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Abstract. In this paper we classify the centers localized at the origin of
coordinates, and their isochronicity for the polynomial differential systems in
R2 of degree d that in complex notation z = x+ iy can be written as

ż = (λ+ i)z +Az(d−n+1)/2z(d+n−1)/2 +Bz(d+n+1)/2z(d−n−1)/2

+ Cz(d+1)/2z(d−1)/2 +Dz(d−(2+j)n+1)/2z(d+(2+j)n−1)/2,

where j is either 0 or 1. If j = 0 then d ≥ 5 is an odd integer and n is an even
integer satisfying 2 ≤ n ≤ (d+ 1)/2. If j = 1 then d ≥ 3 is an integer and n is
an integer with converse parity with d and satisfying 0 < n ≤ [(d+1)/3] where
[·] denotes the integer part function. Furthermore λ ∈ R and A,B,C,D ∈ C.
Note that if d = 3 and j = 0, we are obtaining the generalization of the
polynomial differential systems with cubic homogeneous nonlinearities studied
in [17, 25, 15], and if d = 2, j = 1 and C = 0, we are also obtaining as a
particular case the quadratic polynomial differential systems studied in [2, 26].
So the class of polynomial differential systems here studied is very general
having arbitrary degree and containing the two more relevant subclasses in
the history of the center problem for polynomial differential equations.

1. Introduction and statement of the main results

One of the main problems in the qualitative theory of real planar polynomial
differential systems is the center–focus problem; i.e. to distinguish when a singular
point is either a focus or a center. The notion of center goes back to Poincaré in [20].
He defined it for a vector field on the real plane; i.e. a singular point surrounded by
a neighborhood filled with closed orbits with the unique exception of the singular
point.

The classification of the centers of the polynomial differential systems started
with the quadratic ones with the works of Dulac [7], Kapteyn [11, 12], Bautin [2]
and others. Schlomiuk, Guckenheimer and Rand in [24] described a brief history of
the problem of the center in general, and it includes a list of 30 papers covering the
topic and the history of the center for the quadratic case (see pages 3,4 and 13). Here
we are mainly interested in finding new families of centers of polynomial differential
systems of arbitrary degree and in studying their cyclicity and isochronicity. There
are other interesting problems related with the centers that in this paper we do not
consider as for instance, their phase portraits in the Poincaré disc, or the kind of first
integrals that the centers can have, or the bifurcation diagram of the different phase
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portraits of centers in the parameter space, ... In the case of quadratic centers these
last problems were studied by several authors, see for instance Schlomiuk [22, 23]
and the references there in.

In this paper we consider the polynomial differential systems in the real (x, y)-
plane which has a singular point at the origin with eigenvalues λ± i and that can
be written as

ż = (λ+ i)z +Az(d−n+1)/2z(d+n−1)/2 +Bz(d+n+1)/2z(d−n−1)/2

+ Cz(d+1)/2z(d−1)/2 +Dz(d−(2+j)n+1)/2z(d+(2+j)n−1)/2,
(1)

where j is either 0 or 1. If j = 0 then d ≥ 5 is an odd integer and n ≥ 2 is
an even integer satisfying n ≤ (d + 1)/2. If j = 1 then d ≥ 3 is an integer and
n > 0 is an integer with converse parity with d and satisfying n ≤ [(d + 1)/3].
Furthermore λ ∈ R, and A,B,C,D ∈ C. When j = 0 we are considering the
polynomial differential systems

ż = (λ+ i)z +Az(d−n+1)/2z(d+n−1)/2 +Bz(d+n+1)/2z(d−n−1)/2

+ Cz(d+1)/2z(d−1)/2 +Dz(d−2n+1)/2z(d+2n−1)/2,

and when j = 1 we are considering the polynomial differential systems

ż = (λ+ i)z +Az(d−n+1)/2z(d+n−1)/2 +Bz(d+n+1)/2z(d−n−1)/2

+ Cz(d+1)/2z(d−1)/2 +Dz(d−3n+1)/2z(d+3n−1)/2.

The vector field associated to system (1) is formed by the linear part (λ+ i)z and
by a homogeneous polynomial of degree d formed by four monomials in complex
notations. Since the eigenvalues at the singular point located at the origin of system
(1) are λ± i, the origin is either a weak focus or a center if λ = 0, see [1, 8].

For calculating the Poincaré–Liapunov constants several algorithms have been
developed to compute them automatically up to a certain order (see for instance
[3, 10, 16, 19, 21] and the references therein). The main reason for working with
this class of polynomial differential systems is that for such class we can compute
the Poincaré–Liapunov constants and afterwards the conditions for center (i.e. to
determine the common zeros of the Poincaré–Liapunov constants), in general for
polynomial differential systems of arbitrary degree such computations are very dif-
ficult or impossible. We also note that if d = 3 and j = 0, we are obtaining the
generalization of the polynomial differential systems with cubic homogeneous non-
linearities studied in [17, 25, 15], and if d = 2, j = 1 and C = 0, we are obtaining
as a particular case the quadratic polynomial differential systems studied in [2, 26].
On the other hand there are partial results on the centers of polynomial vector
fields formed by a linear center with a homogeneous nonlinearity of degree 4 and 5
(see [4, 5]), but these vector fields are not contained in the ones studied here.

The resolution of these problems imply the effective computation of the Poincaré–
Liapunov constants. There are different methods for computing the Poincaré–
Liapunov constants, see for instance [9, 19], but here we prefer the one based
on Abel equations because using it, the computation of the isochronous centers
becomes easier.

We write

A = a1 + ia2, B = b1 + ib2, C = c1 + ic2, D = d1 + id2.
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Indeed writing (1) in polar coordinates, i.e, doing the change of variables r2 = zz
and θ = arctan(Imz/Rez), systems (1) become

(2)
dr

dθ
=

λr + F (θ) rd

1 +G(θ) rd−1
,

where

F (θ) = (a1 + b1) cosnθ + (a2 − b2) sinnθ + c1 + d1 cos(2 + j)nθ+

d2 sin(2 + j)nθ,

G(θ) = (a2 + b2) cosnθ − (a1 − b1) sinnθ + c2 + d2 cos(2 + j)nθ−
d1 sin(2 + j)nθ.

(3)

Note that equation (2) is well defined in a sufficiently small neighborhood of the
origin. Therefore if system (1) has a center, then equation (2) defined in the plane

(r, θ) when θ̇ > 0 also has a center at the origin.

