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Abstract. Let X be a polynomial vector field of degree n on M . If M = Rm,
then the dynamics and the algebraic–geometric properties of the vector fields
X ’s have been studied intensively, mainly for the case M = R2, and specially
when n = 2. In this last case more than one thousand of papers have been

published.
If M = S2 there are several papers dedicated to the study of the homoge-

neous polynomial vector field of degree n on S2, mainly if n = 2. But there are

very few results on the non-homogeneous polynomial vector fields of degree n
on S2. In this paper we shall try to full a little this gap.

1. Introduction and statement of the main results

Let R[x, y, z] be the ring of all polynomials in the variables x, y and z with real
coefficients. The vector field

(1) X = P (x, y, z)
∂

∂x
+ Q(x, y, z)

∂

∂y
+ R(x, y, z)

∂

∂z

is called a polynomial vector field of degree n in R3 if P, Q, R ∈ R[x, y, z] and
n = max{deg P, deg Q, deg R}. For simplicity sometimes we will write the vector
field X simply as X = (P, Q, R).

The vector field (1) is a homogeneous polynomial vector field X of degree n in
R3 if P, Q, R are homogeneous polynomials of degree n.

Let f ∈ R[x, y, z]. The algebraic surface f(x, y, z) = 0 is an invariant algebraic
surface of X if there exists K ∈ R[x, y, z] such that

(2) Xf = P (x, y, z)
∂f

∂x
+ Q(x, y, z)

∂f

∂y
+ R(x, y, z)

∂f

∂z
= K(x, y, z)f(x, y, z).

As usual S2 denotes the 2-dimensional sphere {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.
A polynomial vector field X of degree n on S2 is a polynomial vector field in R3 of
degree n such that restricted to S2 defines a vector field on S2, i.e. it must satisfy
the equality

(3) xP (x, y, z) + yQ(x, y, z) + zR(x, y, z) = 0

for all (x, y, z) ∈ S2. In particular X is called a quadratic vector field on S2 if n = 2.

There are other definitions of polynomial vector fields on the sphere S2. For
instance, let A, B and C three polynomials of degree n − 1, then by definition a
polynomial vector field X on S2 of degree n is X = (P, Q, R) = (x, y, z)∧ (A,B, C).
Of course this second definition implies our definition xP + yQ + zR = 0, but not
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only in the points of (x, y, z) ∈ S2, also in all the points of (x, y, z) ∈ R3. We do
not consider this definition in this paper.

The algebraic surface f(x, y, z) = 0 defines an invariant algebraic curve {f =
0} ∩ S2 of the polynomial vector field X on S2 if

(i) there exists K ∈ R[x, y, z] such that (2) holds, and
(ii) the intersection of the two surfaces f(x, y, z) = 0 and S2 is transver-

sal, i.e. for all points (x, y, z) ∈ {f = 0} ∩ S2, we have that (x, y, z) ∧
(∂f/∂x, ∂f/∂y, ∂f/∂z) ̸= 0, where wedge denotes the cross product vector
of R3. In particular condition (ii) guarantees that the intersection of the
two surfaces {f(x, y, z) = 0} ∩ S2 is a a curve, not a surface.

The algebraic curve {ax + by + cz = 0} ∩ S2 is called a great circle on S2, where
a, b, c are real constants. Moreover a great circle is an invariant great circle of a
polynomial vector field X of degree n on S2 if it is an invariant algebraic surface of
X .

All the above definitions can be found in for instance in [1, 9, 10, 13].

The authors of the paper [9] studied homogeneous polynomial vector fields of de-
gree 2 on S2. They determined the maximum number of invariant circles when such
a vector field has finitely many invariant circles. The same authors found the upper
bound for the number of invariant circles, invariant great circles of homogeneous
polynomial vector fields of degree n on S2 [10]. It is proved in [11] that if a homo-
geneous polynomial vector field X of degree 2 on S2 has at least a non-hyperbolic
singularity, then it has no limit cycle. They also give necessary and sufficient con-
ditions for determining if a singularity of a homogeneous polynomial vector field
X of degree 2 on S2 is a center, and characterize the global phase portrait of X
modulo limit cycles.

Coleman [1] and Sharipov [13] studied homogeneous vector fields of degree n in
R3. They showed that any such vector fields induced naturally on S2 a tangent
vector field. Camacho [2] proved some properties of the vector fields on S2 induced
by homogeneous vector fields of degree 2 in R3, see also [8, 14, 15].

We note that the above cited results are concerned with vector fields on S2

homogeneous, or which are induced by homogeneous polynomial vector fields of
R3.

In what follows we shall use many basic definitions of the qualitative theory
of differential equations as singular point, node, saddle, focus, center, antisaddles,
period annulus, topological index or simply index of a singular point, contact point,
periodic orbit, limit cycle, homoclinic loop, tranversal arc, topologically equivalent,
... All the precise definitions of these notions can be found, for instance, in [4]. A
node is called proper if its two real eigenvalues are different.

