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HOPF BIFURCATION FOR SOME ANALYTIC DIFFERENTIAL SYSTEMS
IN R® VIA AVERAGING THEORY

JAUME LLIBRE! AND CLAUDIA VALLS?

ABSTRACT. We study the Hopf bifurcation from the singular point with eigenvalues ae + b1
and ce located at the origen of an analytic differential system of the form x = f(x), where
x € R3. Under convenient assumptions we prove that the Hopf bifurcation can produce 1, 2
or 3 limit cycles. We also characterize the stability of these limit cycles. The main tool for
proving these results is the averaging theory of first and second order.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

The main goal of this work is to study the Hopf bifurcation in analytic differential systems
in R? via averaging theory. In fact the results obtained can be extended easily to C* differential
systems in R? but in order to simplify the notation we will present them for analytic differential
systems.

More precisely, we investigate the Hopf bifurcation at the singular point located at the origin
for an analytic differential systems in R? of the form

U=cal =0V + Y Ay U'Vviwk,

I+j+k>n
(1) V =bU +eaV + Z By U'VIWF,
I+j+k>n
W= ecW+ > CipU'VIwk,
I+j+k>n

where n = 2,3 and ¢ is a small parameter. Note that the linear part of this system at the
singular point located at the origin (0,0,0) has eigenvalues ae &+ bi and ce. So for € = 0 the
eigenvalues are +bi and 0, consequently we are studying a kind of zero-Hopf bifurcation.

For n = 2 the Hopf bifurcation of system (1) was studied in [2] were the authors obtained
the following result.

Theorem 1 (First order Hopf bifurcation theorem for n = 2). We define the constants
F = A101 + 30117 G = C020 + 0200, D = C(CF - 4(10002), E = .D2 + 8ab2F(CF - 2&0002).

(a) If (E—D?)/(FG) > 0, then the phase portrait of system (1) has a limit cycle T'. tending
to the origin as € — 0.

(b) Assume that the limit cycle Tz of statement (a) in cylindrical coordinates (U = Rcos 6,V =
Rsin, W) becomes (R(0), W(0)) with 6 € St. Then

E - D? 2a
R(0) — WG w(9) — & when ¢ — 0.

(c) If D* > E and DF > 0, then the limit cycle T'. is a local repellor; if D* > E and
DF < 0, then the limit cycle T, is a local attractor; and if D* < E, then the limit
cycle Tz has two invariant manifolds, one stable and the other unstable, which locally
are formed by two 2-dimensional cylinders.
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Our first result is to improve Theorem 1 using the averaging theory of second order. Thus
we have:

Theorem 2 (Second order Hopf bifurcation theorem for n = 2). We define the constants N;
fori=0,1,2,3,4 (see (17)) and the constants ny and dy, for k = 2,4 (see (18)).
(a) If abNy > 0 and nads # 0, then the phase portrait of system (1) has a limit cycle T'L
tending to the origin as € — 0.
(b) If NyNo > 0, N3Ny > 0 and ngdy # 0, then the phase portrait of system (1) has two
limit cycles T2 and T2 tending to the origin as e — 0.

Theorem 2 will be proved in Section 3 by using the averaging theory of second order, see
Section 2. We note that the estimation on the size of the limit cycles given in statements (a)
and (b) of Theorem 2 can be obtained from Theorem 5 but their expressions are very long and
we do not write them here. Also the stability of the limit cycles can be analyzed computing
the eigenvalues of the matrix (12), but again we do not provide them because their expressions
are too long.

Our second result is to extend Theorem 1 to systems (1) with n = 3. Thus we have:

Theorem 3 (Hopf bifurcation theorem for n = 3). We define the constants

Do — 8a
® ™ A2 + 3(As00 + Boso) + Baio’
(2) D, = Coos((A120 + 3(Asz00 + Bozo) + Baio)c — 4a(Coa21 + Ca01))

(A120 + 3(As00 + Boso) + B210)Coos — 2(A102 + Boi2)(Co21 + Ca201)’
Dy = (A120 + 3(As00 + Boso) + B210)Coos + 2(A102 + Bo12)(Co21 + C201)-

(a) If

(3) Do(—(A120 + 3(As00 + Boso) + B210)c + 4a(Co21 + C201))

102 # 0,
then the phase portrait of system (1) has a limit cycle I tending to the origin ase — 0.