The transformation (r, θ) 7→ (ρ, θ) defined by

ρ =
rd−1

1 +G(θ) rd−1

is a diffeomorphism from the region θ̇ > 0 into its image. If we write equation (2)
in the variable ρ, we obtain the following Abel differential equation

(4)

dρ

dθ
= (d− 1)G(θ)[λG(θ)− F (θ)]ρ3+

[(d− 1)(F (θ)− 2λG(θ))−G′(θ)]ρ2 + (d− 1)λρ
= A(θ)ρ3 +B(θ)ρ2 + Cρ.

The solution ρ(θ, γ) of (4) satisfying that ρ(0, γ) = γ can be expanded in a
convergent power series of γ ≥ 0 sufficiently small. Thus

(5) ρ(θ, γ) = ρ1(θ)γ + ρ2(θ)γ
2 + ρ3(θ)γ

3 + . . .

with ρ1(θ) = 1 and ρk(0) = 0 for k ≥ 2. Let P : [0, γ0] → R be the Poincaré map
defined by P (γ) = ρ(2π, γ) and for a convenient γ0 > 0. Then, the values of ρk(2π)
for k ≥ 2 controle the behavior of the Poincaré map in a neighborhood of ρ = 0.
Then clearly systems (1) have a center at the origin if and only if ρ1(2π) = 1 and
ρk(2π) = 0 for every k ≥ 2. Assuming that ρ2(2π) = · · · = ρm−1(2π) = 0 we say
that ρm(2π) is the m-th Poincaré–Liapunov or Poincaré–Liapunov–Abel constant
of system (1).

The problem of computing the Poincaré–Liapunov constants for determining
a center goes back to the very beginning of the qualitative theory of differential
equations, see for instance [20] and [14]. In the case of polynomial differential
systems each of the Poincaré–Liapunov constants is a polynomial in the coefficients
of the system. The set of coefficients for which all the Poincaré–Liapunov constants
vanish is called the center space of the family of polynomial differential systems. By
the Hilbert Basis Theorem, the center space is an algebraic set. Furthermore, the
centre space, i.e., the space of systems (1) with a centre at the origin is invariant
with respect to the action group C∗ of changes of variables z → ξz :

A → ξ(d−n−1)/2ξ̄(d+n−1)/2A, B → ξ(d+n−1)/2ξ̄(d−n−1)/2B,

C → ξ(d−1)/2ξ̄(d−1)/2ξ̄4C, D → ξ(d−(2+j)n−1)/2ξ̄(d+(2+j)n−1)/2D.
(6)
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A natural question arises: how to characterize the center space of a given family
of polynomial differential systems?

To distinguish between the centers and the foci is a very difficult problem. In
general it is not easy to compute Poincaré–Liapunov constants. These constants
are polynomials in the coefficients of the systems. They generate an ideal in the
ring of polynomials having as variables the coefficients of the systems over the real
field. So they determine an algebraic set in the affine space of the real coefficients
of the system. This is the algebraic set of the systems with center. There are two
things which are difficult in the problem of the center.

(i) Finding this algebraic set, i.e. explicitly finding where to stop in the calcu-
lations of the Poincaré–Liapunov constants.

(ii) Splitting this algebraic set into its irreducible components. In other words
finding the algebraic varieties which build this algebraic set.

Of the two parts the second one is more difficult.

We recall that systems (1) are reversible with respect to a straight line if they
are invariant under the change of variables w̄ = e−iγz, τ = −t for some γ real. For
systems (1) we have the following result.

Proposition 1. Systems (1) are reversible if and only if A = −Ae−niγ , B =
−B̄eniγ , C = −C and D = −De−(2+j)niγ , for some γ ∈ R. Furthermore, in this
situation the origin of system (1) is a center.

Proof of Proposition 1. The proof follows directly from its statement. For more
details see [3]. ¤

Once we have proved the existence of the so–called center space of systems (1)
we also want to determine which of the centers are isochronous. In that case let
z = 0 be a center (that is, we assume that we are under the hypothesis which
guarantees that z = 0 is a center) and let V be a neighborhood of z = 0 such
that V \ {0} is covered with periodic orbits surrounding z = 0. We can define
a function, the period function of z = 0 by associating to every point z of V the
minimal period of the periodic orbits passing through z. The center z = 0 of system
(1) is isochronous if the period of all integral curves in V \ {0} is constant. The
study of the isochronous centers started with Huygens when he studied the cycloidal
pendulum. The existence of isochronous centers for several classes of polynomial
differential systems has been studied in [6].

If we take the equation of θ′ = dθ/dt we obtain

T =

∫ 2π

0

dθ

θ′
=

∫ 2π

0

1

1 +G(θ)r(θ)d−1
dθ

=

∫ 2π

0

(1−G(θ)ρ(θ)) dθ = 2π −
∫ 2π

0

G(θ)ρ(θ) dθ,

where ρ(θ) =
∑

j≥1

ρj(θ)γ
j is given in (5), and ρj(θ) are the terms giving rise to the

Poincaré–Liapunov–Abel constants. Then systems (1) have an isochronous center
at the origin if it is a center and satisfies

∫ 2π

0

G(θ)%(θ) dθ =
∑

j≥1

(∫ 2π

0

G(θ)ρj(θ) dθ

)
γj = 0,
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that is if

(7) T =

∫ 2π

0

dθ

θ̇
= 2π −

∑

j≥1

Tjγ
j = 2π,

with

(8) Tj =

∫ 2π

0

G(θ)ρj(θ) dθ = 0, for j ≥ 1.

The constants Tj are called the period Abel constants.

The main result in this paper is the following

Theorem 2. The following statements hold.

(a) A system (1) has a center at the origin if and only if one of the following
conditions hold:
(a.1) λ = c1 = A+ (3− j)B = 0,

(a.2) λ = c1 = Im(AB) = Re(A2D) = Re(B
2
D) = 0 when j = 0,

(a.3) λ = c1 = Im(AB) = Im(A3D) = Im(B
3
D) = 0 when j = 1.

(b) A system (1) has an isochronous center at the origin if and only if one of
the following conditions hold:

(b.1) λ = C = D = 0 and A = B,
(b.2) λ = C = D = 0 and (n+ d− 1)A = (n− d+ 1)B,

(b.3) λ = A = C = 0, D = −B
2
/B, d = 3n+ 1 and j = 1.

The proof of Theorem 2(a) is given in Sections 2 and 3 and the proof of Theorem
2(b) is provided in Sections 4 and 5.

2. Proof of Theorem 2(a): Necessary conditions for a center

We prove in this section that conditions (a.1), (a.2) and (a.3) are necessary condi-
tions to have a center at the origin. For this we compute the Poincaré–Liapunov con-
stants up to some order and then show that the zeroes of those Poincaré–Liapunov
constants are precisely conditions (a.1), (a.2) and (a.3).