Our main results are presented into the next two theorems. In the first we
present results for polynomial vector fields on S2 of arbitrary degree, and in the
second only for degree 2.

Theorem 1. Let X be a polynomial vector field on S2 of degree n having a finite
number s(X ) of singular points in S2. Assume that X is given by (1).

(a) If one of the three polynomial systems P = Q = x2 + y2 + z2 − 1 = 0,
Q = R = x2 + y2 + z2 − 1 = 0 or R = P = x2 + y2 + z2 − 1 = 0, has finitely
many solutions in CP 3, then s(X ) ≤ 2n2.
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(b) If n ≥ 2, then s(X ) ≤ (2n − 2)(2n − 1) + 1; and if n = 1, then s(X ) ≤ 2.
(c) Assume that all the singular points of X has topological index 1 or −1. If

n ≥ 2, then s(X ) ≤ (2n − 2)(2n − 1); and if n = 1, then s(X ) = 2.
(d) Every great circle is either an invariant great circle of X , or has at most

2n contact points (including singular points) with the orbits of X .

The singular points of the vector field X on S2 are included in the points solution
of the polynomial system P = Q = x2 + y2 + z2 − 1 = 0. By the multi-dimensional
Bezout Theorem (see [3, 12]), the number of solutions of this polynomial system
in CP 3 are either infinity, or less than 2n2. This is the proof of statement (a) of
Theorem 1.

On the other hand it is important to note that there are polynomial vector fields
X = (P,Q, R) on S2 for which the three polynomial systems of the statement (a) of
Theorem 1 have infinitely many solutions in CP 3, and consequently we cannot apply
Bezout Theorem for bounding its number of singular points, but such polynomial
vector fields can have finitely many singular points. An example of these kind of
polynomial vector field on S2 is

P = yz(1 − 3x2), Q = xz(1 − 3y2), R = xy(1 − 3z2).

Clearly every one of the three systems of statement (a) of Theorem 1 contains as
solution one circle of the sphere, so Bezout Theorem does not provide any bound
for the number of singular points. But the singular points of X on S2 are finite,
namely (±1, ±1, ±1)/

√
3, (±1, 0, 0), (0, ±1, 0) and (0, 0, ±1).

Theorem 2. Let X be a quadratic polynomial vector field on S2 having a finite
number s(X ) of singular points of X .

(a) Assume that all the singular points of X has topological index 1 or −1.
(a.1) The exact upper bound 6 for s(X ) is reached.
(a.2) X has at most 4 centers. This bound is reached for a convenient X .
(a.3) X has at most 4 foci. This bound is reached for a convenient X .
(a.4) X has at most 2 saddles. This bound is reached for a convenient X .

(b) Assume that X has an invariant great circle, without loss of generality we
can assume that it is S1 = {z = 0} ∩ S2.

(b.1) The vector field X can be written as (1) with

(4)
P (x, y, z) = a0 + a1y − a0x

2 + a3y
2 + a4z

2 + a5xy + a7yz,
Q(x, y, z) = b0 − a1x − (a5 + b0)x

2 − b0y
2 + b2z

2 − (a0 + a3)xy − a7xz,
R(x, y, z) = c0 − c0x

2 − c0y
2 − c0z

2 − (a0 + a4)xz − (b0 + b2)yz.

(b.2) The great circle S1 is a periodic orbit of X if and only if

(5) (a0 + a3)
2 + a2

5 − a2
1 < 0.

(b.3) The great circle S1 is a hyperbolic limit cycle if and only if (5) holds
and

(6)
a5(a0 + a4) + (a0 + a3)(b0 + b2)√

a2
1 − a2

5 − (a0 + a3)2
(
|a1| +

√
a2
1 − a2

5 − (a0 + a3)2
) ̸= 0.

(b.4) If (5) holds and the right hand of (6) is equal to zero, and (a0 +
a4)

2 + (b0 + b2)
2 ̸= 0, then the real parts of the two eigenvalues at

every singular point of X is zero.
(c) A homoclinic loop of X does not contain any arc of a great circle.
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(d) There are non-homogeneous X having a great circle as a limit cycle.
(e) If X is homogeneous, then any great circle cannot be a periodic orbit of X .
(f) There are X having the equator of S2 as a limit cycle and surrounding three

singular point in one hemisphere and one singular point in the other.
(g) If X is homogeneous and has a hyperbolic saddle or a hyperbolic proper

node, then there exists a great circle C such that either all orbits of X are
transversal to C, or C is an invariant great circle.

(h) There are X having two centers, and all the other orbits are periodic.
(i) There are X having two invariant great circles C1 and C2. Every one of the

four connected component of S2 \ {C1 ∪ C2} is completely filled by a center
and its period annulus.

The paper is structured as follows. In section 2 we introduce the notion of stere-
ographic projection, that we shall use for proving many of our results. Theorems 1
and 2 will be proved in Sections 3 and 4, respectively.