(b) Assume that the limit cycle T of statement (a) in cylindrical coordinates (U = Rcos 6,V =
Rsin 6, W) becomes (R(0), W (0)) with 6 € S*. Then
R(0) — \/—Dqge, w(0) — 0, when € — 0.
(¢) If ab < 0 and (2¢ — Do(Co21 4+ C201))b > 0, then the limit cycle T'. is a local repellor; if
ab > 0 and (2¢ — Do(Coz1 + Ca01))b < 0, then the limit cycle T is a local attractor; and
’Lf ab > 0 and (26— Do(C()Ql + 0201))b <0, orab <0 and (20— DQ(C()Ql + 0201))b >0,

then the limit cycle I'c has two invariant manifolds, one stable and the other unstable,
which locally are formed by two 2-dimensional cylinders.

(d) If

2D ((A1o2 + Boi2)c — 2aCoo3)
- 7& 07
b?Coo3
then the phase portrait of the quadratic system (1) has two limit cycles T't and T2
tending to the origin as € — 0.

(e) Assume that the limit cycle T'L of statement (d) in cylindrical coordinates (U = Rcos0,V =
Rsin 6, W) becomes (R(), W(0)) with § € S*. Then

N 2v/ev/—(A102 + Boi2)c + 2aCoo3
V=D: ’
(f) Assume that the limit cycle T2 of statement (d) in cylindrical coordinates (U = Rcos,V =
Rsin 6, W) becomes (R(0), W (0)) with 6 € S*. Then
. 2v/2\/—(A102 + Boi2)c + 2aCoo3
V=D

R(6) when & — 0.

RV 7D1€
\/COOB ’

R(6) , W) — when € — 0.
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Theorem 3 will be proved in Section 4 by using the averaging theory of first order, see Section
2. As it is mention in Section 4 we can study the stability of the limit cycles I'}? computing
their eigenvalues but since they have very long expressions we have omitted them.

2. LIMIT CYCLES VIA AVERAGING THEORY

In few words we can say that the averaging method [4, 5] gives a quantitative relation
between the solutions of some non-autonomous periodic differential system and the solutions
of its averaged differential system, which is an autonomous one. The next theorem provides a
first order approximation in ¢ for the limit cycles of a periodic differential system, for a proof
see Theorem 2.6.1 of Sanders and Verhulst [4] and Theorem 11.5 of Verhulst [5].

Theorem 4. We consider the following two initial value problems

(5) 'jj:gf(tvx)+€29(t’xa€)7 'T(O) = Zo,
and
(6) g=cfy), y(0) = zo.

where x, y, xg € Q an open subset of R™, t € [0,00), € € (0,&0], f and g are periodic of period
T in the variable t, and f°(y) is the averaged function of f(t, ) with respect to t, i.e.,

T
(7) foy) = %/0 f(t,y)dt.

Suppose: (i) f, its Jacobian Of /Ox, its Hessian 0 f /0z2, g and its Jacobian 8g/dx are defined,
continuous and bounded by a constant independent on € in [0,00) x Q and € € (0,e0]; (i) T s
a constant independent of €; and (i) y(t) belongs to 2 on the interval of time [0,1/e]. Then
the following statements hold.

(a) On the time scale 1/e we have that x(t) — y(t) = O(e), as e — 0.
(b) If p is a singular point of the averaged system (6) such that the determinant of the
Jacobian matriz
af°
Y ly=p
is not zero, then there exists a limit cycle ¢(t,e) of period T for the system (5) which
is close to p and such that ¢(t,e) — p ase — 0.
(¢) The stability or instability of the limit cycle ¢(t,€) is given by the stability or instability
of the singular point p of the averaged system (6). In fact, the singular point p has the
stability behavior of the Poincaré map associated to the limit cycle ¢(t,¢).

(®)

The next theorem provides a second order approximation in ¢ for the limit cycles of a periodic
differential system, for an statement in the case of a differential equation (see [3] and [1]) and
for a proof see Theorem 3.5.1 of Sanders and Verhulst [4].

