional integrable systems

fk(x, z) =

(
z,

(k + 1)z + ak + 1

x(z + 1)

)
(14)

with inverse

gk(x, z) =

(
(k + 1)x+ 1 + ak

z(x+ 1)
, x

)
(15)

and with

Hk(x, z) =
(1 + ak + (k + 1)x+ (k + 1)z + xz)(1 + k + x+ z + xz)

kxz
(16)

as a first integral.

The level sets are kΣc = {(x, z) : ψk,c(x, z) = 0} where

ψk,c(x, z) = (1 + ak + (k + 1)x+ (k + 1)z + xz) (1 + k + x+ z + xz)− c k x z. (17)

The other ingredient that we are going to use is the differential equation associated to

fk(x, z). A simple computation shows that the function µ(x, z) = xz satisfies condition (1)

and that the corresponding vector field is

Xk(x, z) =

[
− (x+1+k)(−kx−ak+z2x−1+z2−x)

kx
∂
∂x +

(1+k+z)(−zk−ak−1+x2+zx2−z)
kz

∂
∂z

]
.

Now, we begin by studying the critical points of the vector field Xk. Note that since Xk

has Hk(x, z) as a first integral, a critical point of Xk is isolated in his level set if and only

if it is a center.
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Proposition 14. Set a 6= ±1 and k 6= 0,∞. Then the following holds

(1) The vector field Xk has one, two, or three critical points of the form (t, t) with t

satisfying the equation

t3 + t2 − (1 + k)t− (1 + ak) = 0. (18)

These critical points are centers if and only if P (t) > 0, where

P (t) = (t+ 1)(2t2 + (3a− 1)t+ 1− a)(2t+ a− 1)(t2 + t+ a− 1)2.

Moreover these critical points are fixed points of fk and its level set is kΣc1(t).

(2) If k 6= −1, a− 2 then Xk has also the following critical points:

a1k = (−1− k,−1− k), a2k = (−1− k,
a− 2− k

1 + k
), a3k = (

a− 2− k

1 + k
,−1− k).

The three points are saddles and they form a three periodic orbit of fk. Moreover these

three critical points belong to the level set kΣc∗(k) where c
∗(k) = k(a−2−k)

k+1 . When a ≤ 5
4

and k = −1±√
5−4a

2 the three critical points collapse to a single critical point which is

not a center and it is a fixed point of fk.

(2)’ If k = a− 2 then Xk has also the critical point (−1− k,−1− k) which is a saddle and

it belongs to the level set a−2Σ0. Moreover fk is not defined at this point.

(3) If k ≥ −(a−3)2

4 and k 6= a− 2 then Xk has also the following critical points

b1k = (1−a+
√
a2−6a+9+4k

2 , 1−a−
√
a2−6a+9+4k

2 ),

b2k = (1−a−
√
a2−6a+9+4k

2 , 1−a+
√
a2−6a+9+4k

2 ),

which are saddles and form a two periodic orbit of fk. Both points belongs to the level

set kΣ0. When k = −(a−3)2

4 both critical points collapse to a single critical point which

is not a center and it is a fixed point of fk.

Proof.

(1) Let t be a solution of equation (17). Easy computations show that (t, t) is a critical

point of Xk and its level set is c1(t). Then the algebraic curve Hk(x, z) = c1(t) writes as

P2(x− t, z − t) + P3(x− t, z − t) + P4(x− t, z − t) = 0,

where for i = 1, 2, 3, Pi is a homogeneous polynomial of degree i with coefficients rational

functions on a and t.

A computation shows that d(t) = −P (t)(t+1)4

t2(a+t)4
is the discriminant of P2. Thus if P (t) > 0

then the point (t, t) is isolated in its level set and therefore it is a center of the vector field
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Xk. Reciprocally, if P (t) < 0 then the point (t, t) has two real straight lines tangent to the

level set, so the point (t, t) is a saddle. Hence it only remains to prove that when P (t) = 0

the critical point (t, t) is not a center (that is, it is not isolated in its level set). So assume

that P (t) = 0. This can be done in four different situations:

(a) t2+ t+ a− 1 = 0. This implies that P2 is identically 0 and the level curve begins with

third order terms. So it has at least one real tangent at (t, t) and this point is not a

center.