Proposition 3. The Poincaré–Liapunov constants of systems (1), when j = 0 with
d ≥ 5 odd, n ≥ 2 even and n ≤ (d+ 1)/2, are

V1 = e2π(d−1)λ,
V2 = c1,
V3 = −Im(AB),

V4 = Re
(
(A+ 3B̄)D̄[(d+ 2n− 1)A+ (d− 2n− 1)B̄]

)
,

V5 = Im
(
(A+ 3B̄)D̄C(A+ B̄)

)
.

We remark that Vk ≡ ρk(2π) (mod. {V1, V2, . . . , Vk−1}), for k = 2, . . . , 5 and also
modulo a positive constant.

Proof. Solving ρ′1(θ) = (d− 1)λρ1(θ) and evaluating at θ = 2π we obtain ρ1(2π) =
e2π(d−1)λ. Then V1 = e2π(d−1)λ. In what follows we take λ = 0.
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Substituting (5) into (4) we get that the functions ρk(θ) must satisfy

(9)

ρ′2 = Bρ21,
ρ′3 = Aρ31 + 2Bρ1ρ2,
ρ′4 = 3Aρ21ρ2 +B(ρ22 + 2ρ1ρ3),
ρ′5 = 3A(ρ1ρ

2
2 + ρ21ρ3) + 2B(ρ2ρ3 + ρ1ρ4),

where we have omitted that all the functions depend on θ. Note that all these
differential equations can be solved recursively doing an integral between 0 and θ,
and recalling that ρk(0) = 0 for k ≥ 2. We have done all the computations of this
paper with the help of the algebraic manipulator mathematica. These computations
are not difficult but are long and tedious.

Solving the equation ρ′2 = Bρ21 we get that ρ2(2π) = 2π(d− 1)c1. Then we take
c1 = 0.

Now we compute the solution ρ3(θ) of ρ′3 = Aρ31 + 2Bρ1ρ2, and we get that
ρ3(2π) = 2π(1− d) Im(AB). Then V3 = −Im(AB).

Solving the differential equation for ρ4(θ) we get ρ4(θ) and in particular we obtain
from the expression of ρ4(2π) the value of V4 given in the statement of Proposition
3 modulo ρ2(2π) = ρ3(2π) = 0 and a positive constant factor. More precisely we
can check that

4π

(d− 1)π
ρ4(2π) = V4 + 4V3(n+ d− 1)d2.

We compute the solution ρ5(θ) from the differential equation for ρ5(θ), we get
ρ5(2π), and in particular we obtain the value of V5 given in the statement of Propo-
sition 3 modulo ρ2(2π) = ρ3(2π) = ρ4(2π) = 0 and modulo a positive constant.
This completes the proof of the proposition. ¤

Now we want to check which are the solutions of V1 = 1, V2 = V3 = V4 = V5 = 0
in terms of λ, a1, a2, b1, b2, c1, c2, d1 and d2.

Proposition 4. For j = 0, d ≥ 5 odd, n ≥ 2 even with n ≤ (d + 1)/2, V1 = 1,
V2 = V3 = V4 = V5 = 0 if and only if either (a.1) with j = 0, or (a.2), or

(c.1) j = 0, λ = C = 0, (d+ 2n− 1)A+ (d− 2n− 1)B̄ = 0 and Re(B
2
D) 6= 0.

holds.

Proof. From the fact that V1 = 1 we get that λ = 0. Since V2 = 0 we have c1 = 0.
To make V3 = 0 we will consider two different cases: B = 0 and B 6= 0.

Case 1. B = 0. In that case

V4 = (d+ 2n− 1)Re(A2D).

So Re(A2D) = 0 and we are under the assumptions (a.2).

Case 2. B 6= 0. Then A = µB with µ ∈ R. In this case

V4 = (3 + µ)((d+ 2n− 1)µ+ (d− 2n− 1))Re(B
2
D).

In view of the factors of V4 we consider three cases.

Subcase 2.1. µ = −3. In this case we are under the assumptions (a.1).

Subcase 2.2. Re(B
2
D) = 0. In this case we are under the assumptions (a.2).
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Subcase 2.3. µ = −(d − 2n − 1)/(d + 2n − 1) and Re(B
2
D) 6= 0. In this case

since c1 = 0 we have

V5 =
8n(4n+ d− 1)

(2n+ d− 1)2
Im(B

2
CD) =

8n(4n+ d− 1)

(2n+ d− 1)2
c2Re(B

2
D),

and to have V5 = 0 we must impose c2 = 0 that is C = 0. Hence, we are under
assumptions (c.1). This concludes the proof of the proposition. ¤

Now we prove that condition (c.1) is not necessary in order that systems (1)
have a center at the origin.

Proposition 5. Condition (c.1) is not necessary for systems (1) to have a center
at the origin.

Proof. Systems (1) with the assumptions of condition (c.1) become

(10) ż = iz − d− 2n− 1

d+ 2n− 1
B̄z

d−n+1
2 z

d+n−1
2 +Bz

d+n+1
2 z

d−n−1
2 +Dz

d−2n+1
2 z

d+2n−1
2 ,

with Re(B̄2D̄) 6= 0. Now if we do the change z → w = ξz with

(11) ξ =
B

d−n−1
2n(d−1)

B
d+n−1
2n(d−1)

then using (6) we have that systems (10) can be written as

(12) ẇ = iw − d− 2n− 1

d+ 2n− 1
w

d−n+1
2 w

d+n−1
2 + w

d+n+1
2 w

d−n−1
2 + D̃w

d−2n+1
2 w

d+2n−1
2 ,

with

(13) D̃ =
DB1/2

B̄3/2
= d̃1 + id̃2 and d̃1 6= 0.

For systems (12) (in view of Proposition 3) we have that V1 = V2 = V3 = V4 = V5 =
0. Now using the expressions of ρ1, . . . , ρ5 computed in the proof of Proposition 3
and using that

ρ′6 = A(ρ32 + 6ρ1ρ2ρ3 + 3ρ21ρ4) +B(ρ23 + 2ρ2ρ4 + 2ρ1ρ5),(14)

with V6 ≡ ρ6(2π) (mod. {V1, V2, . . . , V5}), and modulo a positive constant we get

V6 = d̃1(R
1
d +R2

d|D̃|2),
with

R1
d = 32(d− 1)2n2, R2

d = (d− 1)4 +3n(d− 1)3 − 8(d− 1)2n2 +36(d− 1)n3 − 32n4.