Theorem 5. We consider the following two initial value problems

(9) & =cf(t,x) +e%g(t,x) + 3 R(t,x,¢), x(0) = xo,
and
(10) g=cf’(w)+2 W) +°9°(v),  y(0) = o,

with f,g:[0,00) x Q@ x R", R: [0,00) x 2 x (0,e9] = R™, Q an open set of R, f,g and G
periodic functions of period T in the variable t,

(11) fit,x) = %yl(t,m), where y'(t,x) = /Ot f(s,z)ds.

Of course, f°, 10 and ¢° denote the averaged functions of f, f! and g, respectively, defined as
in (7). Suppose: (i) Of |0z is Lipschitz in x, g and R are Lipschitz in x and all these functions
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are continuous on their domain of definition; (ii) |R(t, x, )| is bounded by a constant uniformly
in [0,L/e) x Q x (0,e9]; (iit) T is a constant independent of €; and (iv) y(t) belongs to  on
the interval of time [0,1/¢]. Then the following statements hold.

(a) On the time scale 1/ we have that x(t) = y(t) + eyt (t,y(t)) = O(e?).

(b) If p is a singular point of the averaged system (10) such that

(12) a(f* ;r 9°())
y y=p
is not zero, then there exists a limit cycle ¢(t,e) of period T for the system (9) which
is close to p and such that ¢(t,e) — p as e — 0.
(¢) The stability or instability of the limit cycle ¢(t,e) is given by the stability or instability
of the singular point p of the averaged system (10). In fact, the singular point p has the
stability behavior of the Poincaré map associated to the limit cycle ¢(t,¢).

3. PROOF OF THEOREM 2

In the cylindrical change of coordinates U = Rcosf, V = Rsinf, W = W the system (1) in
the region R > 0 has the following form

R = aeR + Hy1(0)R? + Hi2(0)RW + Hy3(0)W? + O3(R, W),
(13) 0= & [R+ Har (0)R® + Hap(0)RW + Hag (0)W + Og(R,W)].
W = ceW + Hs1(0)R? + Hs(0)RW + Os(R, W),
where
H11(0) = Asgo cos® @ + (A119 + Bago) cos® 0sin 6 + (Agag + Bi1o) cos 6 sin? 0
+ Byao sin® 6,
Hq2(0) = A1;1 cos? 0 + (Ap11 + Bio1) cosfsind — Aqpq sin? 6,
Hi3(0) = Agoz cos 0 + Bopz sin b,
Hy1(#) = Bago cos® 0 — (Aggp — Bi1o) cos® sin@ — (A110 — Bogo) cos 0 sin? 0

— Agap sin® 6,
Hs2(0) = Bio1 cos? 0 — 24101 cosfsinf — Agyy sin? 6,
H3(0) = Bgpa cos — Agpa sin b,
Hs1(0) = —Cogg cos? @ + Chyg cos 0 sin 0 + Cogp sin’ 6,
H32(0) = Cyo1 cos 8 + Cpy1 sin 6.

Therefore, system (13) in the region 9 = ( is equivalent to
ﬁ . R[GGR + H11(9)R2 + H12(9)RW + H13(9)W2 + O3(R, W)}
dd bR+ Ha1(0)R? + Hyp(0)RW + Hos(0)W?2 + O3(R, W)
aw R[ceW + H31(0)R? + H3o(0)RW + O3(R, W)]
df bR+ Ho1(0)R2 + Hap(0)RW + Hoz(0)W2 4 O3(R, W)’
We note that this system is 2m-periodic in the variable §. Performing the rescaling (R, W) =
(0+/€,(+/€) the system (14) becomes into the normal form for applying the averaging theory.
That is, in the variables (g, () system (14) writes
do

db
(15) e
b

(14)

= 61/2f1(97 0, C) + €91 (0, 0, C) + 63/2]%1(97 0, C’ 6)’

= 61/2f2(97 0, C) + 692(0a 0, C) + 63/2R2(97 0, Ca 6)7
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where

110, 0,0) = S [H1n(0)2? + Hiz(6)oC + Hrg(0)C7),

91(0,0,¢) = %Q - %[HM(Q)QQ + Hi2(0)0C + Hu3(0)C?][Ha1 (0)0® + Haz(0)0C
+ Ha3(0)¢7),

12(0.0:0) = {Hn (0)o + Har(0)<].

