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Abstract. For the quadratic–linear polynomial differential systems with a
finite singular point, we classify the ones which have a global analytic first
integral, and provide the explicit expression of their first integrals.

1. Introduction

For a two–dimensional system the existence of a first integral determines com-
pletely its phase portrait. For such systems the notion of integrability is based on
the existence of a first integral. Then a natural question arises: Given a system of
ordinary differential equations in R2 depending on parameters, how to recognize the
values of such parameters for which the system has a first integral?

The planar integrable systems which are not Hamiltonian, i.e. the systems in R2

that cannot be written as x′ = −∂H/∂y, y′ = ∂H/∂x for some function H : R2 → R
of class C2, are in general very difficult to detect.

Let P and Q be two real polynomials in the variables x and y, then we say that
the system

x′ = P (x, y), y′ = Q(x, y),

is a quadratic polynomial differential system if the maximum of the degrees of the
polynomials P and Q is two.

Quadratic polynomial differential systems have been investigated intensively, and
more than one thousand papers have been published about these systems (see for
instance [3, 17, 18, 19]), but the problem of classifying all the integrable quadratic
polynomial differential systems remains open. For more information on integrable
differential systems in dimension 2, see for instance [5].

Let R[x, y] be the ring of polynomials in the variables x and y with coefficients
in R. In this paper we deal with quadratic–linear polynomial differential systems in
R2, i.e. systems of the form

(1)
dx

dt
= x′ = P (x, y)

dy

dt
= y′ = Q(x, y),

where P,Q ∈ R[x, y] with degP = 2 and degQ = 1. In what follows we will denote
them simply by quadratic–linear systems.

Here a global analytic first integral or simply an analytic first integral is a non-
constant analytic function H : R2 → R, whose domain of definition is the whole R2
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and it is constant on the solutions of system (1). This last assertion means that for
any solution (x(t), y(t)) of (1) we have

(2)
dH

dt
(x(t), y(t)) =

∂H

∂x
x′ +

∂H

∂y
y′ = 0.

We note that a complete characterization of the global analytic first integrals of
polynomial differential systems has been made for very few families of differential
systems (see, for example [13]) where the authors provide the complete charac-
terization of all Lotka–Volterra systems in R2 with 6 parameters having a global
analytic first integral. In [4] the authors classify the quadratic polynomial differen-
tial systems having a polynomial first integral.

The goal of this paper is to classify all the quadratic–linear polynomial differential
systems having a finite singular point and a global analytic first integral. Addition-
ally we provide an explicit normal form of these systems and of their analytic first
integrals. This is an important subclass of all the quadratic systems, and so is a
good first step towards the final goal of classifying all quadratic polynomial sys-
tems having a global analytic first integral but this final objective looks now very
difficult.

By Proposition 3 we only need to consider quadratic–linear polynomial differen-
tial systems of the form

(3) x′ = P (x, y) = bx+ cy + dx2 + exy + fy2, y′ = Q(x, y),

where P (x, y) 6= bx+ cy, and Q(x, y) is either x, or y. Moreover

(S1) if Q(x, y) = y, then P (x, y) 6= cy + exy + fy2; and
(S2) if Q(x, y) = x, then P (x, y) 6= bx+ dx2 + exy.

Note that we have avoided: first that the differential system be linear, and second
the situations in which the polynomials P (x, y) and Q(x, y) have a common factor,
because then with a rescaling of the time variable we can reduce the problem to a
non–interesting linear differential system.

We also do not consider in (3) the case Q(x, y) = 0 because it clearly has the
global analytic first integral y.

Through the paper Z+ will denote the set of non–negative integers, Z− will
denote the set of negative integers, Q+ will denote the set of non–negative rationals
and Q− will denote the set of negative rationals.

The main results of this paper are the following.

Theorem 1. The quadratic–linear polynomial differential systems(3) satisfying
(S1) and having a global analytic first integral H are the following:

(1) b = d = 0 having H = exp(−ey)(e2x+ efy + ce+ f).

(2) d = 0, b = −p/q ∈ Q− and e = 0 having H = yp
(

cqy

p+ q
+

pqy2

p+ 2q
− x

)q

.