Therefore, in order that V6 = 0 we also need to impose that

D̃ =

√
R1

d

−R2
d

eiψ, ψ ∈ [0, 2π) \ {π/2, 3π/2}.

Note that R1
d > 0 for any values because d ≥ 5 and n ≥ 2. Therefore, in order that

D̃ be well defined we need to restrict the values of (d, n) such that R2
d < 0. For the

rest of values of (d, n) such that R2
d > 0 we have that V6 6= 0 and thus condition

(c.1) is not a necessary condition in order that systems (10) (and consequently of
systems (1) under the assumptions (c.1)) have a center at the origin. We note that
n is an integer in the interval [2, (d + 1)/2]. Choosing d sufficiently large and for
instance n = 2, it is clear that R2

d > 0 because it is a polynomial of degree 4 in the
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variable d − 1 starting with (d − 1)4. This concludes the proof of the proposition
in these cases. For the other cases condition (c.1) becomes

(c.1)’ j = 0, λ = C = 0, D̃ =

√
R1

d

−R2
d

eiψ, ψ ∈ [0, 2π) \ {π/2, 3π/2} and (d, n) are

such that R2
d < 0.

Now (12) becomes

ẇ = iw− d− 2n− 1

d+ 2n− 1
w

d−n+1
2 w

d+n−1
2 +w

d+n+1
2 w

d−n−1
2 +

√
R1

d

−R2
d

eiψw
d−2n+1

2 w
d+2n−1

2 ,

with ψ ∈ [0, 2π) \ {π/2, 3π/2} and (d, n) are such that R2
d < 0. For these systems

and using that

(15)
ρ′7 = 3A(ρ22ρ3 + ρ1ρ

2
3 + 2ρ1ρ2ρ4 + ρ21ρ5) + 2B(ρ3ρ4 + ρ2ρ5 + ρ1ρ6),

ρ′8 = 3A(ρ2ρ
2
3 + ρ22ρ4 + 2ρ1ρ3ρ4 + 2ρ1ρ2ρ5 + ρ21ρ6)

+B(ρ24 + 2ρ3ρ5 + 2ρ2ρ6 + 2ρ1ρ7),

and proceeding as in the proof of Proposition 3 we get that V7 = 0 and V8 = cosψ.
However by hypothesis we have that cosψ 6= 0 and thus V8 6= 0. This implies that
neither systems (10) have a center at the origin, nor systems (1) under condition
(c.1). This concludes the proof of the proposition. ¤

Proposition 6. The Poincaré–Liapunov constants of systems (1) with j = 1, d ≥ 3
integer and n > 0 an integer with converse parity with d satisfying n ≤ [(d+ 1)/3],
are

V1 = e2π(d−1)λ,
V2 = c1,
V3 = −Im(AB),
V4 = 0,

V5 = −Im
(
(A+ 2B̄)D̄[(d+ n− 1)A+ (d− n− 1)B̄]

[(d+ 3n− 1)A+ (d− 3n− 1)B̄]
)
,

V6 = Re
(
(A+ 2B̄)D̄C(A2u+ B̄2v)

)
,

with

u = − 1

(d− n− 1)2
(2− 8d+ 12d2 − 8d3 + 2d4 + n− 3dn+ 3d2n− d3n−

2n2 + 2dn2 + 2d2n2 − 2d3n2 − 3n3 + 3dn3 − 2n4 + 6dn4)

and

v = 2d2 − 4d+ 2 + 5n− 5dn+ 4n2.

We remark that Vk ≡ ρk(2π) (mod. {V1, V2, . . . , Vk−1}), for k = 2, . . . , 6 and also
modulo a positive constant.

Proof. Proceeding in the same way as in the proof of Proposition 3 using (9) we
get V1, V2, V3, V4 and V5 given in the statement of Proposition 6. More precisely,
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we can check that

6n2

(d− 1)π
ρ5(2π) = V5 − V3

(
8(1− d)2a2d2 − 5(1− d)2b2d2 − 16(1− d)na2d2

− 4(1− d)nb2d2 + 9n2b2d2 + 4(1− d)2a1d1 − 8(1− d)na1d1

+ 10(1− d)2b1d1 + 8(1− d)nb1d1 − 18n2b1d1

)
.

We compute the solution ρ6(θ) from the differential equation for ρ6(θ) in (14),
we get ρ6(θ), and in particular we obtain V6 where V6 is ρ6(2π) modulo ρ2(2π) =
ρ3(2π) = ρ4(2π) = ρ5(2π) = 0 and modulo a positive constant. This completes the
proof of the proposition. ¤

Now we want to check which are the solutions of V1 = 1, V2 = V3 = V5 = V6 = 0
in terms of λ, a1, a2, b1, b2, c1, c2, d1 and d2.

Proposition 7. For j = 1, d ≥ 3 an integer and n > 0 an integer with converse
parity with d satisfying n ≤ [(d+ 1)/3], V1 = 1, V2 = V3 = V5 = V6 = 0 if and only
if either (a.1) with j = 1, or (a.3), or

(c.2) j = 1, λ = C = 0, (d+ n− 1)A+ (d− n− 1)B̄ = 0 and Im(B
3
D) 6= 0, or

(c.3) j = 1, λ = C = 0, (d+ 3n− 1)A+ (d− 3n− 1)B̄ = 0 and Im(B
3
D) 6= 0,

holds.

Proof. We proceed as in the proof of Proposition 4 and we have that λ = 0, c1 = 0
and either B is 0, or B 6= 0.

Case 1. B = 0. In that case

V5 = −(d+ n− 1)(d+ 3n− 1)Im(A3D).

Therefore Im(A3D) = 0 and we are under the assumptions of condition (a.3).

Case 2. B 6= 0. Then A = µB with µ ∈ R. In this case

V5 = (µ+ 2)((d+ n− 1)µ+ (d− n− 1))((d+ 3n− 1)µ+ (d− 3n− 1))Im(B
3
D).

In view of the factors of V5 we consider four cases.

Subcase 2.1. µ = −2. Then we are under the assumptions (a.1).

Subcase 2.2. Im(B
3
D) = 0. In this case we are under the assumptions (a.3).

Subcase 2.3. µ = −(d− n− 1)/(d+ n− 1) and Im(B
3
D) 6= 0. In this case since

c1 = 0 we have

V6 =
(d− 1)3(d+ 3n− 1)

(d+ n− 1)3
c2Im(B

3
D)

and to have V6 = 0 we must impose c2 = 0 that is C = 0. Hence, we are under
assumptions (c.2).