92(0,0,¢) = % - big[H:n(@)Q + Hyo(0)C)[Ha1(0)0” + Haz(0) oC + Haz(0)¢).

So system (15) is equivalent to system (9) taking x = (o,{), t = 0, f(t,z) = (f1(0, 0, ), f2(0,0,()),
g(t,x) = (g1(0,0,¢), 92(0, 0,¢)), T = 27 and & = /2

Let © be the open subset and ¢y the positive number which appear in the statement of
Theorem 5. Then, it is easy to verify that, system (15) satisfies the assumptions of Theorem 5
if we take as € an open disc centered at the origin in R? and a sufficiently small €y. Let

yi(0,0,0) /flsg, ds fori=1,2.
Then

I;b (12[B002 — B002 cos + A002 sin G]C

+ 3[Ao11 + Bio1 — Ao11 cos? @ — Bigp cos? 0 + 4410, cos O sin 0

+ Ap11 8in? 6 + By sin? 0]Co

+ [4A110 + 8Bo20 + 4Bago — 3A110 cos @ — 9Bgag cos 6 — 3Bz cos 6

— Aq10 cos® 0 4+ Byao cos® @ — Bogo cos® 0 + 3 Agao sin 6 + 9 Ao sin 6

+ 3Bj10sin 0 — 3Aga0 cos? fsin 0 + 3As00 cos? O sin @ — 3B110 cos? O sin 0
+ 34110 cos 0sin? @ — 3Bz cos 0 sin? @ + 3 Bagg cos 0 sin? 0

+ Agao sin® 6 — Asgg sin® 6 + By sin® 6] 92),

yi(6,0,¢) =

y% (9, 0, C) = % ([0110 sin? 6 — 2C20 sin 6 cos H]Q + [20011 + 2C101 sin 8 — 2Cp11 cos O]C)

We have
of of1
o g (e Bee) e
2\VH & —Jz 2\Y» Uy
So
fi10(07C) / 0 Qv 7 fori: 1727

97 (0,¢) = / (0,0,0)dl, fori=1,2,
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then

1
1900, ¢) = @[—((Aou + B101)Co20 + A101C110) 0> + 2(Ago2(A110 + 3Bo20 + Baoo

— 4Co11) — Boo2(Ao20 + 34200 + Bi1o — 4C101))0¢?],

30(0,0) = %[((Aozo + 34200 + B110)Co11 + 2(Ao11 + B1o1)Co20
— (A110 + 3Bo20 + B200)Cio1 + 2A101C110) 0% + 4(A002C011 — Boo2C1o1)¢?,

95 (0,¢) = 8%[8@ + (A110A4200 + Ao20(A110 + 2Bo2o) — 2A200Ba0o — Bi1o(Bozo + B20o)) o
+ 2(Booz2(Ao20 — A200 — B11o) + Aoo2(A110 + Bo2o — Baoo))¢?],
95(0.¢) = %[856 + ((34020 + A200 — B110)Co11 + 2(Ao11 + B101)Co20 + A110C101

— (Boao + 3B200)C1o1 + 2A101C110) 0% + 4(A002C011 — Boo2C101)¢3)-

The averaged system f1%(o,¢) + ¢%(0,¢), i = 1,2 has six singular points:

2v/2ab 2v/2ab
q =1 - ) 0 ) q2 = 70 ’
VN VN
Ny

- (). e ()

where

No = — A1104200 — Ao20(A110 + 2Bo20) + 24200 B20o+
B110(Bo2o + Baoo) + (Ao11 + Bio1)Coz20 + A101C110,

Ny =4b(—Ago2(A110 + 2Bo20)c + Booz(2A4200 + Bi1o)c+
2Ap02(a + ¢)Co11 — 2Booz2(a + ¢)Cro1),

Na =Booa2(—4A43500Co11 — 24020(2A200 + B110)Co11 — 24011 B110Co20—
2B101B110Co20 + Bo20B110C101 + B110B200C101 + A020C101
(A110 + 2Bo20 + 4Co11) + 3A011C020C101 + 3B101Co20C101—
4By20C7T1 — 4B200Ci1 — 24101 B110C110 + 34101C101Cr10+
A200(—2B110Co11 — 4(Ao11 + B1o1)Co20 + (A110 + 4Bo20 + 2B200+