We recall that Écalle [5] and Ilyashenko [7] proved independently that any ana-
lytic vector field on the sphere S2 has finitely many limit cycles. So in particular
any polynomial vector field on S2 has a finite number of limit cycles.

2. Stereographic projection

The stereographic projection has been used frequently in the study of polynomial
vector fields on S2. Here we will follow [9] with small changes.

We identify R2 with the plane ax + by + cz = 0 where a2 + b2 + c2 = 1. Suppose
c ̸= 0, then the points in R2 are denoted by (u, v,−(au + bv)/c). Let π : R2 →
S2\{(a, b, c)} be the diffeomorphism given by

π

(
u, v, −au + bv

c

)
= (x, y, z)

=

(
aλ − 2c2(a − u)

λ
,
bλ − 2c2(b − v)

λ
,
cλ − 2c(c2 + au + bv)

λ

)
,

where λ = c2(1 + u2 + v2) + (au + bv)2. Therefore the stereographic projection
π−1 : S2\{(a, b, c)} → R2 is defined by

π−1(x, y, z) =

(
u, v, −au + bv

c

)

=

(
x − a(ax + by + cz)

1 − (ax + by + cz)
,
y − b(ax + by + cz)

1 − (ax + by + cz)
,
z − c(ax + by + cz)

1 − (ax + by + cz)

)
.

Through the stereographic projection π−1 the polynomial system X on S2 be-
comes the differential system

(7)

u̇ =
1

2c2λn−1
(P̄ + (u − a)(aP̄ + bQ̄ + cR̄)),

v̇ =
1

2c2λn−1
(Q̄ + (v − b)(aP̄ + bQ̄ + cR̄)),

on the plane R2, where S̄(u, v) = λnS(π(u, v, −(au + bv)/c)) and S ∈ {P,Q, R}.
Let t be the independent variable in the above differential system. Of course the
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dot denotes derivative with respect to t. Introducing the new independent variable
ds = dt/(2c2λn−1), we get the polynomial differential system

(8)
u̇ = P̄ + (u − a)(aP̄ + bQ̄ + cR̄),
v̇ = Q̄ + (v − b)(aP̄ + bQ̄ + cR̄)).

Now the dot denotes derivative with respect to s. The planar vector field (8) will
be called the stereographic projection of vector field X = (P, Q,R) at the point
(a, b, c) ∈ S2.

In general we consider the stereographic projections at the points (a, b, c) =
(0, 0, 1) and (a, b, c) = (0, 0, −1), and we denote their corresponding stereographic
projections by π1 and π−1. These two projections form an atlas for the sphere S2.

Let

(9)

P (x, y, z) =
∑

i+j+k≤n

pijkxiyjzk,

Q(x, y, z) =
∑

i+j+k≤n

qijkxiyjzk,

R(x, y, z) =
∑

i+j+k≤n

rijkxiyjzk.

If (a, b, c) = (0, 0, 1), then system (8) becomes

(10)
u̇ = P̄ (u, v) + uR̄(u, v) = P(u, v),
v̇ = Q̄(u, v) + vR̄(u, v) = Q(u, v),

where

(11)

P̄ (u, v) =
∑

i+j+k≤n

pijk(2u)i(2v)j(u2 + v2 − 1)k(u2 + v2 + 1)n−i−j−k,

Q̄(u, v) =
∑

i+j+k≤n

qijk(2u)i(2v)j(u2 + v2 − 1)k(u2 + v2 + 1)n−i−j−k,

R̄(u, v) =
∑

i+j+k≤n

rijk(2u)i(2v)j(u2 + v2 − 1)k(u2 + v2 + 1)n−i−j−k.

If (a, b, c) = (0, 0,−1), then system (8) writes

(12)
u̇ = P̃ (u, v) − uR̃(u, v),

v̇ = Q̃(u, v) − vR̃(u, v),

with

(13)

P̃ (u, v) =
∑

i+j+k≤n

pijk(2u)i(2v)j(1 − u2 − v2)k(u2 + v2 + 1)n−i−j−k,

Q̃(u, v) =
∑

i+j+k≤n

qijk(2u)i(2v)j(1 − u2 − v2)k(u2 + v2 + 1)n−i−j−k,

R̃(u, v) =
∑

i+j+k≤n

rijk(2u)i(2v)j(1 − u2 − v2)k(u2 + v2 + 1)n−i−j−k.

In what follows we are going to study the properties of the polynomial vector
fields X of degree n on S2 by using the stereographic projections (10) and (12).
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3. Proof of Theorem 1

We shall use the next result.

Lemma 3. Let X be the polynomial vector field of degree n on S2 given (1). Then
the polynomial differential system (10) (resp. (12)) has degree at most 2n. Moreover
it has degree at most 2n − 1 if (0, 0, 1) (resp. (0, 0,−1)) is a singular point of X .

Proof. We do the proof for system (10). Similar arguments prove the lemma for
system (12).