Theorem 2. The quadratic–linear polynomial differential systems (3) satisfying
(S2) and having a global analytic first integral H are the following:

(a) d = f = 0, ce 6= 0 and b = 0 having H = (c+ ex)2c exp(e2y2 − 2ex);
(b) e = f = 0, cd 6= 0 and b = 0 having H = (c+ 2cdy + 2d2x2) exp(−2dy);
(c) b = e = 0 and f 6= 0 having H =

(
2f(cd + f) + 4d3fx2 + 4df(cd + f)y +

4d2f2y2
)
exp[−2d(y + c/(2f))].
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The proofs of Theorems 1 and 2 are given in Sections 3 and 4 respectively. In
Section 2 we present some known results necessary for the proof of our theorems.

2. Preliminary results

First we show that we can reduce the study of all quadratic–linear systems having
a finite singular point to the two classes (S1) and (S2).

Proposition 3. Any quadratic–linear differential system

(4) x′ = a00 + a10x+ a01y + a20x
2 + a11xy + a02y

2, y′ = A+Bx+ Cy,

with A2+B2+C2 6= 0 having a singular point, through a linear change of variables
and a rescaling of the time can be written into the form

(5) x′ = bx+ cy + dx2 + exy + fy2, y′ = Q(x, y),

where Q(x, y) is either x or y.

Proof. Assume that B 6= 0. Then doing the change of variables X = A+Bx+Cy,
Y = y, system (4) becomes the system

(6) X ′ = a+ bX + cY + dX2 + eXY + fY 2, Y ′ = Q(X,Y ),

with Q(X,Y ) = X.

Suppose B = 0 and C 6= 0. Then the change of variables X = x, Y = A + Cy
and T = Ct writes system (4) into the form (6) with Q(X,Y ) = Y .

Finally if B = C = 0 then A 6= 0, and system (4) has no finite singular points.

Now let (α, β) be a singular point of system (6) with Q(X,Y ) equal to either
X or Y . When Q(X,Y ) = X the finite singular point is (α, β) with α = 0, and
when Q(X,Y ) = Y it is (α, β) with β = 0. So, doing the translation x = X − α,
y = Y − β we obtain that system (6) becomes system (5), and the proposition is
proved. ¤

Now we shall introduce some auxiliary results that will be used through the
paper. Let X = X(x, y) = (P (x, y), Q(x, y)) be the vector field associated to our
system (3).

The following result is due to Poincaré in [1] and its proof can be found in [6].

Theorem 4. Assume that the eigenvalues λ1 6= 0 and λ2 6= 0 at some singular
point of X do not satisfy any resonance condition of the form

λ1k1 + λ2k2 = 0 for k1, k2 ∈ Z+ with k1 + k2 > 0.

Then system (3) has no local analytic first integrals.

The following result is due to Li, Llibre and Zhang, see [12].

Theorem 5. Assume that the eigenvalues λ1 and λ2 at some singular point (x̄, ȳ)
of X satisfy that λ1 = 0 and λ2 6= 0. Then system (3) has no local analytic first
integrals if the singular point (x̄, ȳ) is isolated.

We must mention that the singular points appearing in the statements of Theo-
rems 4 and 5 can be real or complex, but our system (3) always is real.

On the other hand we need a result concerning with the characterization of the
centers. This is due to Poincaré [16] and Liapunov [11], see also Moussu [15].



4 J. LLIBRE AND C. VALLS

Theorem 6 (Nondegenerate Center Theorem). We consider the polynomial dif-
ferential system on the plane of the form

(7) ẋ = −y + F (x, y) ẏ = x+G(x, y),

where F and G are polynomials formed by monomials of degree ≥ 2. Then system
(7) has a center at the origin if and only if there exists a local analytic first integral
defined in a neighborhood of the origin.

We also need a result related with the classification theorem for centers of qua-
dratic systems due to Kapteyn [9, 10] and Bautin [2]. We state it in complex
notation.

Theorem 7. Any system (7) with F and G homogeneous polynomials of degree
two candidate to have a center can be written in complex notation as

(8) z′ = iz +Az2 +Bzz̄ + Cz̄2, A,B,C ∈ C,
where z = x + yi. System (8) has a center at the origin if and only if one of the
following four conditions hold.

