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Abstract. We study the Hopf bifurcation from the singular point with eigenvalues a ε± b i
and c ε located at the origen of an analytic differential system of the form ẋ = f(x), where
x ∈ R3. Under convenient assumptions we prove that the Hopf bifurcation can produce 1, 2
or 3 limit cycles. We also characterize the stability of these limit cycles. The main tool for
proving these results is the averaging theory of first and second order.

1. Introduction and statement of the main results

The main goal of this work is to study the Hopf bifurcation in analytic differential systems
in R3 via averaging theory. In fact the results obtained can be extended easily to C4 differential
systems in R3 but in order to simplify the notation we will present them for analytic differential
systems.

More precisely, we investigate the Hopf bifurcation at the singular point located at the origin
for an analytic differential systems in R3 of the form

U̇ = εaU − bV +
∑

l+j+k≥n

AijkU
lV jW k,

V̇ = bU + εaV +
∑

l+j+k≥n

BijkU
lV jW k,

Ẇ = εcW +
∑

l+j+k≥n

CijkU
lV jW k,

(1)

where n = 2, 3 and ε is a small parameter. Note that the linear part of this system at the
singular point located at the origin (0, 0, 0) has eigenvalues a ε ± b i and c ε. So for ε = 0 the
eigenvalues are ±bi and 0, consequently we are studying a kind of zero–Hopf bifurcation.

For n = 2 the Hopf bifurcation of system (1) was studied in [2] were the authors obtained
the following result.

Theorem 1 (First order Hopf bifurcation theorem for n = 2). We define the constants

F = A101 +B011, G = C020 + C200, D = c(cF − 4aC002), E = D2 + 8ab2F (cF − 2aC002).

(a) If (E−D2)/(FG) > 0, then the phase portrait of system (1) has a limit cycle Γε tending
to the origin as ε → 0.

(b) Assume that the limit cycle Γε of statement (a) in cylindrical coordinates (U = R cos θ, V =
R sin θ,W ) becomes (R(θ),W (θ)) with θ ∈ S1. Then

R(θ) →
√

E −D2

2b2F 3G
ε, W (θ) → 2a

F
ε, when ε → 0.

(c) If D2 > E and DF > 0, then the limit cycle Γε is a local repellor; if D2 > E and
DF < 0, then the limit cycle Γε is a local attractor; and if D2 < E, then the limit
cycle Γε has two invariant manifolds, one stable and the other unstable, which locally
are formed by two 2-dimensional cylinders.

1

This is a preprint of: “Hopf bifurcation for some analytic differential systems in R3 via averaging
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Our first result is to improve Theorem 1 using the averaging theory of second order. Thus
we have:

Theorem 2 (Second order Hopf bifurcation theorem for n = 2). We define the constants Ni

for i = 0, 1, 2, 3, 4 (see (17)) and the constants nk and dk for k = 2, 4 (see (18)).

(a) If abN0 > 0 and n2d2 6= 0, then the phase portrait of system (1) has a limit cycle Γ1
ε

tending to the origin as ε → 0.
(b) If N1N2 > 0, N3N4 > 0 and n4d4 6= 0, then the phase portrait of system (1) has two

limit cycles Γ2
ε and Γ3

ε tending to the origin as ε → 0.

Theorem 2 will be proved in Section 3 by using the averaging theory of second order, see
Section 2. We note that the estimation on the size of the limit cycles given in statements (a)
and (b) of Theorem 2 can be obtained from Theorem 5 but their expressions are very long and
we do not write them here. Also the stability of the limit cycles can be analyzed computing
the eigenvalues of the matrix (12), but again we do not provide them because their expressions
are too long.

Our second result is to extend Theorem 1 to systems (1) with n = 3. Thus we have:

Theorem 3 (Hopf bifurcation theorem for n = 3). We define the constants

D0 =
8a

A120 + 3(A300 +B030) +B210
,

D1 =
C003((A120 + 3(A300 +B030) +B210)c− 4a(C021 + C201))

(A120 + 3(A300 +B030) +B210)C003 − 2(A102 +B012)(C021 + C201)
,

D2 = (A120 + 3(A300 +B030) +B210)C003 + 2(A102 +B012)(C021 + C201).

(2)

(a) If

(3)
D0(−(A120 + 3(A300 +B030) +B210)c+ 4a(C021 + C201))

4b2
6= 0,

then the phase portrait of system (1) has a limit cycle Γε tending to the origin as ε → 0.
(b) Assume that the limit cycle Γε of statement (a) in cylindrical coordinates (U = R cos θ, V =

R sin θ,W ) becomes (R(θ),W (θ)) with θ ∈ S1. Then

R(θ) →
√

−D0ε, W (θ) → 0, when ε → 0.

(c) If ab < 0 and (2c−D0(C021 +C201))b > 0, then the limit cycle Γε is a local repellor; if
ab > 0 and (2c−D0(C021+C201))b < 0, then the limit cycle Γε is a local attractor; and
if ab > 0 and (2c−D0(C021 +C201))b < 0, or ab < 0 and (2c−D0(C021 +C201))b > 0,
then the limit cycle Γε has two invariant manifolds, one stable and the other unstable,
which locally are formed by two 2-dimensional cylinders.