We get from (11) that deg P̄ (u, v) ≤ 2n, deg Q̄(u, v) ≤ 2n. It follows from (3)
that

(14) 2uP̄ (u, v) + 2vQ̄(u, v) + (u2 + v2 − 1)R̄(u, v) = 0,

which implies R̄(u, v) is a polynomial of degree at most 2n − 1. Hence system (10)
is a polynomial system of degree at most 2n.

It follows from (11) that the homogeneous parts of P̄ (u, v) and Q̄(u, v) of degree
2n are

(15)

(
n∑

k=0

p00k

)
(u2 + v2)n,

(
n∑

k=0

q00k

)
(u2 + v2)n,

respectively.

By the Poincaré-Hopf Theorem every vector field on S2 has singular points, see
for instance [4]. Suppose that (0, 0, 1) is a singular point of X . Then we have

(16)
n∑

k=0

p00k = 0,
n∑

k=0

q00k = 0.

From (15) and (16) we get that P̄ (u, v) and Q̄(u, v) are polynomials of degree at
most 2n − 1. Equation (14) implies that R̄(u, v) is a polynomial of degree at most
2n − 2. Therefore system (10) has degree at most 2n − 1 if (0, 0, 1) is a singular
point of X on S2. �

Now we shall prove Theorem 1. We only need to prove statements (b), (c) and
(d).

Proof of statement (b) of Theorem 1. Let p be a singular point of X . Doing a con-
venient rotation of SO(3) we can assume that p = (0, 0, 1). Let (u, v) be a sin-
gular point of system (10). Then P̄ (u, v) = −uR̄(u, v), Q̄(u, v) = −vR̄(u, v).
This together with equation (14) shows that R̄(u, v) = 0. Therefore the co-
ordinates (u, v) of singular points are determined by the equations P̄ (u, v) =
Q̄(u, v) = R̄(u, v) = 0. Since we have shown in the proof of Lemma 3 that
deg P̄ (u, v) ≤ 2n − 1, deg Q̄(u, v) ≤ 2n − 1, deg R̄(u, v) ≤ 2n − 2, by Bezout
Theorem (see, for example, [6]) system (10) has at most (2n − 2)(2n − 1) isolated
singular points. Noting that (0, 0, 1) is also a singular point, the polynomial vector
field X of degree n on S2 has at most (2n − 2)(2n − 1) + 1 isolated singular points.

If n = 1 and (0, 0, 1) is a singular point of X , then R(x, y, z) ≡ 0. By direct
computation we known that X has at most 2 singular points if s(X ) is finite. �
Proof of statement (c) of Theorem 1. By the Poincaré-Hopf Theorem a vector field
on S2 with a finite number of singular points, satisfies that the sum of the indices
of its singular points is +2, see for instante [4].
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Under the assumptions all the indices are 1 or −1. Suppose that X has s singular
points with the index +1, then the number of the singular points with index −1 is
s − 2. This yields that the vector field X on S2 has at most 2s − 2 isolated singular
points. Now using statement (b) of Theorem 1, it follows statement (c) of the same
theorem. �

Proof of statement (d) of Theorem 1. Without loss of generality we shall work with
the great circle {z = 0} ∩ S2. Under the stereographic projection at the point
(0, 0, 1), the phase portrait of the vector field X on S2 \ (0, 0, 1) is topologically
equivalent to the one of system (10) with (11) in R2, and the great circle goes over
the unite circle S1 : u2 + v2 = 1 of R2.

Suppose that the great circle S1 contacts the orbits of the polynomial differential
system (10) at (u, v). Then it follows from (14) that

(17) uu̇ + vv̇ = uP̄ (u, v) + vQ̄(u, v) + (u2 + v2)R̄(u, v) =
1

2
(u2 + v2 + 1)R̄(u, v).

So every contact point to S1 satisfies

R̄(u, v) = 0, u2 + v2 = 1.

Since

(18) R̄(u, v)
∣∣∣
(u,v)∈S1

=
n∑

i+j=0

2nrij0u
ivj

is a polynomial of degree n, statement (d) of Theorem 1 follows using the Bezout
Theorem. �

4. Proof of Theorem 2

In this section we study quadratic polynomial vector fields on S2. The next
result will be very useful.

Lemma 4. Let X be a quadratic polynomial vector field in R3 given by (1). Then
X is a quadratic polynomial vector field on S2 if and only if the differential system
associated to X can be written as

(19)

ẋ = P (x, y, z) = a0 + a1y + a2z − a0x
2 + a3y

2 + a4z
2 + a5xy

+a6xz + a7yz,
ẏ = Q(x, y, z) = b0 − a1x + b1z − (a5 + b0)x

2 − b0y
2 + b2z

2

−(a0 + a3)xy + b3xz + b4yz,
ż = R(x, y, z) = c0 − a2x − b1y − (a6 + c0)x

2 − (b4 + c0)y
2 − c0z

2

−(a7 + b3)xy − (a0 + a4)xz − (b0 + b2)yz.