(17) 4Co11)Cro1 — 4A101C110)) + Aoo2(Ao20(A110 + 2Bo20 — 4Co11)Co11+

2A200(2Bo20 + B20o — 2C011)Co11 — 4B350C1o1+
Co11(B2oo(B110 + 4C101) — 3((Ao11 + Bio1)Coz20 + A101C110))+
A110(A200C011 + 2((Ao11 + Bio1)Co20 — (Bo2o + B200)Cio1+
A101C110)) + Bo20(B110Co11 + 4((Ao11 + Bio1)Co20 — B2ooCho1+
Co11C101 + A101C110)))s

N3 = — b(A002C011 — Boo2C101)(—A110A200¢ — Ao20(A110 + 2Bo20)c+
Bo2oB11o¢ + 2A200 B2ooc + B11oB2ooc + 4aAo20C011 + 4aA200C011+
4aAp11Co20 + 4aB101Co20 + Ao11¢Co20 + B1o1¢Co20 — 4aBo20C101—
4aBaooCho1 + A1o1(4a + ¢)Chio),
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Ny =(—Ao02Co11 + Boo2C101) Boo2(44300Co11 + 2B101B110Coz20+
A011Co20(2B110 — 3C101) — Bo20B110C101 — B110B200C101—
3B101Co20C101 + 4Bo20CTo; + 4B200C01 + Ao20(4A200Co11+
2B110Co11 — (A110 + 2Bo20 + 4Co11)Ch01) + 24101 B110Ci10—
34101C101C110 + A200(2B110C011 + 4(Ao11 + Bio1)Co20—
(A110 + 4Bo20 + 2B200 + 4Co11)Cro1 + 44101C110)) —
Ago2(Ao20(A110 + 2Bo20 — 4Co11)Co11 + 2A200(2Bo20 + Baoo—
2C011)Co11 — 4B35C101 + Co11(Baoo(Bio + 4C101)—
3((Ao11 + Bio1)Co20 + A101C110)) + A110(A200C011+
2((Ao11 + Bio1)Co20 — (Bozo + B200)C1o1 + A101C110))+
Bo2o(B110Co11 + 4((Ao11 + Bio1)Co20 — B200Clo1+
Co11C101 + A101C110)))-

We observe that the averaged theory can be conclusive only at points g2, ¢4 and gg. In fact, at
q1, q3 and g5 we have ¢ < 0 and it means that R < 0 which does not make sense.
For k = 2,4,6 the Jacobian matrix (12) at point ¢ has determinant ny/dy where

ng = —2a(—A110A4200¢ + Bo2oBiioc + 2A200 Baooc + BiioBaooc+
Ap11Co20¢ + B101Co20¢ + A101Cr10¢ + 4aA200Co11—
Ap20(Ai10¢ + 2Bogoc — 4aCoi1) + 4aAo11Co20 + 4aB1o1Cozo—
4aBy20C101 — 4aB200Cro1 + 4aA101C110),

b%(—A110A4200 + 2B20oA200 — Ao20(A110 + 2Bo20)+
By20B110 + B110B200 + A011Co20 + B101Co20 + A101C110),

ng = 2(Ago2(A110¢ — 2((a + ¢)Co11 — Bo2o¢)) + Booz(—2Az00¢ — Bi1oc+
2(a + ¢)C101))(A110A200¢ — Bo2oB11o¢ — 2A200B200¢ — B11oBaooc—
Ap11Co20¢ — B101Co20¢ — A101C110¢ — 4aA200Co11 + Ao20(Arioc+
2Bo20c — 4aCo11) — 4aAp11Co20 — 4aB101Co20 + 4aBo20C101+
4aB0oCho1 — 4aA101Ch10),