(b) t = 1−a
2 . This implies that when a 6= 3 , P2(x, z) = A((x − t) + (z − t))2 with A 6= 0

which implies that the point (t, t) is not a center in this case. When a = 3, P2 and

P3 are identically 0 and the level curve writes as B(x− t)2(z − t)2, B 6= 0 which has

two double tangents.

(c) 2t2 + (3a − 1)t + 1 − a = 0. This implies that P2(x, z) = C((x − t) − (z − t))2 with

C 6= 0 which also implies that the point is not a center.

(d) t = −1. This implies k = 0 or a = 1 which are not under our hypotheses.

Statements (2), (2)′ and (3) follow in a very similar way. We omit the details for

shortness.

Now for each k 6= 0,∞ we define the finite set c̄(k) ⊂ R as follows. We say that c0 ∈ c̄(k)

if and only if c0 = c1(t) for some t ∈ R verifying k = k(t) and P (t) ≤ 0. Notice that c̄(k)

can be empty and it has at most three elements. Also set c∗(k) = k(a−2−k)
k+1 . From the above

lemma the only level sets kΣc containing critical points of the differential equation are when

c ∈ c̄(k) ∪ {0, c∗(k)}. Notice that kΣc∗(k),
k Σ0 (when k ≥ − (a−1)3

2 ) and kΣc when c ∈ c̄(k)

contain the periodic orbits

Ok
c∗(k) =

{
(−1− k,−1− k) ,

(
−1− k,

a− 2− k

k + 1

)
,

(
a− 2− k

k + 1
,−1− k

)}
,

Ok
0 =

{(
1− a±

√
(a− 3)2 + 4k

2
,
1− a∓

√
(a− 3)2 + 4k

2

)}
,

and

Ok
c̄(k) = {(t, t) : t3 + t2 − (k + 1)t− (1 + ak) = 0 and P (t) ≤ 0},

respectively.

The other main ingredient to describe the dynamics of fk is the study of the points

added to compactify the level sets.

As in the previous example we introduce the following points:
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P1 = (−k − 1,∞) , P2 = (∞,−1) , P3 = (−1,∞) , P4 = (∞,−k − 1),

Q1 = (−k − 1,−∞) , Q2 = (−∞,−1) , Q3 = (−1,−∞) , Q4 = (−∞,−k − 1),

and

x = (0,−k − 1) , y =
(
0,−1+ak

k+1

)
, zc =

(
(1−a)k
k+c ,−1

)
,

t = (−k − 1, 0) , vc =
(
−1, (1−a)k

k+c

)
.

Notice that when k = −1, the point y disappears, when k = a − 2 the points x and y

coincide and when c = −k, the points zc,vc disappear. Note also that the points x,y and

t belong to all the level sets while the points zc,vc belong to the level kΣc.

Lemma 15. For each k /∈ {0,∞} the following schemes work:

(a) For c /∈ {−k,∞}

P1 → P2

ր ց
x vc

ց ր
Q1 → Q2

and
P3 → P4

ր ց
zc t

ց ր
Q3 → Q4

(b) For c = −k the points zc and vc disappear, and

P1 → P2 → P3 → P4

ր ց
x t

ց ր
Q1 → Q2 → Q3 → Q4

(c) If k 6= a− 2 the extended map fk on kΣc satisfies

fk(y) =
k(k − a+ 2)2 + c(1 + k)(ka+ 1)

k(a− 1)(k − a+ 2)
.
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Proof. It is and easy computation.

Proposition 16. For each k /∈ {0,∞} consider the map (14)and set p ∈ R2. Then the

following statements hold:

(a) If k /∈ {a− 2,−1} and k ≥ −(a−3)2

4 then

(a1) If p /∈ kΣ0 ∪k Σc∗(k) ∪
(
∪c∈c̄(k) kΣc

)
then the dynamic of p is standard.

(a2) If p ∈ kΣ0 then α(p) = ω(p) = Ok
0 .

(a3) If p ∈ kΣc∗(k) then α(p) = ω(p) = Ok
c∗(k).