(i) B = 0,
(ii) 2A+ B̄ = 0,
(iii) Im(AB) = Im(B̄3C) = Im(A3C) = 0,
(iv) |C|−|B| = A−2B̄ = 0, where |·| indicates the modulo of a complex number.

3. Proof of Theorem 1

Assume d = 0. If b = 0 then it is easy to check that the function H given in
Theorem 1(a) satisfies (2).

Assume b 6= 0 and b 6∈ Q−. Then (0, 0) is a singular point of system (S1) having
eigenvalues λ1 = b and λ2 = 1. Since for all k1, k2 ∈ Z+ with k1 + k2 > 0 we have
k1b+ k2 6= 0 (otherwise b ∈ Q−), by Theorem 4 the proposition follows.

Suppose now b = −p/q with p and q positive integers, and e 6= 0 then an easy
computation shows that

H = e2+p/qxyp/q exp(−ey) + ceΓ(1 + p/q, ey) + fΓ(2 + p/q, ey)

is a first integral of system (S1) where

Γ(u, z) =

∫ +∞

z

tu−1 exp(−t) dt,

is the plica function. Since the function Γ(u, z) is not continuous when z ∈ (−∞, 0)
we do not have a global analytic first integral.

Assume now b = −p/q with p and q positive integers and e = 0. Then the
function H given in Theorem 1(b) satisfies (2).

Now we assume that d 6= 0. In this case system (S1) has the singular points
(0, 0) and (−b/d, 0).

We first assume b = 0. In this case only the origin is a singular point. Its
eigenvalues are 0 and 1. Since this singular point is isolated, Theorem 5 says that
system (S1) has no analytic first integrals.

Now we assume b 6= 0 and b 6∈ Q+. In this case the eigenvalues of (−b/d, 0) are
λ1 = −b and λ2 = 1. So given k1, k2 ∈ Z+ with k1+k2 > 0, we have −bk1+k2 6= 0.
Then Theorem 4 implies that system (S1) has no global analytic first integrals.
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Finally consider the case b ∈ Q+ \ {0}. In this case the eigenvalues of (0, 0) are
λ1 = b and λ2 = 1. So given k1, k2 ∈ Z+ with k1 + k2 > 0, we have bk1 + k2 > 0.
Then Theorem 4 implies that system (S1) has no global analytic first integrals.
This proves the theorem.

4. analytic first integrals for system (S2)

We shall prove Theorem 2 in the next propositions.

Proposition 8. Assume that f = 0, bc 6= 0 and c/b2 6∈ Q+. Then system (S2) has
no local analytic first integrals in a neighborhood of zero.

Proof. We note that system (S2) has the singular point (0, 0). Its eigenvalues are

λ1,2 =
b±

√
b2 + 4c

2
.

Clearly

(9) λ1 + λ2 = b and λ1λ2 = −c.

Suppose that there exists positive integers k1, k2 such that k1λ1 + k2λ2 = 0. Note
that by Theorem 4 if such integers do not exist the proposition is proved. Then
λ1 = −αλ2 with α a positive rational. The two equalities of (9) become

b = (1− α)λ2 and c = αλ2
2.

Since we have

−b2

c
= − (1− α)2

α
∈ Q−.

Note that α 6= 1 because b 6= 0. Therefore, since b2/c 6∈ Q+ we cannot have
k1λ1 + k2λ2 = 0 and the proposition is proved. ¤
Proposition 9. System (S2) with f = 0, bc 6= 0 and α = c/b2 ∈ Q+ with α 6=
pq/(p− q)2 for some positive coprime integers p, q with p > q has no global analytic
first integrals.

Proof. Doing the rescaling (X,Y, T ) =
( c

b2
x,

c

b
y, bt

)
system (S2) becomes of the

form

x′ = x+ αy +
db

c
x2 +

e

c
xy, y′ = x,

where we have written again (x, y, t) instead of (X,Y, T ). We assume that H =
H(x, y) is a local analytic first integral in a neighborhood of the origin. We write
it as

(10) H =
∑

k≥1

Hk(x, y)

where each Hk is a homogeneous polynomial of degree k. We will show by induction
that

(11) Hk = 0 for k ≥ 1.

Then clearly from (10) we will obtain that system (S2) has no global analytic first
integrals, and the proof of the proposition is done.