Proof. Let

xP (x, y, z) + yQ(x, y, z) + zR(x, y, z) − (x2 + y2 + z2 − 1)K(x, y, z) ≡ 0,

where P, Q, R are defined as (9) with n = 2 and K(x, y) =
∑1

i+j=0 kijkxiyjzk.

Solving this equation and renaming the coefficients of (1), the lemma follows. �



8 JAUME LLIBRE AND YULIN ZHAO

For system (19), we have

(20)

P̄ (u, v) = a0 − a2 + a4 − 2a6u + 2(a1 − a7)v − 2(a0 + a4)u
2 + 4a5uv

+2(a0 + 2a3 − a4)v
2 + 2a6u

3 + 2(a1 + a7)u
2v + 2a6uv2

+2(a1 + a7)v
3 + (a0 + a2 + a4)(u

2 + v2)2,
Q̄(u, v) = b0 − b1 + b2 − 2(a1 + b3)u − 2b4v − 2(2a5 + b0 + b2)u

2

−4(a0 + a3)uv − 2(b0 + b2)v
2 − 2(a1 − b3)u

3 + 2b4u
2v

−2(a1 − b3)uv2 + 2b4v
3 + (b0 + b1 + b2)(u

2 + v2)2,
R̄(u, v) = 2(a0 − a2 + a4)u + 2(b0 − b1 + b2)v − 4a6u

2 − 4(a7 + b3)uv
−4b4v

2 − 2(a0 + a2 + a4)u
3 − 2(b0 + b1 + b2)u

2v
−2(a0 + a2 + a4)uv2 − 2(b0 + b1 + b2)v

3.

We shall give the proof of statement (a) of Theorem 2 at the end of this section.

Proof of statement (b) of Theorem 2. By assumptions S1 = {z = 0} ∩ S2 is an
invariant great circle of system X . By Lemma 4 the vector field X can be written
as (19). Under the stereographic projection at the point (0, 0, 1) the vector field X
becomes system (10) and the great circle {z = 0} ∩ S2 is reduced to the unit circle
S1 : u2 + v2 = 1 of R2. Note that we denote by S1 the great circle {z = 0} ∩ S2

and the unit circle u2 + v2 = 1, of course they are different objects, but they are
diffeomorphic through the stereographic projection at the point (0, 0, 1).

It follows from (17) and (20) that S1 is an invariant circle of (10) if and only if
R̄(u, v) is divisible by u2 + v2 − 1, i.e. if and only if

(21) a2 = a6 = b1 = b4 = 0, b3 = −a7,

holds. Putting conditions (21) into (19) we obtain statement (b.1) of Theorem 2.

The invariant great circle S1 is a periodic orbit of X if and only if there is no
singular point on it. It follows from (4), (10) and (20) that if (cos θ, sin θ) ∈ S1,
then

P(cos θ, sin θ) = 4 sin θ(a1 + a5 cos θ + (a0 + a3) sin θ),
Q(cos θ, sin θ) = −4 cos θ(a1 + a5 cos θ + (a0 + a3) sin θ).

Therefore S1 is a periodic orbit if and only if the following three systems

v = 0, a1 + a5u + (a0 + a3)v = 0, u2 + v2 = 1,(22)

u = 0, a1 + a5u + (a0 + a3)v = 0, u2 + v2 = 1,(23)

a1 + a5u + (a0 + a3)v = 0, u2 + v2 = 1,(24)

have no solution. This is equivalent to (5). The statement (b.2) follows.

It is well know that a periodic orbit (u(t), v(t)) of period T is a hyperbolic limit
cycle if and only if

(25) I =

∫ T

0

(
∂P
∂u

+
∂Q
∂v

)
(u(t), v(t))dt ̸= 0.

Let (u, v) = (cos θ, sin θ). Since dt = du/P(u, v), we have

I|S1 =

∮

S1

Pu + Qv

P(u, v)
du = −

∫ 2π

0

sin θ(Pu(cos θ, sin θ) + Qv(cos θ, sin θ))

P(cos θ, sin θ)
dθ

=

∫ 2π

0

(2a0 + a3 + a4) cos θ + (b0 + b2 − a5) sin θ

a1 + a5 cos θ + (a0 + a3) sin θ
dθ

=
−2π(a5(a0 + a4) + (a0 + a3)(b0 + b2))√

a2
1 − a2

5 − (a0 + a3)2(|a1| +
√

a2
1 − a2

5 − (a0 + a3)2)
,



ON THE POLYNOMIAL VECTOR FIELDS ON S2 9

where we use the fact that |a1| > |a5| (see (5)). Hence S1 is a hyperbolic limit cycle
of system (10) if and only if I|S1 ̸= 0 and (5) holds. So statement (b.3) is proved.