Subcase 2.4. µ = −(d − 3n − 1)/(d + 3n − 1) and Im(B
3
D) 6= 0. In this case

since c1 = 0 we have

V6 = − (d− 1)3(d+ 9n− 1)

(d+ 3n− 1)3
c2Im(B

3
D)

and to have V6 = 0 we must impose c2 = 0 that is C = 0. Hence, we are under
assumptions (c.3). This concludes the proof of the proposition. ¤
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Proposition 8. Conditions (c.2) and (c.3) are not necessary in order that systems
(1) have a center at the origin.

Proof. Systems (1) with conditions either (c.2) or (c.3) become

(16) ż = iz − TdB̄z
d−n+1

2 z
d+n−1

2 +Bz
d+n+1

2 z
d−n−1

2 +Dz
d−3n+1

2 z
d+3n−1

2 ,

where

Td =

{
(d− n− 1)/(d+ n− 1) if (c.2) holds,

(d− 3n− 1)/(d+ 3n− 1) if (c.3) holds,

and Im(B
3
D) 6= 0. Now if we make the change z → w = ξz with

(17) ξ =
B

d−n−1
2n(d−1)

B
d+n−1
2n(d−1)

then using (6) we have that systems (16) can be written as

(18) ẇ = iw − Tdw
d−n+1

2 w
d+n−1

2 + w
d+n+1

2 w
d−n−1

2 + D̃w
d−3n+1

2 w
d+3n−1

2 ,

with

(19) D̃ =
DB

B̄2
= d̃1 + id̃2 and d̃2 6= 0.

For systems (18) (in view of Proposition 6) we have that V1 = V2 = V3 = V5 =
V6 = 0. Now using ρ1, . . . , ρ6 computed in the proof of Proposition 3 and using
ρ′7(θ) in (15) and proceeding as in the proof of Proposition 6, we get that

V7 = d̃2(R
1
d +R2

d|D̃|2),
with

R1
d =

{
0 if (c.2) holds,

240(d− 1)2n2 if (c.3) holds,

and

R2
d = 1, if condition (c.2) holds,

while if condition (c.3) holds, then

R2
d = (1− d)4 + 4(1− d)3n− 102(1− d)2n2 + 396(1− d)n3 − 459n4.

Therefore, since d̃2 6= 0 we get that if condition (c.2) holds, then V7 6= 0. Hence,
condition (c.2) is not a necessary condition in order that systems (16) (and conse-
quently (1) under condition (c.2)) have a center at the origin. This completes the
proof of the proposition for condition (c.2). On the other hand, if condition (c.3)
holds, in order that V7 = 0 we also need to impose that

D̃ =

√
R1

d

−R2
d

eiψ, ψ ∈ (0, 2π) \ {π}.

Note that R1
d > 0 for any values of d ≥ 3 and n > 0. Therefore in order that D̃

be well defined we need to restrict the values of (d, n) such that R2
d < 0. For the

rest of values of (d, n) such that R2
d > 0 we have that V7 6= 0 and thus condition

(c.3) is not a necessary condition in order that systems (16) (and consequently of
system (1) under condition (c.3)) have a center at the origin. This concludes the
proof of the proposition in these cases. For the other cases condition (c.3) becomes
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(c.3)’ j = 1, λ = C = (d + 3n − 1)A + (d − 3n − 1)B = 0, D̃ =

√
R1

d

−R2
d

eiψ,

ψ ∈ (0, 2π) \ {π} and (d, n) are such that R2
d < 0.

Now (18) becomes

ẇ = iw − Tdw
d−n+1

2 w
d+n−1

2 + w
d+n+1

2 w
d−n−1

2 +

√
R1

d

−R2
d

eiψw
d−3n+1

2 w
d+3n−1

2 ,

with ψ ∈ (0, 2π)\{π} and (d, n) are such that R2
d < 0. For these systems and using

ρ′8(θ) in (15) and

ρ′9 = A(ρ33 + 6ρ2ρ3ρ4 + 3ρ1ρ
2
4 + 3ρ22ρ5 + 6ρ1ρ3ρ5 + 6ρ1ρ2ρ6 + 3ρ21ρ7)

+ 2B(ρ4ρ5 + ρ3ρ6 + ρ2ρ7 + ρ1ρ8),

we get that V8 = 0 and V9 = sinψ. However by hypothesis we have that sinψ 6= 0
and thus V9 6= 0. This implies that neither systems (16) have a center at the
origin, nor systems (1) under condition (c.3). This concludes the proof of the
proposition. ¤

3. Proof of Theorem 2(a): Sufficient condition for a center

We prove in this section that for j = 0, d ≥ 5 odd, n ≥ 2 even with n ≤ (d+1)/2,
conditions (a.1) and (a.2) are also sufficient for having a center, and for j = 1, d ≥ 3
an integer with converse parity with d satisfying n ≤ [(d + 1)/3], conditions (a.1)
and (a.3) are also sufficient to have a center at the origin.

Proposition 9. Under conditions (a.1) systems (1) have a center at the origin.

Proof. We write systems (1) with condition (a.1). Then

ż = iz − (3− j)B̄z
d−n+1

2 z̄
d+n−1

2 +Bz
d+n+1

2 z̄
d−n−1

2 + ic2z
d+1
2 z̄

d−1
2

+Dz
d−(2+j)n+1

2 z
d+(2+j)n−1

2 .
(20)

Then if we multiply it 1/(zz̄)
d−(2+j)n+1

2 it becomes

ż =
iz

(zz̄)(d−(2+j)n+1)/2
− (3− j)B̄z

n(j+1)
2 z̄

n(3+j)−2
2 +Bz

n(j+3)
2 z̄

n(1+j)−2
2

+ ic2z
(2+j)n

2 z̄
n(2+j)−2

2 +Dzn(2+j)−1 = i
∂H

∂z
,

where for d 6= (2 + j)n+ 1 we have

H =
−2

d− (2 + j)n− 1
(zz)−(d−(2+j)n−1)/2+

2i

n

(3− j

3 + j
Bz

n(j+1)
2 z

n(3+j)
2 − B

1 + j
z

n(3+j)
2 z

n(j+1)
2

)
+

2c2
n(2 + j)

z
(2+j)n

2 z
(2+j)n

2 − i

n(2 + j)

(
Dzn(2+j) −Dzn(2+j)

)

=
−2

d− (2 + j)n− 1
(zz)−(d−(2+j)n−1)/2+

2i

n(1 + j)

(
Bz

n(j+1)
2 z

n(3+j)
2 −Bz

n(3+j)
2 z

n(j+1)
2

)
+

2c2
n(2 + j)

z
(2+j)n

2 z
(2+j)n

2 − i

n(2 + j)

(
Dzn(2+j) −Dzn(2+j)

)
,
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and for d = (2 + j)n+ 1 we have

H = log(zz) +
2i

n(j + 1)

(
Bz

n(j+1)
2 z

n(3+j)
2 −Bz

n(3+j)
2 z

n(j+1)
2

)
+

2c2
n(2 + j)

z
(2+j)n

2 z
(2+j)n

2 − i

n(2 + j)

(
Dzn(2+j) −Dzn(2+j)

)
.