Since H is a first integral it must satisfy

(12)
(
x+ αy +

db

c
x2 +

e

c
xy

)∂H
∂x

+ x
∂H

∂y
= 0.
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Now we will do the induction. The terms of degree one in (12) must satisfy

(x+ αy)
∂H1

∂x
+ x

∂H1

∂y
= 0.

Clearly, since α 6= 0 we have that ∂H1/∂x = 0. Then ∂H1/∂y = 0 and thus H1 = 0
which proves (19) for k = 1. Now we assume that (19) is true for k = 1, . . . , j − 1
with j ≥ 2 and we will prove it for k = j. By the induction hypothesis, the terms
of order j in (12) must satisfy

(x+ αy)
∂Hj

∂x
+ x

∂Hj

∂y
= 0.

Therefore, either Hj = 0 or Hj is a first integral of the linear system

x′ = x+ αy, y′ = x.

Computing a first integral of this system we obtain that it must be a function of

G =

(
(
√
1 + 4α− 1)x− 2αy

)1+
√
1+4α(

2x+ (
√
1 + 4α− 1)y

)−1+
√
1+4α

.

The unique possibility in order that Gn2 be a polynomial is

−1 +
√
1 + 4α =

n1

n2
and 1 +

√
1 + 4α =

n3

n2
, n1, n3 ∈ Z+, n3 6= n1.

Then we have that

n1

n2
+ 1 =

n3

n2
− 1, that is n2 =

n3 − n1

2
.

Note that n2 is not necessarily an integer. Hence,

√
1 + 4α =

n1 + n2

n2
=

n1 + n3

n3 − n1
,

which yields

α =
1

4

((n1 + n3

n3 − n1

)2

− 1

)
=

n1n3

(n3 − n1)2
, n1, n3 ∈ Z+, n1 6= n3,

a contradiction, and hence the induction process has ended. Note that n3 > n1.
Furthermore, n1 and n3 are coprime since otherwise, setting n1 = g.c.d{n1, n3}n̂1

and n3 = g.c.d{n1, n3}n̂3 we get

α =
g.c.d{n1, n3}2n̂1n̂3

(g.c.d{n1, n3}n̂1 + g.c.d{n1, n3}n̂3)2
=

n̂1n̂3

(n̂1 − n̂3)2
.

¤

Proposition 10. System (S2) with f = 0, bc 6= 0, α = c/b2 with α = pq/(p− q)2

for some positive coprime integers p, q with p > q and d 6= −e(p − q)/(bp) has no
global analytic first integrals.

Proof. We consider system (S2) with f = 0, c = b2pq/(p−q)2 where p, q are coprime
positive integers with p > q and d 6= −e(p− q)/(bp). Under these assumptions and
doing the rescaling (X,Y, T ) = ( c

b2x,
c
by, bt) we have

(13) x′ = x+
pq

(p− q)2
y+Dx2+Exy, y′ = x, D =

d(p− q)2

bpq
, E =

e(p− q)2

b2pq
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with pD+E(p−q) 6= 0 and where we have written again (x, y, t) instead of (X,Y, T ).
Making the change of variables

(14) u = (p−q)x+qy, v = (q−p)x+py, i.e. x =
pu− qv

(p− q)(p+ q)
, y =

u+ v

q − p

we have that system (13) becomes

u′ =
p

p− q
u+

p(Dp+ E(p− q))u2

(p− q)(p+ q)2
+

(
E(p− q)2 − 2Dpq

)
uv

(p− q)(p+ q)2
+

q(Dq + E(q − p))v2

(p− q)(p+ q)2
,

v′ = − qv

p− q
− p(Dp+ E(p− q))u2

(p− q)(p+ q)2
+

(
2Dpq − E(p− q)2

)
uv

(p− q)(p+ q)2
+

q(E(p− q)−Dq)v2

(p− q)(p+ q)2
.

(15)

We change from the variables (u, v) to the variables (u, T ) where

(16) T = uqvp, that is v = T 1/pu−q/p.

Then we have from (15) that

u′ =
pu

p− q
+

p(Dp+ E(p− q))u2

(p− q)(p+ q)2
+

q(Dq + E(q − p))u− 2q
p T 2/p

(p− q)(p+ q)2
+

(
E(p− q)2 − 2Dpq

)
u

p−q
p T

1
p

(p− q)(p+ q)2
,

T ′ =
u

q−p
p T

p−1
p

(p− q)(p+ q)2

(
pu− qu− q

pT
1
p

)2 (
(E(p− q)−Dq)u− q

pT
1
p + (Dp+ E(p− q))u

)
.