Finally we are going to prove (b.4). We note that I|S1 = 0 if and only if a5(a0 +
a4) + (a0 + a3)(b0 + b2) = 0. Suppose that (5) holds and I|S1 = 0. Then by direct
computation, we have

(26) uP(u, v) + vQ(u, v) = −((a0 + a4)u + (b0 + b2)v)(u2 + v2 + 1)(u2 + v2 − 1),

which implies that the coordinates of the singular points of system (10) under the
assumptions satisfy (a0 + a4)u + (b0 + b2)v = 0. If a0 + a4 ̸= 0, then

(
∂P
∂u

+
∂Q
∂v

) ∣∣∣∣∣
a5=− (a0+a3)(b0+b2)

a0+a4
,u=− b0+b2

a0+a4
v

= 0.

If a0 + a4 = 0, b0 + b2 ̸= 0, then a5(a0 + a4) + (a0 + a3)(b0 + b2) = 0 implies
a0 + a3 = 0. We have

(
∂P
∂u

+
∂Q
∂v

) ∣∣∣∣∣
v=0,a3=−a0,a4=−a0

= 0.

Since the coordinates of the singular points of system (10) under these assumptions
satisfy (a0 +a4)u+(b0 +b2)v = 0, the above equation is also equal to zero if (u∗, v∗)
is a singular point of system (10). This proves (b.4) except perhaps if (0, 0, 1) is a
singular point of X , but this is not the case because the origin of system (12) is a
singular point if and only if a0 + a4 = b0 + b2 = 0, which by assumption it is not
the case. �

Under the assumptions of statement (b.4) of Theorem 2, if a singular point of X
is focus, then it is non-hyperbolic.

Proof of statement (c) of Theorem 2. Suppose that a homoclinic loop of X on S2

contains an arc of a great circle. Without loss of generality we assume that this
great circle is {z = 0} ∩ S2. It follows from statement (b) of Theorem 2 that if
{z = 0} ∩ S2 is an invariant great circle of X , then X can be written as (4). Since
the coordinates of the singular points on {z = 0} ∩ S2 are determined by equations
(22), (23) and (24), the number of the singular points on the great circle is an even
number, which implies that {z = 0} ∩ S2 is not a homoclinic loop of X . �

Statement (c) of Theorem 2 also holds for the vector fields on S2 induced by
homogeneous vector fields of degree two in R3, see [8, 14].

The statements (d) and (e) of Theorem 2 show some of the differences between
homogeneous and non-homogeneous quadratic polynomial vector fields on S2.

Proof of statement (d) of Theorem 2. Consider the vector field (4). If a0 = a3 = 0,

a1 = 2 and a4 = a5 = 1, then (6) becomes 2/
√

3 − 1, and (5) holds. So statement
(d) of Theorem 2 follows from statement (b) of the same theorem. �

Proof of statement (e) of Theorem 2. Suppose that (4) is a quadratic homogeneous
polynomial vector field (i.e. a0 = a1 = b0 = c0 = 0) having S1 is an invariant great
circle. Since (a0 + a3)

2 − a2
1 + a2

5 = a2
3 + a2

5 ≥ 0, (5) does not holds. Therefore from
statement (b.2) of Theorem 2 it follows statement (e) of the same theorem. �
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Statement (e) of Theorem 2 also holds for the vector fields on S2 induced by
homogeneous vector field of degree two in R3, see [8]. We also note that statement
(e) of Theorem 2 was proved in [10] using different arguments.

Proof of statement (f) of Theorem 2. Consider system (19) with a0 = a2 = a3 =
a6 = 0, a1 = 2, a4 = a5 = 1, a7 = 10, b0 = b1 = b2 = b4 = 0 and b3 = −10. It
follows from system (10) that the stereographic projection of system (19) is given
by

(27)
u̇ = 1 − 16v + 4uv − 2v2 + 24u2v + 24v3 − u4 + v4 = P(u, v),
v̇ = −2u(−8 + 2u − v + 12u2 + 12v2 + u2v + v3) = Q(u, v).

By direct computation P(0, v) = 1 − 16v − 2v2 + 24v3 + v4 and P(0, ±∞) = +∞,
P(0,−1) = −8, P(0, 0) = 1, P(0, 1/2) = −71/16 and P(0, 1) = 8. This implies
that system (27) has at least four singular points on the line u = 0 and three of
them are inside the circle u2 + v2 = 1.

The system we consider has the form as system (4). Since the given coefficients
of system (19) satisfy (5) and (6), it follows from statement (b) of Theorem 2 that
the great circle {z = 0}∩S2 is a limit cycle of system (19) with the given coefficients.
On the other hand, the equality uP(u, v)+ vQ(u, v) = −u(u2 + v2 −1)(u2 + v2 +1)
shows that the coordinates of singular points of system (27) satisfy either u = 0,
or u2 + v2 = 1. Since u2 + v2 = 1 is the stereographic projection of the great circle
{z = 0} ∩ S2 which is a limit cycle, there is no singular point on u2 + v2 = 1.
Therefore system (19) with the given coefficients has only four singular points on
S2. One is the singular point (0, 0, 1) of the northern hemisphere and the other
three are in the southern hemisphere. �

Proof of statement (g) of Theorem 2. Here we use similar arguments to those of [8].
Without loss of generality we suppose that p = (0, 0, −1) is a singular point of X .
Then X becomes system (10) under the stereographic projection π−1 at the point p.
Since X is a quadratic homogeneous polynomial vector field, it follows from Lemma
4 that X can be written as (19) with a0 = a1 = a2 = a4 = b0 = b1 = b2 = c0 = 0.
A direct computation shows that (0, 0, 1) is also a singular point of X .