Note that the first integral exp(H) is real and well defined at the origin. Therefore
the origin is a center. ¤

Proposition 10. Under conditions (a.2) or (a.3) systems (1) have a center at the
origin.

Proof. We will see that if conditions (a.2) or (a.3) are satisfied then systems (1) are
reversible systems and thus the proof of this case will follow from Proposition 1.
We consider that condition either (a.2) or (a.3) in Theorem 2 holds. Rewriting
these conditions as

(21) C = −C,
Ā

A
=

B

B̄
,

(
− Ā

A

)2+j

= −D

D
,

(
− B̄

B

)2+j

= −D

D
.

Now let θ1, θ2 and θ3 such that eiθ1 = −Ā/A, eiθ2 = −B̄/B and eiθ3 = −D/D̄.
Then by (21) we obtain

(22) θ1 = −θ2(mod.2π) and θ2 =
1

2 + j
θ3(mod.2π).

Now, take γ = θ1/n. Using (22) we have

e−inγ = e−iθ1 = −A

Ā
, einγ = eiθ1 = e−iθ2 = −B

B̄
,

and

e−(2+j)inγ = e−(2+j)iθ1 = e(2+j)iθ2 = eiθ3 = −D

D̄
,

which clearly implies, using Proposition 1, that systems (1) under conditions (a.2)
or (a.3) are reversible and thus have a center at the origin. ¤

4. Proof of Theorem 2(b): Sufficient condition for an isochronous
center

From the introduction for proving the sufficient conditions for an isochronous
center, it is enough to show that

(23)

∫ 2π

0

dθ

θ̇
= 2π,

where θ̇ can be obtained writing systems (1) in polar coordinates under conditions
(b.k) for k = 1, 2, 3.

Systems (1) with the hypotheses (b.k) for k = 1, 2 have always A 6= 0, otherwise
it would be linear systems. Furthermore we can do the change of variables

(24) ω = ξz where ξ =
A(d−n−1)/(2n(d−1))

A
(d+n−1)/(2n(d−1))

.

Then systems (1) under the hypotheses (b.1) become

(25) ẇ = iw + w
d−n+1

2 w
d+n−1

2 + w
d+n+1

2 w
d−n−1

2 ,
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while systems (1) under the hypotheses (b.2) can be written as

(26) ẇ = iw + w
d−n+1

2 w
d+n−1

2 +
n+ d− 1

n− d+ 1
w

d+n+1
2 w

d−n−1
2 .

Systems (1) under the hypotheses (b.3) and after the changes of variables given by
(17) and (19) can be written as

(27) ż = iz + z2n+1zn − zz3n.

We rewrite systems (25) in polar coordinates and we obtain

ṙ = 2rd cos(nθ) and θ̇ = 1.

Then clearly (23) holds and thus systems (1) under condition (b.1) have an isochronous
center at the origin.

We write systems (26) in polar coordinates and we get

(28) ṙ =
2n

n− d+ 1
rd cos(nθ) and θ̇ = 1 +

2(d− 1)

n− d+ 1
rd−1 sin(nθ).

Therefore

dr

dθ
=

2n rd cos(nθ)

n− d+ 1 + 2(d− 1) rd−1 sin(nθ)
with r(0) = r0.

Integrating this differential equation and since r(θ) ≥ 0 for any θ we get that
(29)

r(θ) =

(
−2(d− 1) sin(nθ) +

√
(n− d+ 1)2r2−2d

0 + 4(d− 1)2 sin2(nθ)

n− d+ 1

)1/(1−d)

Note that √
(n− d+ 1)2r2−2d

0 + 4(d− 1)2 sin2(nθ) ≥ |2(d− 1) sin(nθ)|

and thus r(θ) given in (29) is positive. Therefore introducing (29) into θ̇ given by
(28) we have that

(30)

∫ 2π

0

dθ

θ̇
=

∫ 2π

0

(
1− 2(d− 1) sin(nθ)√

4(d− 1)2 sin2(nθ) + (n− d+ 1)2r2−2d
0

)
dθ = 2π,

because the function 2(d − 1) sin(nθ)/
√

4(d− 1)2 sin2(nθ) + (n− d+ 1)2r2−2d
0 is

odd in θ. Therefore systems (1) under condition (b.2) have an isochronous center
at the origin.

We rewrite systems (27) in polar coordinates and we obtain

(31) ṙ = r1+3n
(
cos(nθ)− cos(3nθ)

)
, θ̇ = 1 + r3n

(
sin(nθ) + sin(3nθ)

)
.

We introduce the change of variables

w = rn, ϕ = nθ, τ = nt.

Then systems (31) become

w′ = w4
(
cosϕ− cos(3ϕ)

)
= 4w4 cosϕ sin2 ϕ,

ϕ′ = 1 + w3
(
sinϕ+ sin(3ϕ)

)
= 1 + 4w3 sinϕ cos2 ϕ,

(32)

where ′ denotes the derivative with respect to τ .
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We note that systems (32) have an invariant (i.e. a first integral depending on
the new time τ) of the form

(33) I = I(w,ϕ, τ) = 3(ϕ− τ) + 4w3 cos3 ϕ.

Indeed we have

3ϕ′ − 3 + 12w2w′ cos3 ϕ− 12w3 cos2 ϕ sinϕϕ′ = 0.

Now the invariant in the original coordinates becomes

I = I(r, θ, t) = 3n(θ − t) + 4r3n cos3(nθ).

Then the time in function of the variables (r, θ, I) is

(34) t = θ +
4

3n
r3n cos3(nθ)− I

3n
.

Then taking into account that systems

dr

dθ
=

r1+3n
(
cos(nθ)− cos(3nθ)

)

1 + r3n
(
sin(nθ) + sin(3nθ)

)

have a center at the origin, we have that r(0) = r(2π). Therefore it follows from
(34) that the period T is given by

T = t(2π)− t(0) = 2π +
4

3n
r(2π)3n − I

3n
−

[
4

3n
r(0)3n − I

3n

]
= 2π.

Therefore systems (1) under condition (b.3) have an isochronous center at the
origin.