(17)

Let H = H(x, y) be a formal first integral of system (13). Then Ĥ(u, v) = H(x, y)

is a formal first integral of system (15) and H̃(u, T ) = Ĥ(u, v) is a formal first

integral of system (17). Writing Ĥ(u, v) =
∑

j≥0 Hj(u)v
j with Hj a formal series

in u, we can write H̃(u, T ) as

H̃ = H̃(u, T ) =
∑

j≥0

H̃j(u)T
j/p,

where H̃j(u) = Hj(u)u
−jq/p. Since H̃ is a first integral we can assume that it has

no constant term. Note that H̃ satisfies

(18) T ′ ∂H̃
∂T

+ u′ ∂H̃
∂u

= 0,

with (T ′, v′) as in (17). We will show by induction that

(19) H̃j(u) = 0 for j ≥ 0.

Note that to conclude the proof of the proposition it is enough to show that (19)
holds.

First we note that equation (18) restricted to T = 0 becomes
(

pu

p− q
+

p(Dp+ E(p− q))u2

(p− q)(p+ q)2

)
H̃ ′

0(u) = 0,
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where the prime indicates derivative with respect to the variable u. Thus H̃0 is
a constant. Since H̃ has no constant terms we get H̃0 = 0. This proves (19) for
j = 0.

We assume that (19) is satisfied for j = 0, . . . , n − 1 with n ≥ 1 and we shall
prove it for j = n. By the induction hypothesis we have

H̃ =
∑

j≥0

H̃j+n(u)T
(j+n)/p = Tn/pg(u, T ),

with g(u, 0) = H̃n(u). Now after simplifying equation (18) by T (n−1)/p, and after
restricting it to T = 0, equation (18) becomes

nu(q+p)/p

(p− q)(p+ q)2
(Dp+ E(p− q))H̃n(u) = 0.

Therefore H̃n(u) = 0. This proves equation (19) for j = n. In short, the proposition
is proved. ¤

Proposition 11. System (S2) with f = 0, bc 6= 0, α = c/b2 with α = pq/(p− q)2

for some positive coprime integers p, q with p > q and d = −e(p − q)/(bp) has no
global analytic first integrals.

Proof. We consider system (S2) with f = 0, b =
√
c(p− q)/

√
pq where p, q are co-

prime positive integers with p > q and d = −e(p−q)/(bp). Under these assumptions
and doing the rescaling (X,Y, T ) = ( c

b2x,
c
by, bt) we have

(20) x′ = x+
pq

(p− q)2
y − p− q

p
Ex2 + Exy, y′ = x, E =

e(p− q)2

b2pq
,

where we have written again (x, y, t) instead of (X,Y, T ). Making the change of
variables as in (14) we have that system (20) becomes

u′ =
pu

p− q
− E(p− 1)pu2

(p+ q)2
+

E(2qp+ p− q)vu

(p+ q)2
− Eq(q + 1)v2

(p+ q)2
,

v′ = − qv

p− q
+

E(p− 1)pu2

(p+ q)2
+

E(q − p(2q + 1))vu

(p+ q)2
+

Eq(q + 1)v2

(p+ q)2
.

(21)

We change from the variables (u, v) to the variables (u, T ) as in (16). Then we have
from (21) that

u′ =
pu

p− q
− E(p− 1)pu2

(p+ q)2
− Eq(q + 1)u− 2q

p T 2/p

(p+ q)2
+

E(2qp+ p− q)u
p−q
p T

1
p

(p+ q)2
,

T ′ =
E

(p+ q)2
u

q−p
p T

p−1
p

(
pu− qu− q

pT
1
p

)2 (
(p− 1)u− u− q

pT
1
p − qu− q

pT
1
p

)(22)

Let H = H(x, y) be a formal first integral of system (13). Then proceeding as in

the proof of Proposition 10 we have H̃(u, T ) = H(x, y) and we write it as

H̃ = H̃(u, T ) =
∑

j≥0

H̃j(u)T
j/p,

where H̃j(u) = Hj(u)u
−jq/p. Since H̃ is a first integral we can assume that it has

no constant term. Note that H̃ satisfies (18). We will show by induction that

(23) H̃j(u) = 0 for j ≥ 0
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Note that to conclude the proof of the proposition it is enough to show that (23)
holds.