(d) If

(4) −2D1((A102 +B012)c− 2aC003)

b2C003
6= 0,

then the phase portrait of the quadratic system (1) has two limit cycles Γ1
ε and Γ2

ε

tending to the origin as ε → 0.
(e) Assume that the limit cycle Γ1

ε of statement (d) in cylindrical coordinates (U = R cos θ, V =
R sin θ,W ) becomes (R(θ),W (θ)) with θ ∈ S1. Then

R(θ) → 2
√
ε
√

−(A102 +B012)c+ 2aC003√−D2

, W (θ) → −
√−D1ε√

C003

, when ε → 0.

(f) Assume that the limit cycle Γ2
ε of statement (d) in cylindrical coordinates (U = R cos θ, V =

R sin θ,W ) becomes (R(θ),W (θ)) with θ ∈ S1. Then

R(θ) → 2
√
ε
√

−(A102 +B012)c+ 2aC003√−D2

, W (θ) →
√−D1ε√

C003

, when ε → 0.
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Theorem 3 will be proved in Section 4 by using the averaging theory of first order, see Section
2. As it is mention in Section 4 we can study the stability of the limit cycles Γ1,2

ε computing
their eigenvalues but since they have very long expressions we have omitted them.

2. Limit cycles via averaging theory

In few words we can say that the averaging method [4, 5] gives a quantitative relation
between the solutions of some non–autonomous periodic differential system and the solutions
of its averaged differential system, which is an autonomous one. The next theorem provides a
first order approximation in ε for the limit cycles of a periodic differential system, for a proof
see Theorem 2.6.1 of Sanders and Verhulst [4] and Theorem 11.5 of Verhulst [5].

Theorem 4. We consider the following two initial value problems

(5) ẋ = ε f(t, x) + ε2 g(t, x, ε), x(0) = x0,

and

(6) ẏ = ε f0(y), y(0) = x0.

where x, y, x0 ∈ Ω an open subset of Rn, t ∈ [0,∞), ε ∈ (0, ε0], f and g are periodic of period
T in the variable t, and f0(y) is the averaged function of f(t, x) with respect to t, i.e.,

(7) f0(y) =
1

T

∫ T

0

f(t, y)dt.

Suppose: (i) f , its Jacobian ∂f/∂x, its Hessian ∂2f/∂x2, g and its Jacobian ∂g/∂x are defined,
continuous and bounded by a constant independent on ε in [0,∞)× Ω and ε ∈ (0, ε0]; (ii) T is
a constant independent of ε; and (iii) y(t) belongs to Ω on the interval of time [0, 1/ε]. Then
the following statements hold.

(a) On the time scale 1/ε we have that x(t)− y(t) = O(ε), as ε → 0.
(b) If p is a singular point of the averaged system (6) such that the determinant of the

Jacobian matrix

(8)
∂f0

∂y

∣∣∣∣
y=p

is not zero, then there exists a limit cycle φ(t, ε) of period T for the system (5) which
is close to p and such that φ(t, ε) → p as ε → 0.

(c) The stability or instability of the limit cycle φ(t, ε) is given by the stability or instability
of the singular point p of the averaged system (6). In fact, the singular point p has the
stability behavior of the Poincaré map associated to the limit cycle φ(t, ε).

The next theorem provides a second order approximation in ε for the limit cycles of a periodic
differential system, for an statement in the case of a differential equation (see [3] and [1]) and
for a proof see Theorem 3.5.1 of Sanders and Verhulst [4].

Theorem 5. We consider the following two initial value problems

(9) ẋ = εf(t, x) + ε2g(t, x) + ε3R(t, x, ε), x(0) = x0,

and

(10) ẏ = εf0(y) + ε2f10(y) + ε2g0(y), y(0) = x0,

with f, g : [0,∞) × Ω × Rn, R : [0,∞) × Ω × (0, ε0] → Rn, Ω an open set of Rn, f, g and G
periodic functions of period T in the variable t,

(11) f1(t, x) =
∂f

∂x
y1(t, x), where y1(t, x) =

∫ t

0

f(s, x) ds.

Of course, f0, f10 and g0 denote the averaged functions of f , f1 and g, respectively, defined as
in (7). Suppose: (i) ∂f/∂x is Lipschitz in x, g and R are Lipschitz in x and all these functions
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are continuous on their domain of definition; (ii) |R(t, x, ε)| is bounded by a constant uniformly
in [0, L/ε) × Ω × (0, ε0]; (iii) T is a constant independent of ε; and (iv) y(t) belongs to Ω on
the interval of time [0, 1/ε]. Then the following statements hold.

(a) On the time scale 1/ε we have that x(t) = y(t) + εy1(t, y(t)) = O(ε2).
(b) If p is a singular point of the averaged system (10) such that

(12)
∂(f10 + g0(y))

∂y

∣∣∣∣
y=p

is not zero, then there exists a limit cycle φ(t, ε) of period T for the system (9) which
is close to p and such that φ(t, ε) → p as ε → 0.