The origin q = (0, 0) is a singular point of the stereographic projection given by
system (10). Assume that q is a hyperbolic saddle or a hyperbolic proper node of
(10). Then the linear part of system (10) at q

(
−2a6 −2a7

−2b3 −2b4

)
.

has two different real eigenvalues. This implies

(28) (a6 + b4)
2 − 4(a6b4 − a7b3) = (b4 − a6)

2 + 4a7b3 > 0.

Consider the straight line L = v − ku = 0. We have

dL

dt

∣∣∣∣
L=0

= 2(b3 + (b4 − a6)k − a7k
2)u
(
(1 + k2)u2 − 1

)
− 4(a5 + a3k)(1 + k2)u2.

Since (28) holds, the equation b3 + (b4 − a6)k − a7k
2 = 0 has two real zeros for k if

a7 ̸= 0, and one real zero if a7 = 0. Let k be one zero of the above equation. Then
we have

dL

dt

∣∣∣∣
L=0

= −4(a5 + a3k)(1 + k2)u2.
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If dL/dt|L=0 does not change sign and dL/dt|L=0 ̸≡ 0, then all orbits pass
through L in the same direction. If dL/dt|L=0 ≡ 0, then L is an invariant straight
line of system (10). Since π(L) is a great circle on S2, statement (f) of Theorem 2
follows. �

Statement (g) of Theorem 2 shows that if a quadratic homogeneous polynomial
vector field X on S2 has either a hyperbolic saddle or a hyperbolic proper node,
then a periodic orbit is entirely contained in a hemisphere. This assertion also holds
for the vector fields on S2 induced by homogeneous quadratic polynomial vector
fields of in R3, see [2].

Proof of statement (h) of Theorem 2. There exists polynomial vector fields on S2

such that S2 is completely filled by centers and their families of period annulus. For
example the linear differential system of the form

ẋ = −y, ẏ = x, ż = 0,

has the two poles of the sphere S2 as singular points and all the parallels as periodic
orbits. The same occurs for the quadratic polynomial vector field

ẋ = −y(z − 2), ẏ = x(z − 2), ż = 0.

So statement (g) of Theorem 2 is proved. But we provide a big family of quadratic
polynomial vector fields on S2 with the same topological equivalent phase portrait.

In statement (b.4) of Theorem 2 we suppose that (a0 + a4)
2 + (b0 + b2)

2 ̸= 0.
What happen if (a0 + a4)

2 + (b0 + b2)
2 = 0? We will show that all these quadratic

polynomial vector fields on S2 have the phase portrait described in statement (g)
of Theorem 2.

Suppose that the vector field (4) satisfies (5), and that additionally a4 = −a0

and b2 = −b0, then (4) becomes
(29)

ẋ = P (x, y, z) = a0 + a1y − a0x
2 + a3y

2 − a0z
2 + a5xy + a7yz,

ẏ = Q(x, y, z) = b0 − a1x − (a5 + b0)x
2 − b0y

2 − b0z
2 − (a0 + a3)xy − a7xz,

ż = R(x, y, z) = −c0(x
2 + y2 + z2 − 1).

The stereographic projection of (29) at the point (0, 0, 1) provides the differential
system

(30)
u̇ = 2v(a1 − a7 + 2a5u + 2(a0 + a3)v + (a1 + a7)(u

2 + v2)),
v̇ = −2u(a1 − a7 + 2a5u + 2(a0 + a3)v + (a1 + a7)(u

2 + v2)).

If a1 + a7 ̸= 0 and a2
1 − a2

7 − a2
5 − (a0 + a3)

2 > 0, we have

a1 − a7 + 2a5u + 2(a0 + a3)v + (a1 + a7)(u
2 + v2)

= (a1 + a7)

((
u +

a5

a1 + a7

)2

+

(
v +

a0 + a3

a1 + a7

)2

+
a2
1 − a2

7 − a2
5 − (a0 + a3)

2

(a1 + a7)2

)

̸= 0,

which implies that system (30) has the unique singular point at the origin which is
a center. Therefore (0, 0,−1) is a center of system (29).