(a4) If p ∈
(
∪c∈c̄(k) kΣc

)
then the α and the ω limit of p coincide and it is a fixed

point contained in Ok
c̄(k).

(b) If k /∈ {a− 2,−1} and k < −(a−3)2

4 then:

(b1) If p /∈ kΣc∗(k) ∪
(
∪c∈c̄(k) kΣc

)
then the dynamic of p is standard.

(b2) If p ∈ kΣc∗(k) then α(p) = ω(p) = Ok
c∗(k).

(b3) If p ∈
(
∪c∈c̄(k)

kΣc

)
then the α and the ω limit of p coincide and it is a fixed

point contained in Ok
c̄(k).

(c) If k = a− 2 then c∗(a− 2) = 0 and

(c1) If p /∈ a−2Σ0 ∪
(
∪c∈c̄(a−2)

a−2Σc

)
then the dynamic of p is standard.

(c2) If p ∈ a−2Σ0 then the orbit of p is not entirely defined.

(c3) If p ∈
(
∪c∈c̄(a−2)

a−2Σc

)
then the α and the ω limit of p coincide and it is a fixed

point contained in Oa−2
c̄(a−2).

(d) If k = −1 then c∗(−1) = 0 and

(d1) If p /∈ −1Σ0 ∪
(
∪c∈c̄(−1)

−1Σc

)
then the dynamic of p is standard.

(d2) If p ∈ −1Σ0 and a /∈ (1, 5) then α(p) = ω(p) = O−1
0 .

(d2)
′ If p ∈ −1Σ0 and a ∈ (1, 5) then the dynamic of p is standard.

(d3) If p ∈
(
∪c∈c̄(−1)

−1Σc

)
then the α and the ω limit of p coincide and it is a fixed

point contained in O−1
c̄(−1).

Proof. It is a direct application of Theorem B taking into account that from Lemma 15 it

follows that for any k and any c /∈ c̄(k) ∪ {0, c∗(k)}, the set kEc has not invariant subsets.

On the other hand for c ∈ c̄(k) ∪ {0, c∗(k)}, the invariant subsets contained in kEc are

described in Proposition 14.
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We remark that the level a−2Σ0 is not regular because there is a straight line contained

in the level on which the determinant of the differential of fa−2 is identically 0. Then this

level is not under the hypotheses of the Theorem A. A simple computation shows that either

fa−2(x, z) = (0, a−1) or f2a−2(x, z) = (0, a−1) for any (x, z) ∈ a−2Σ0, so f
3
a−2 is not defined

at any point in the level.

Proof of Proposition 13. For p ∈ R3 denote by c = H1(p), k =W (p) and c2 = H2(p). Then

from (13) we get the relation

(1 + k) c = k (c2 + a− 2− k). (19)

We begin by proving statement (b). Take p ∈ Ω1, i.e., assume that c = 0 and c2 ≥
− (a−1)2

4 with c2 6= 0. Then from (19) either, c = 0 and k ≥ − (a−3)2

4 with k /∈ {0, a − 2} or

c = 0, k = 0.

In the first case we consider the projection of p in the plane (x, z) and we apply statement

(a2) of Proposition 16. Notice that p = (x, (x+1)(z+1)
k , z), so for k /∈ {0, a − 2} and k ≥

− (a−3)2

4 the set

Õk
0 =

{(
1− a±

√
(a− 3)2 + 4k

2
, −1 ,

1− a∓
√

(a− 3)2 + 4k

2

)}

form a 2-periodic orbit of F 2(x, y, z) in R3. So, if we consider

F (Õk
0 ) =

{(
−1 ,

1− a∓
√

(a− 3)2 + 4k

2
, −1

)}

we get that Õ0 ∪ F (Õ0) is a 4-periodic orbit of F (x, y, z) in R3 and it is clearly contained

in γ1. So, if the orbit of p is entirely defined, its alpha and omega limit are contained in γ1

as we wanted to prove.

In the second case consider a point p satisfying c = 0 and k = 0. Then either,W (F (p)) =

0 or W (F (p)) 6= 0. If W (F (p)) 6= 0, then we argue as in the previous paragraph taking the

point q = F (p) and the result follows.