dy = b*(Boo2(—4Co11 4300 + (—2B110Co11 + 4C101Co11 — 4A011Co20—
4B101Co20 + A110C101 + 4Bo20C101 + 2B200C101 — 4A101C110)A200—
4By20C3y1 — 4B200C%1 — 2A011 B110Co20 — 2B101B110Co20+
By20B110C101 + B110B200C101 + 34011Co20C101 + 3B101Co20C101+
Ag20(—4A4200Co11 — 2B110Co11 + (A110 + 2Bo20 + 4C011)C101)—
24101 B110C110 + 34101 C101C110) + Aoo2 (—4C101 By +
4A200Co11Bo20 + B110Co11Bo20 + 44011 Co20Bo2o + 4B101Co20Bo20—
4 B20oC101 Boz2o + 4Co11C101Bo20 + 4A101C110Bo2o — 4A200C311+
2A200B200C011 + B110B200C011 + Ao20(A110 + 2Bo20 — 4Co11)Co11—
3A4011C011Co20 — 3B101C011Co20 + 4B200C011C101 — 3A4101Co11Cr10+
A110(A200C011 + 24011 Co20 + 2B101Co20 — 2Bo20C101 — 2B200C101+
2A4101C110)))-

do

4. PROOF OF THEOREM 3

In the cylindrical change of coordinates U = Rcosf, V = Rsinf, W = W the system (1)
with n = 3 in the region R > 0 has the following form
R = aeR + h11(0)R® + hio(0) R*W + hi3(0) RW? + hiy(0)W?> + O4(R, W),
| .
(19) 0=+ (bR + ho1(0) R + hoo(0) R*W + has () RW? + hos(0)W? + O4(R, W)] ,
W = ceW + h31(0)R® + haa(0)R2W + hs3(0) RW? + hay()W? 4+ O4(R, W),
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where

h11(0) = Asgg cos 0 + (Aa1g + Bsgo) cos® @sin 6 + (A1a9 + Baig) cos® fsin” 6
+ (Agso + Biag) cos fsin® § + Bysg sin® 6,

hi12(0) = Aspr cos® 0 + (A111 + Ba2o1) cos? fsinf + (Ag21 + Bi11) cosd sin?
+ Byay sin® 0,

h13(6) = Ajg2 cos® 0 + (Agra + Bioz) cos 0sin 6 + Byio sin’ 0,

h14(0) = Agos cos 0 + Byos sin 6,

h21(0) = Bsgg cos @ + (Asgo — Baio) cos® Osin @ + (—Aa1g 4+ Biag) cos? fsin® 0
+ (A120 — Boso) sin® 0 cos @ — Agsosin 0,

oo () = Bagy cos® @ + (Asgr — Bi11) cos? 0sin @ + (—Aq1; + Boa1) cos 0sin” 6

— Apo1 sin® 0,
ha3(0) = Biga cos? 0 4 (A1gz — Boia) cos @sinf — Agio sin’ 0,
h24(0) = Bpos cos @ — Agps sin b,
hs31(0) = Csgp cos 30 4 Cy10 cos? 0sin @ 4+ Chao cos 0 sin? 0 + Cyzo sin® 6,
h32(60) = Cagy1 cos® 6 4 Ci11 cos @ sin 6 + Coay sin? 6,
hs3(0) = Co2 cos + Cp2sin b,
hs4(0) = Coos-

Therefore, system (19) in the region 6 + 0 is equivalent to

dR _ R[aeR + h11(9)R3 + h12(9)R2W + h13(9>RW2 + h14<9)W3 + O4(R, W)}
A9 bR+ ha1(0)R® + hog(0)RZW + hoz(0) RW?2 + hoy(0)W3 + O4(R, W)
AW RlceW + ha1 (0)R® + haz(0)R2W + hag(0)RW? + haa(0)W? + Ou(R, W)]
W N bR + h21(9)R3 + h22( )RZW + h23( )RW2 + h24(9)W3 + 04(}%7 W)

(20)

We note that this system is 27-periodic in the variable . Performing the rescaling (R, W) =
(04/€,(+/€) the system (20) becomes into the normal form for applying the averaging theory.
That is, in the variables (g, () system (20) writes

@ = Efl (9, o, C) + 6291 (97 0, 476)7

(21) o
= 97 7C)+€zg2(97g7<7€)7
20 ef2(0,0
where
f1(0,0,¢) = %[GQ + h11(0)0® + h12(0)0*¢ + ha3(0)0C? + h14(6)¢?],
f2(0,0,¢) = %[CC + h31(0) 0 + ha2(0)0°C + haz(0)0C* + haa(0)C?).

So, system (21) is equivalent to system (5) taking x = (p,(), t =0, f(t,z) = (f1(0, 0,¢), f2(0, 0,()),
T =27 and ¢ =e.