By the same arguments we conclude that the (0, 0, 1) is also a center of system
(29). Hence S2 is completely filled by two centers at (0, 0, ±1) and their periodic
orbits. �
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Proof of statement (i) of Theorem 2. Suppose that a quadratic vector field X on
S2 has 6 isolated singular points at (±1, 0, 0), (0, ±1, 0) and (0, 0,±1), respectively.
It follows from Lemma 4 that X can be written as

(31)
ẋ = a0 − a0x

2 − a0y
2 − a0z

2 + a7yz,
ẏ = b0 − b0x

2 − b0y
2 − b0z

2 + b3xz,
ż = c0 − c0x

2 − c0y
2 − c0z

2 − (a7 + b3)xy.

Doing the change 2t = τ , the stereographic projections of system (31) at the points
(0, 0, 1) and (0, 0, −1) are given by

(32)
u̇ = v(−a7 − (a7 + 2b3)u

2 + a7v
2),

v̇ = u(−b3 + b3u
2 − (2a7 + b3)v

2),

and

(33)
u̇ = v(a7 + (a7 + 2b3)u

2 − a7v
2),

v̇ = u(b3 − b3u
2 + (2a7 + b3)v

2),

respectively, where the dot now denotes derivative with respect to τ . If a7b3 = 0,
then system (32) and (33) has non-isolated singular points. Therefore we suppose
a7b3 ̸= 0.

By direct computation we know that the linearized system of (32) and (33) at
each singular point has two non-zero eigenvalues. So the topological index at every
one of its singular points is ±1 (for more details see [4]). Since a vector field on
S2 with a finite number of singular points satisfies that the sum of their indices is
2 (see the Poincaré-Hopf Theorem for instance in [4]), system (31) on S2 has two
saddles whose indices are −1 and four antisaddles with indices 1. Without loss of
generality we assume that (0, 0, −1) is a saddle. This implies a7b3 > 0. Moreover
we take a7 = 1 and b3 > 0. By direct computations we check that system (33) has
a saddle at (0, 0), and that system (32) has the first integral

(34) H(u, v) =
−b3u

2 + v2

(1 + u2 + v2)2
,

the four centers (0, ±1) and (±1, 0), and the saddle (0, 0).

It follows from (34) that system (32) has two invariant straight lines v = ±
√

b3u,
which correspond to two invariant great circles {(x, y)|y = ±

√
b3x} ∩ S2 of system

(31). So the proof of statement (i) of Theorem 2 is completed. �

Proof of statement (a) of Theorem 2. From statement (c) of Theorem 1 we know
that s(X ) ≤ 6. Since the quadratic polynomial vector field X on S2 of statement
(i) of Theorem 2 has exactly 6 singular points, statement (a.1) of Theorem 2 is
proved.

By statement (a.1) of Theorem 2 a quadratic polynomial vector field X such that
all the indices of its singular points are ±1 has at most 6 singular points. Since
centers have index 1 and the sum of all the indices is always 2 (by the Poincaré-
Hopf Theorem), the first part of statement (a.2) of Theorem 2 follows. The bound
of 4 centers is reached by statement (i) of Theorem 2. Hence statement (a.2) of
Theorem 2 is completely proved.

Of course the proof of the first part of statement (a.3) of Theorem 2 is the same
that the proof of the first part of statement (a.2). Now we shall provide a quadratic
polynomial vector field on S2 with 4 foci.
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Consider the quadratic polynomial vector field on S2 given by

(35)
P (x, y, z) = a0 − a0x

2 + a3y
2 − a0z

2 + a7yz,
Q(x, y, z) = b0 − b0x

2 − b0y
2 − b0z

2 − (a0 + a3)xy + b3xz + b4yz,
R(x, y, z) = c0 − c0x

2 − (b4 + c0)y
2 − c0z

2 − (a7 + b3)xy.

Doing the change 2t = τ the stereographic projections of system (35) at the points
(0, 0, 1) and (0, 0, −1) are given by

(36)
u̇ = v(−a7 + 2(a0 + a3)v − (a7 + 2b3)u

2 − 2b4uv + a7v
2),

v̇ = −b3u − b4v − 2(a0 + a3)uv + b3u
3 + b4u

2v − (2a7 + b3)uv2 − b4v
3,

and

(37)
u̇ = v(a7 + 2(a0 + a3)v + (a7 + 2b3)u

2 + 2b4uv − a7v
2),

v̇ = b3u + b4v − 2(a0 + a3)uv − b3u
3 − b4u

2v + (2a7 + b3)uv2 + b4v
3,

respectively. It follows from (36) and (37) that, if b2
4 + 4a7b3 < 0, (a0 + a3)

2 −
4(a7 + b3)b3 < 0, b4 ̸= 0 and a0 + a3 ̸= 0, then (±1, 0, 0) and (0, 0, ±1) are foci of
system (35). Hence statement (a.3) of Theorem 2 is proved.

Since s(X ) ≤ 6, saddles have index −1 and the sum of all the indices is always
2, the first part of statement (a.4) of Theorem 2 follows. The bound of 2 saddles
is reached by statement (i) of Theorem 2. Hence statement (a.4) of Theorem 2 is
proved. �
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