5. Proof of Theorem 2(b): Necessary conditions for an isochronous
center

In this section we compute the necessary conditions to have an isochronous center
at the origin of systems (1). We note that since ρ1(θ) = 1 then from (8) and (3)
we have T1 = 2πc2. Therefore in order to have T1 = 0 we must impose c2 = 0.
Moreover since either (a.1), or (a.2), or (a.3) holds, we get that c1 = 0. From now
on we take C = 0. We consider two cases: j = 0 and j = 1.

Case 1: j = 0. We also distinguish two different subcases.

Subcase 1.1: B = 0. In this case using ρ2(θ) computed in the proof of Proposition
3 and also using (8) and (3), T2 becomes

T2 = − π

2n

(
2|A|2(d+ n− 1) + |D|2(d+ 2n− 1)

)
.

In order that T2 = 0 we must impose A = D = 0. Then A = B = C = D = 0 which
is a linear system. Therefore this case does not provide an isochronous center.

Subcase 1.2: B 6= 0. Then since from V2 = 0 we have Im(AB) = 0, we can write
A = µB with µ ∈ R. We consider two different subcases.

Subcase 1.2.1: µ = −3. In this case A = −3B and we are under the hypothesis
(a.1). Then T2 becomes

T2 = −π(d+ 2n− 1)

2n
(16|B|2 + |D|2).

In order that T2 = 0 we must impose B = 0, a contradiction. Therefore this case
does not provide an isochronous center.
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Subcase 1.2.2: µ ∈ R\{−3}. In this case A = µB and we are under the hypothesis
(a.2). By the change of variables in (11) and (13) we can rewrite systems (1) as

(35) ẇ = iw + µw
d−n+1

2 w
d+n−1

2 + w
d+n+1

2 w
d−n−1

2 + D̃w
d−2n+1

2 w
d+2n−1

2 ,

with D̃ = DB1/2/B
3/2

. Since we are under the assumptions (a.2) we have that

d̃1 = Re(D̃) =
1

B3/2B
3/2

Re(B
2
D) = 0.

Computing the period constants of (35) we get

T2 = −π
(
(d− 1)(2µ2 + d̃22 − 2) + 2(d̃22 + (µ− 1)2)n

)
/(2n),

T3 = −πd̃2(2(d− 1)2(−2 + d̃22 + 2µ+ 4µ2)+

(d− 1)(8d̃22 + (µ− 1)(7 + 23µ))n+ 2(4d̃22 + 7(µ− 1)2)n2)/(4n2),

T4 = −π
(
9(5d̃42 + 4(µ+ 1)(9µ− 1)d̃22 + 8(µ− 1)(µ+ 1)3)(d− 1)3+

2(135d̃42 + 4(µ(201µ− 7)− 66)d̃22 + 156(µ2 − 1)2)n(d− 1)2+

4(135d̃42 + 2(µ− 1)(299µ+ 15)d̃22 + 78(µ− 1)3(µ+ 1))n2(d− 1)+

72(5d̃42 + 14(µ− 1)2d̃22 + (µ− 1)4)n3
)
/(96n3).

Now if we compute, using the Gröebner basis of T2, T3 and T4 with respect to the
variables µ and d̃2 we get that the following expression must be zero:

(36) (d− 1)6d̃2(−3 + 3d− 2n)(−7 + 7d− 2n)(d− n− 1)(2d+ n− 2)2 = 0.

Since d ≥ 5 and n ≤ (d+ 1)/2 we have that the unique solution of (36) is d̃2 = 0.

Then, using the Gröebner basis obtained with d̃2 = 0, we also have

(µ− 1)
(
(d+ n− 1)µ+ (d− n+ 1)

)
= 0, that is µ = 1, µ =

n− d+ 1

d+ n− 1
.

Therefore, if µ = 1, d̃2 = 0 we are under the assumptions (b.1), and if µ =

(n − d + 1)/(d + n − 1) and d̃2 = 0 we are under the assumptions (b.2). This
completes the proof when j = 0.

Case 2: j = 1. We also consider two different subcases.

Subcase 2.1: B = 0. In this case using ρ2(θ) computed in the proof of Proposition
6 and also using (8) and (3), T2 becomes

T2 = − π

3n

(
3|A|2(d+ n− 1) + |D|2(d+ 3n− 1)

)
.

In order that T2 = 0 we must impose A = D = 0. Then A = B = C = D = 0 which
is a linear system. Therefore this case does not provide an isochronous center.

Subcase 2.2: B 6= 0. Then since from V2 = 0 we have Im(AB) = 0, then A = µB
with µ ∈ R. We consider two different subcases.

Subcase 2.2.1: µ = −2. In this case A = −2B and we are under the hypothesis
(a.1). Then T2 becomes

T2 = −π(d+ 3n− 1)

3n
(9|B|2 + |D|2).

In order that T2 = 0 we must impose B = 0, a contradiction. Therefore this case
does not provide an isochronous center.
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Subcase 2.2.2: µ ∈ R\{−2}. In this case A = µB and we are under the hypothesis
(a.3). By the change of variables in (17) and (19) we can rewrite systems (1) as

(37) ẇ = iw + µw
d−n+1

2 w
d+n−1

2 + w
d+n+1

2 w
d−n−1

2 + D̃w
d−3n+1

2 w
d+3n−1

2

with D̃ = DB/B
2
. Since we are under the assumptions (a.3) we have that

−d̃2 = Im(D̃) =
1

B2B
2 Im(B

3
D) = 0.

Computing the period constants of (37) we get

T2 = −π
(
(d− 1)(d̃21 + 3µ2 − 3) + 3(d̃21 + (µ− 1)2)n

)
/(3n),

T3 = 0,

T4 = −π
(
(n− 1)(3n− 1)(9n− 1)d̃41 − 6(µ+ 2)n(3n− 1)d̃31+

6(18(µ− 1)2n3 + ((31− 47µ)µ+ 16)n2 + (µ(28µ+ 13)− 8)n−
2(µ+ 1)(2µ+ 1))d̃21 + 6(−6(µ− 1)3n3 + 2(µ− 1)2(7µ+ 1)n2−
(µ− 1)(µ+ 1)(11µ− 4)n+ 3µ(µ+ 1)2)d̃1+

d3(d̃41 + 12(µ+ 1)(2µ+ 1)d̃21 − 18µ(µ+ 1)2d̃1 + 27(µ− 1)(µ+ 1)3)+
9(µ− 1)(µ(n− 3)− n− 3)(µ(n− 1)− n− 1)(−µ+ 3(µ− 1)n− 1)+

d((13n(3n− 2) + 3)d̃41 + 6(µ+ 2)n(3n− 2)d̃31+

6((µ− 1)(47µ+ 16)n2 − 2µ(28µ+ 13)n+ 16n+ 6µ(2µ+ 3) + 6)d̃21+
6(−9µ(µ+ 1)2 + 2(µ− 1)(11µ− 4)n(µ+ 1)−
2(µ− 1)2(7µ+ 1)n2)d̃1 + 9(13(µ+ 1)n2(µ− 1)3+