First we note that equation (18) restricted to T = 0 becomes
(

pu

p− q
− E(p− 1)pu2

(p+ q)2

)
H̃ ′

0(u) = 0

where the prime indicates derivative with respect to the variable u. Thus, H̃0 is
a constant. Since H̃ has no constant terms we get H̃0 = 0. This proves (23) for
j = 0.

We assume that (23) is satisfied for j = 0, . . . , n − 1 with n ≥ 1 and we shall
prove it for j = n. By the induction hypothesis we have

H̃ =
∑

j≥0

H̃j+n(u)T
(j+n)/p = Tn/pg(u, T ),

with g(u, 0) = H̃n(u). Now after simplifying equation (18) by T (n−1)/p, and after
restricting it to T = 0, equation (18) becomes

− nEu(q+p)/p

(p− q)(p− q)2
(p− 1)H̃n(u) = 0.

Since p > q ≥ 1 and ? 6= 0 (otherwise system (3) would be linear) we have that

H̃n(u) = 0. This proves equation (23) for j = n. In short, the proposition is
proved. ¤

Proposition 12. Assume that in system (S2) we have f = 0, c 6= 0 and b = 0.

(a) If d = 0 and e 6= 0, then the function H of Theorem 2(a) satisfies (2).
(b) If e = 0 and d 6= 0, then the function H of Theorem 2(b) satisfies (2).
(c) If de 6= 0, then it has no global analytic first integrals.

Proof. From (S2) we get that

x′ = cy + dx2 + exy, y′ = x.

Statements (a) and (b) follows easily by direct computations.

Assume de 6= 0 and c < 0. Then system (S2) becomes

x′ = −|c|y + dx2 + exy, y′ = x.

Doing the change of variables

(24) Z =
1√
|c|

x, W = y and t =
1√
|c|

τ,

we obtain

(25) Z ′ = −W + dZ2 +
e√
|c|

ZW, W ′ = Z,

where now the prime indicates derivative with respect to τ . We note that system
(25) can be written as in (8) taking

z = Z +Wi, A =
d

4
− e

4
√

|c|
i, B =

d

2
, C =

d

4
+

e

4
√

|c|
i.

It is clear that B 6= 0, 2A+B̄ 6= 0, A−2B̄ 6= 0 and Im(AB) 6= 0. Then by Theorem 7
we have that system (25) has not a center at the origin, and by Theorem 6 then
system (25) has no local analytic first integrals in a neighborhood of the origin.
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Consequently system (S2) with de 6= 0 and c < 0 has no global analytic first
integrals.

Now suppose de 6= 0 with c > 0, then system (S2) becomes

x′ = |c|y + dx2 + exy, y′ = x.

Using the change of variables (24) this system goes over to

(26) Z ′ = W + dZ2 +
e√
|c|

ZW, W ′ = Z,

System (26) can be written as in (8) taking

z = Z+W, z = Z−W, t = iτ, A =
d

4
+

e

4
√

|c|
i, B =

d

2
, C =

d

4
− e

4
√

|c|
i.

The same arguments used in the case c < 0 works now for proving that system
(26) has no local analytic first integrals in a neighborhood of the origin (see [14] for
details). Consequently system (S2) with de 6= 0 and c > 0 has no global analytic
first integrals. This completes the proof of statement (c). ¤

Now we are left with system (S2) with f 6= 0. Doing the change of variables

x = X, y = Y − c

2f

we transform system (S2) with f 6= 0 into the following system

(S2”) X ′ = ã+ b̃X + dX2+ eXY + fY 2, Y ′ = X, with ã = − c2

4f
and b̃ = b− ce

2f
.

Now we will work with system (S2”) instead of system (S2).

Proposition 13. If f 6= 0 and b = e = 0 then

H = exp(−2dY )
(
− c2d2 + 2f2 + 4d3fX2 + 4df2Y + 4d2f2Y 2

)

is a global analytic first integral of system (S2”), and we obtain the global analytic
first integral of Theorem 2(c).