Let Q be the open subset which appear in the statement of Theorem 4. Then it is easy to
verify that system (21) satisfies the assumptions of Theorem 4 if we take as Q2 an open disc
centered at the origin in R? and a sufficiently small ¢y. Since

27

T Jo
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for i = 1,2, we get that

(e ¢) = 8%[80 + (A120 + 3(Asz00 + Boso) + B210)0® + 4(A102 + Boi2)¢?],

f2(0.¢) = 2%[20 + (Co21 + Ca01) 0% + 2Ch03¢3).

Hence with the notation of D; and Dy introduced in (2), the averaged system (6) has nine
singular points:

=
\

= 070)7 p2:(7\/7D030)7 pBZ(VfDOaO)a

0’_7’ C>7 p5<03 Z\/E>7
V CO()3 V CO()3
2\/—(A102 + BOlQ)C + 2(10003 — —D1
- VvV =Dy " VCoos ) ’

Py = <2\/(A102 + Bo12)c + 2aCpos —\/—7D1>

_ 2v/—=(A102 + Bo12)c + 2aCoo3 \/—7D1)

V—D> " VCoos
Do = <2\/—(A102 + Bo12)c + 2aCo03 v Dl)
9 = )

V—=D> "V Coos

We observe that the averaged theory can be conclusive only at points ps, pr and pg. In fact at
p2, pe and pg we have p < 0 and it means that R < 0 which does not make sense. Moreover at
p1, p4 and ps we have p = 0, i.e., R = 0 and the cylindrical coordinates change R = 0 is not a
diffeomorphism.

The Jacobian matrix (8) at point p3 has determinant

Do(—(A120 + 3(As00 + Boso) + Ba1o)c + 4a(Co21 + Co01))
4b? ’
which is different from zero according to our hypothesis ( see (3)). So, by statement (b) of
Theorem 4, there exists a limit cycle for system (21) which converges to p3 as € — 0.

To prove statement (b) we just observe the following. The limit cycle T'e can be written in
the system (20) as {R(#), W (0)) : 0 € S}. The point ps in the coordinates (R, W) is written as

(\/ 7D06, O)

Thus statement (b) of Theorem 3 follows immediately from statement (b) of Theorem 4. It
completes the proof of (a) and (b).
The stability of the limit cycle is determined by the eigenvalues of system (6) at the point
ps. Taking the notation of Dy given in (2), the eigenvalues are
2a d 2¢c — D0(0021 + 0201)

—— an

b 2

By statement (c) of Theorem 4 it follows immediately the different kind of stability for the limit
cycle stated in (b) of Theorem 3. So statement (c) of Theorem 3 is proved.
The Jacobian matrix (8) at points p7 and pg have determinant

_ 2D1((A102 + Boi2)c — 2aCoo3)
b?Coos ’
which is different from zero according to our hypothesis (see (4)). So, by statement (b) of

Theorem 4, there exists two limit cycles for system (21) one that converges to p; as ¢ — 0 and
one that converges to pg as e — 0.
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To prove statement (e) we just observe the following. The limit cycle I'! can be written in
the system (20) as {R(0),W(0)) : € S}. The point p; at the coordinates (R, W) is written as

<2\/E\/— (A102 + Bolg)c + 2&0003 vV D1€>

V—=D> " VCoos

Thus statement (e) of Theorem 3 follows immediately from statement (b) of Theorem 4.
To prove statement (f) we just observe the following. The limit cycle I'? can be written in
the system (20) as {R(0),W(0)) : € S}. The point pg at the coordinates (R, W) is written as

2\/g\/7 (A102 + BOlg)C + 2(10003 vV —D1€
V—Ds " VCoos )

Thus statement (f) of Theorem 3 follows immediately from statement (b) of Theorem 4. In
short this completes the proofs of statements (d), (e) and (f) of Theorem 3.

The stability of those limit cycles is determined by the eigenvalues of system (6) at the
points p7 and pg, respectively. Then, by statement (c) of Theorem 4, it follows immediately the
different kind of stability for the limit cycles. Since those eigenvalues can be computed easily
using Mathematica or any other algebraic manipulator, but their expressions are very long,
here they have been omitted.
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