Now assume thatW (p) =W (F (p)) = 0, i.e., (x+1)(z+1) = 0 and (y+1)(a+x+y+z) =

0. Since through F we get:

{x+ 1 = 0, y + 1 = 0} → {x+ 1 = 0, a+ x+ y + z = 0} → {z + 1 = 0, a+ x+ y + z = 0}
→ {y + 1 = 0, z + 1 = 0} → {x+ 1 = 0, y + 1 = 0}

we are going to take into account the map F 4(x, y, z). Notice that the restriction of F 4 from

(x + 1)(z + 1) = 0 to itself reduces to (−1 − 1, z) → (−1,−1, ϕ(z)) where ϕ(z) = 2−a
a−1+z .

The dynamics of z → 2−a
a−1+z is known (see [6], for instance). This map has two fixed points

(resp., one fixed point), z = −1, z = 2 − a (resp. z = −1) for k 6= a− 3 (resp. k = a− 3).
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For a 6= 2, these two points are one attractor and the other one repellor (resp. attractor).

And all the other points have this fixed points in the alpha and omega limit set. Since

through F :

(−1,−1,−1) → (1,−1, 2 − a) → (−1, 2 − a,−1) → (2− a,−1− 1) → (−1,−1,−1)

and this periodic set is contained in γ1, the result follows and (b) is proved.

Now let p ∈ Ω2, i.e., assume that H2(p) = 0 , H1(p) 6= 0. Int his case equation (19)

writes as

(1 + k)c = k(a− 2− k). (20)

Hence, c 6= 0, k /∈ {0, a− 2,−1} and c = c∗(k). As before we consider the following periodic

sets:

Õk
c∗(k) =

{
(−1− k, k,−1 − k) ,

(
−1− k,

1− a

k + 1
,
a− 2− k

k + 1

)
,

(
a− 2− k

k + 1
,
1− a

k + 1
,−1− k

)}

and

F (Õk
c∗(k)) =

{(
k,−1− k,

1− a

k + 1

)
,

(
1− a

k + 1
,
a− 2− k

k + 1
,
1− a

k + 1
,

)
,

(
1− a

k + 1
,−1− k, k

)}
.

The set Õc∗ ∪ F (Õc∗) form a 6-periodic orbit of F in R3 and it is contained in γ2. Now

applying (a3) and (b2) of Proposition 16 the result follows.

Lastly assume that p ∈ Ω3. That is H1(p) = c1(t),H2(p) = c2(t) for some t ∈ R \
{0, 1,−a} with P (t) ≤ 0. Since the 2-periodic point v = (t, a+t

t−1 , t) verifies that H1(v) = c1(t)

and H2(v) = c2(t), it follows that either W (p) = W (v) or W (F (p)) = W (v). Assume for

instance that W (p) = W (v) = k. Then it follows that c1(t) ∈ c̃(k) and the result follows

from the statements (a4),(b3),(c3) and (d3) of Proposition 16. Since the omega limit and

alfa limit of p and F (p) coincide the result follows also in the other case.

In order to prove (a) consider a point p /∈ Ω1 ∪ Ω2 ∪ Ω3. First of all note that since

p /∈ Ω3 then c /∈ c̃(k). Hence we have four cases: c = ∞, c = 0 = c2, c = 0 with c2 < − (a−1)2

4

and c 6= 0 6= c2.

Clearly when c = ∞ the orbit of p is not entirely defined. Also as we noticed in

Example 1, when H1(p) and H2(p) are zero the orbit of p is not defined. On the other hand

condition c2 6= 0 implies that c 6= c∗(k). Otherwise, since c∗(k) = k(a−2−k)
k+1 we have that

(k + 1)c∗(k) = k(a− 2− k) and from (13) we get c2 = 0.

Now assume that c = 0 and c2 < − (a−1)2

4 with c2 6= 0. Then k < − (a−3)2

4 and since

c 6= c∗(k) the result follows from (b1) of Proposition 16.

Finally if c 6= 0 6= c2 then if k /∈ {a− 2,−1} since c 6= c∗(k) the result follows from (a1)

and (b1) of Proposition 16. If k = a− 2 (resp. k = −1) we apply (c1) (resp. (d1)).
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