Proof. The proof follows with a direct calculation. ¤
Proposition 14. System (S2’) with f 6= 0, b̃2 + e2 6= 0 and c 6= 0 has no global
analytic first integrals.

Proof. In this case the singular points of (S2’) are u± = (0,±
√

−ã/f) because
ãf < 0. We separate the proof in two cases.

Case 1: b̃− e
√

−ã/f 6= 0. Since the eigenvalues at u− are

λ1,2 =
b̃− e

√
−ã/f ±

√
(b̃− e

√
−ã/f)2 − 8

√−ãf

2
,

both eigenvalues have either positive or negative real parts. So given k1, k2 ∈ Z+

with k1 + k2 > 0, we have λ1k1 + λ2k2 6= 0. Then Theorem 4 implies that system
(S2”) has no global analytic first integrals.

Case 2: b̃− e
√

−ã/f = 0. We take b̃ = e
√

−ã/f . We translate the singular point
u− at the origin, we continue denoting the new variables as (X,Y ), and doing the
change of variables

x =
X√

2
√−ãf

, y = Y, T =

√
2
√

−ãf t,
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system (S2”) becomes

(27) ẋ = −y + dx2 − e(−ãf)3/4√
2 ãf

xy −
√−ãf

2 ã
y2, ẏ = x.

We note that this system can be written as in (8) taking

z = x+ yi, A =
2ãd+

√−ãf

8ã
+

e(−ãf)3/4

4
√
2 ãf

i, B =
2ãd−√−ãf

4 ã
, C = A.

Here A denotes the conjugate of A. It is clear that 2A + B̄ 6= 0, A − 2B̄ 6= 0 and
Im(AB) 6= 0. Then by Theorem 7 we have that system (27) has not a center at the
origin, and by Theorem 6 then system (27) has no local analytic first integrals in a
neighborhood of the origin. Consequently system (S2”) in this case has no global
analytic first integrals. ¤

Proposition 15. System (S2”) with f 6= 0, b̃2 + e2 6= 0 and c = 0 has no global
analytic first integrals.

Proof. Since ã = 0 system (S2”) has a unique singular point, the origin. Its eigen-

values are λ = 0 and λ = b̃. If b̃ 6= 0 then the origin is isolated, consequently
Theorem 5 says that system (S2”) has no analytic first integrals.

Now we consider the case b̃ = 0. Then by hypothesis e 6= 0 and furthermore
system (S2”) becomes

(28) X ′ = dX2 + eXY + fY 2, Y ′ = X.

We claim that system (28) has no global analytic first integrals. We note that
the proof of the proposition follows from the claim. Now we shall prove the claim.

Let H = H(X,Y ) =
∑

k≥1 Hk(X,Y ) be a first integral of (28), where Hk is a
homogeneous polynomial of degree k. Then H satisfies

(29) (dX2 + eXY + fY 2)
∂H

∂X
+X

∂H

∂Y
= 0.

Computing the terms with different degree in (29) we get

(30) X
∂Hk

∂Y
= −(dX2 + eXY + fY 2)

∂Hk−1

∂X
, for k ≥ 1.

We will show by induction that for k ≥ 1,

(31) Hk−1 = 0 and
∂Hk

∂Y
= 0

We note that (31) clearly implies that H = 0 a contradiction with the fact that H
is a global first integral of system (28). Hence the claim will be proved if we prove
the induction hypothesis.

For k = 1 (30) yields ∂H1/∂Y = 0, and since H0 = 0 the induction hypothesis
is proved for k = 1.

Now we assume that (31) is true for k = 1, . . . , l (l ≥ 1) and we will prove it for
k = l + 1. By the induction hypothesis we have

Hl−1 = 0 and Hl = alX
l, al ∈ R.

Equation (30) with k = l + 1 yields

(32) X
∂Hl+1

∂Y
= −all(dX

2 + eXY + fY 2)X l−1,
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If l = 1 then (32) becomes

X
∂H2

∂Y
= −a1(dX

2 + eXY + fY 2).