9(µ+ 1)3(µ− 1)− 26(µ2 − 1)2n)) + d2((13n− 3)d̃41+

6(µ+ 2)nd̃31 + 6(−8n+ µ(13n+ 4µ(7n− 3)− 18)− 6)d̃21−
6(µ+ 1)((µ− 1)(11µ− 4)n− 9µ(µ+ 1))d̃1 − 81(µ− 1)(µ+ 1)3+

117(µ2 − 1)2n)
)
/(36n3),

T5 = T7 = 0 and T6 and T8 have expressions two much long and here we do not
give them.

We are looking for solutions of d̃1 and µ such that Tk = 0 for k = 2, 4, 6, 8. Note
that these Tk = Tk(d̃1, µ) are polynomials in the variables d̃1 and µ. So we shall
use the properties of the resultants for solving the system Tk = 0 for k = 2, 4, 6, 8
with respect to the variables d̃1 and µ. We compute

r1(µ) = Resultant(T2(d̃1, µ), T4(d1, µ), d1),

r2(µ) = Resultant(T2(d̃1, µ), T6(d1, µ), d1),

r3(µ) = Resultant(T2(d̃1, µ), T8(d1, µ), d1).

Thus rl(µ) for l = 1, 2, 3 are polynomials in the variable µ. These three polynomials
have in common the factors (3n+ d− 1)2(µ− 1)(d− n− 1+ µ(n+ d− 1)). Clearly
3n+ d− 1 cannot be zero, because d ≥ 3 and n > 0; and since

T2(d̃1, 1) = T2

(
d̃1,

n− d+ 1

n+ d− 1

)
= − d̃21(d+ 3n− 1)π

3n
,

we must take d̃1 = 0. Then it is easy to check that Tk = 0 for k = 2, 4, 6, 8 when
µ = 1 and µ = (n − d + 1)/(n + d − 1), obtaining the cases (b.1) and (b.2) of
Theorem 2 respectively.
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Now we omit these three common factors from the three polynomials rl(µ) for
l = 1, 2, 3, and thus we get the polynomials sl(µ) for l = 1, 2, 3. We compute

Resultant(s1(µ), s2(µ), µ) = Kf(d, n),
Resultant(s1(µ), s3(µ), µ) = Lg(d, n),

where

K = (d− 1)45n8(1− d+ n)3(−1 + d+ n)(−3 + 3d+ n)2

(1− d+ 3n)2(−1 + d+ 3n)13,
L = (d− 1)65n12(1− d+ n)3(−1 + d+ n)5(−3 + 3d+ n)2

(1− d+ 3n)2(−1 + d+ 3n)19(−1 + d+ 9n)4,

and f(d, n) and g(d, n) are polynomials in the variables d and n. Since d ≥ 3 and
n > 0, we have that K = L = 0 implies that n = (d− 1)/3.

Now assume that n 6= (d− 1)/3. Then doing the

Resultant(f(d, n), g(d, n), n) = M(d− 1)2240,

where M is a positive integer. Since d ≥ 3, using the properties of the resultant
(see for more details [13, 18]) it follows that the system Tk = 0 for k = 2, 4, 6, 8

with respect to the variables d̃1 and µ has no solution when n 6= (d− 1)/3.

Suppose that n = (d− 1)/3. Then Tk = 0 for k = 2, 4, 6, 8 reduce to

T2 = −2π(−1 + d̃21 − µ+ 2µ2),

T4 = −π
(
16d̃41 + 6d̃31(2 + µ) + d̃21(−16 + 50µ+ 173µ2)−

2d̃1(6 + 5m+ 5µ2 + 38µ3) + 12µ(−4− 9µ+ 3µ2 + 10µ3)
)
/2,

T6 = −π
(
5670d̃61 + 4116d̃51(2 + µ) + 2d̃41(1309 + 35881µ+ 75022µ2)−

7d̃31(776− 3610µ− 3046µ2 + 15879µ3)+

14d̃21(−727− 5540µ− 5397µ2 + 20980µ3 + 29645m4)−
35d̃1(64 + 729µ+ 518µ2 − 997m3 + 3630µ4 + 5776m5)+
70(35 + 159µ− 501µ2 − 2527µ3 − 1734µ4 + 2328µ5 + 2240µ6)

)
/140,

T8 = −π(16056320d̃81 + 17147781d̃71(2 + µ)+

d̃61(52317568 + 440476696µ+ 785186476µ2)−
21d̃51(−812342− 16686977µ− 14276363m2 + 38219700µ3)+

9d̃41(−8204960− 36356392µ+ 55565628µ2 + 466656722µ3 + 540545695µ4)−
126d̃31(444878 + 2448179µ− 1776946µ2 − 9212642m3 + 19329337µ4+

34830922µ5) + 1764d̃21(6592− 59116µ− 728450µ2 − 1893296µ3−
65099µ4 + 4700711µ5 + 3915370µ6)− 882d̃1(−12310 + 8051µ+
412869µ2 + 489773µ3 − 1245259µ4 − 360264µ5 + 4430660µ6+
3624800µ7) + 141120µ(320 + 1872µ+ 912µ2 − 11656µ3 − 21612µ4−
1731m5 + 20345µ6 + 11550µ7))/70560.

We compute

r1(µ) = Resultant(T2(d̃1, µ), T4(d1, µ), d1),

r2(µ) = Resultant(T2(d̃1, µ), T6(d1, µ), d1),

r3(µ) = Resultant(T2(d̃1, µ), T8(d1, µ), d1).
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Then it is easy to check that the unique common factor of rl(µ) for l = 1, 2, 3 are
(µ − 1)µ(2µ + 1). Evaluating Tk for k = 2, 4, 6, 8 in µ = −1/2, 0 and 1 we obtain
the solucions

µ = −1

2
, d̃1 = 0; µ = 0, d̃1 = −1; µ = 1, d̃1 = 0;

for n = (d − 1)/3. Note that the first solution is a particular case of condition
(b.2), and that the third solution corresponds to a particular case of the condition
(b.1). Finally observe that the second condition corresponds to condition (b.3).
This concludes the proof.
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