From this equation since f 6= 0 we get that a1 = 0 and ∂H2/∂Y , so H1 = 0 and
H2 = a2X

2. The induction hypothesis is proved for k = 2. Now assume l ≥ 2.

First we will prove by induction that for m ≥ 1,

(33) Hl+m = (−1)mfm−1
(
alfCl,mY + aleKl,mX

)
Y 3m−1X l−2m +O(X l−2m+2),

where Cl,m and Kl,m are positive constants depending on l and m. This result will
allow us to complete the proof of the induction hypothesis (31).

Since l ≥ 2 solving (32) we get

Hl+1 = −allX
l−2

(
dX2Y +

e

2
XY 2 +

f

3
Y 3

)
+ al+1X

l+1

= −alfCl,1X
l−2Y 3 − aleKl,1X

l−1Y 2 +O(X l),

(34)

where Cl,1 = l/3 and Kl,1 = l/2. This proves (33) with m = 1. Now we assume
that (33) is true for m = 1, . . . , n − 1 (n ≥ 2) and we will prove it for m = n. By
the induction hypothesis and (30) with k = l + n we have

X
∂Hl+n

∂Y
= −(dX2 + eXY + fY 2)

∂Hl+n−1

∂X

= −(dX2 + eXY + fY 2)
[
(−1)n−1alf

n−1Cl,n−1(l − 2n+ 2)X l−2n+1Y 3n−3

+ (−1)n−1alef
n−2Kl,n−1(l − 2n+ 3)X l−2n+2Y 3n−4 +O(X l−2n+3)

]

= (−1)nalf
nCl,n−1(l − 2n+ 2)X l−2n+1Y 3n−1

+ (−1)nalef
n−1Kl,n−1(l − 2n+ 3)X l−2n+2Y 3n−2

+ (−1)nalef
n−1Cl,n−1(l − 2n+ 2)X l−2n+2Y 3n−2 +O(X l−2n+3)

= (−1)nalf
nCl,n−1(l − 2n+ 2)X l−2n+1Y 3n−1

+ (−1)nalef
n−1[Kl,n−1(l − 2n+ 3) + Cl,n−1(l − 2n+ 2)]X l−2n+2Y 3n−2

+O(X l−2n+3).

Therefore
∂Hl+n

∂Y
= (−1)nalf

nCl,n−1(l − 2n+ 2)X l−2nY 3n−1

+ (−1)nalef
n−1[Kl,n−1(l − 2n+ 3) + Cl,n−1(l − 2n+ 2)]X l−2n+1Y 3n−2

+O(X l−2n+2),

which yields

Hl+n = (−1)nalf
nCl,nX

l−2nY 3n+(−1)nalef
n−1Kl,nX

l−2n+1Y 3n−1+O(X l−2n+2),

with

Cl,n =
l − 2n+ 2

3n
Cl,n−1 > 0, Kl,n =

Kl,n−1(l − 2n+ 3) + Cl,n−1(l − 2n+ 2)

3n− 1
> 0.

Therefore (33) is proved.

Now we continue with the proof of the induction hypothesis (31). In fact we
shall prove that al = 0 for l ≥ 2. Then Hl = 0 and from (29) we have that
∂Hl+1/∂Y = 0. This proves (31). We distinguish two cases.
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We first assume l is odd. Then by (33) with m = (l − 1)/2 we obtain that

H(3l−1)/2 = (−1)(l−1)/2alf
(l−1)/2Cl,(l−1)/2XY (3l−3)/2 +O(X2).

Then by (30) with k = (3l + 1)/2 we get

X
∂H(3l+1)/2

∂Y

= −(dX2 + eXY + fY 2)
(
(−1)(l−1)/2alf

(l−1)/2Cl,(l−1)/2Y
(3l−3)/2 +O(X)

)
.

(35)

Now setting X = 0 in (35) we get that al = 0.

Finally, if l is even, then (33) with m = l/2 yields

H3l/2 = (−1)l/2alf
l/2Cl,l/2Y

3l/2

+ (−1)l/2alef
(l−2)/2Kl,l/2XY (3l−2)/2 +O(X2).

Then by (30) with k = (3l + 2)/2 we get

X
∂H(3l+2)/2

∂Y
= −(dX2 + eXY + fY 2)

(
(−1)l/2alef

(l−2)/2Kl,l/2Y
(3l−2)/2 +O(X)

)
.

Now taking X = 0 in the previous expression we get that al = 0. ¤
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