(c) The stability or instability of the limit cycle φ(t, ε) is given by the stability or instability
of the singular point p of the averaged system (10). In fact, the singular point p has the
stability behavior of the Poincaré map associated to the limit cycle φ(t, ε).

3. Proof of Theorem 2

In the cylindrical change of coordinates U = R cos θ, V = R sin θ, W = W the system (1) in
the region R > 0 has the following form

Ṙ = aεR+H11(θ)R
2 +H12(θ)RW +H13(θ)W

2 +O3(R,W ),

θ̇ =
1

R

[
bR+H21(θ)R

2 +H22(θ)RW +H23(θ)W
2 +O3(R,W )

]
,

Ẇ = cεW +H31(θ)R
2 +H32(θ)RW +O3(R,W ),

(13)

where

H11(θ) = A200 cos
3 θ + (A110 +B200) cos

2 θ sin θ + (A020 +B110) cos θ sin
2 θ

+B020 sin
3 θ,

H12(θ) = A101 cos
2 θ + (A011 +B101) cos θ sin θ −A101 sin

2 θ,

H13(θ) = A002 cos θ +B002 sin θ,

H21(θ) = B200 cos
3 θ − (A200 −B110) cos

2 θ sin θ − (A110 −B020) cos θ sin
2 θ

−A020 sin
3 θ,

H22(θ) = B101 cos
2 θ − 2A101 cos θ sin θ −A011 sin

2 θ,

H23(θ) = B002 cos θ −A002 sin θ,

H31(θ) = −C020 cos
2 θ + C110 cos θ sin θ + C020 sin

2 θ,

H32(θ) = C101 cos θ + C011 sin θ.

Therefore, system (13) in the region θ̇ 6= 0 is equivalent to

dR

dθ
=

R[aεR+H11(θ)R
2 +H12(θ)RW +H13(θ)W

2 +O3(R,W )]

bR+H21(θ)R2 +H22(θ)RW +H23(θ)W 2 +O3(R,W )

dW

dθ
=

R[cεW +H31(θ)R
2 +H32(θ)RW +O3(R,W )]

bR+H21(θ)R2 +H22(θ)RW +H23(θ)W 2 +O3(R,W )
.

(14)

We note that this system is 2π-periodic in the variable θ. Performing the rescaling (R,W ) =
(%
√
ε, ζ

√
ε) the system (14) becomes into the normal form for applying the averaging theory.

That is, in the variables (%, ζ) system (14) writes

d%

dθ
= ε1/2f1(θ, %, ζ) + εg1(θ, %, ζ) + ε3/2R1(θ, %, ζ, ε),

dζ

dθ
= ε1/2f2(θ, %, ζ) + εg2(θ, %, ζ) + ε3/2R2(θ, %, ζ, ε),

(15)



HOPF BIFURCATION FOR SOME ANALYTIC DIFFERENTIAL SYSTEMS IN R3 5

where

f1(θ, %, ζ) =
1

b
[H11(θ)%

2 +H12(θ)%ζ +H13(θ)ζ
2],

g1(θ, %, ζ) =
a%

b
− 1

b2%
[H11(θ)%

2 +H12(θ)%ζ +H13(θ)ζ
2][H21(θ)%

2 +H22(θ)%ζ

+H23(θ)ζ
2],

f2(θ, %, ζ) =
%

b
[H31(θ)%+H32(θ)ζ],

g2(θ, %, ζ) =
cζ

b
− 1

b2
[H31(θ)%+H32(θ)ζ][H21(θ)%

2 +H22(θ)%ζ +H23(θ)ζ
2].

So system (15) is equivalent to system (9) taking x = (%, ζ), t = θ, f(t, x) = (f1(θ, %, ζ), f2(θ, %, ζ)),
g(t, x) = (g1(θ, %, ζ), g2(θ, %, ζ)), T = 2π and ε = ε1/2.

Let Ω be the open subset and ε0 the positive number which appear in the statement of
Theorem 5. Then, it is easy to verify that, system (15) satisfies the assumptions of Theorem 5
if we take as Ω an open disc centered at the origin in R2 and a sufficiently small ε0. Let

y1i (θ, %, ζ) =

∫ θ

0

fi(s, %, ζ) ds for i = 1, 2.

Then

y11(θ, %, ζ) =
1

12b

(
12[B002 −B002 cos θ +A002 sin θ]ζ

2

+ 3[A011 +B101 −A011 cos
2 θ −B101 cos

2 θ + 4A101 cos θ sin θ

+A011 sin
2 θ +B101 sin

2 θ]ζ%

+ [4A110 + 8B020 + 4B200 − 3A110 cos θ − 9B020 cos θ − 3B200 cos θ

−A110 cos
3 θ +B020 cos

3 θ −B200 cos
3 θ + 3A020 sin θ + 9A200 sin θ

+ 3B110 sin θ − 3A020 cos
2 θ sin θ + 3A200 cos

2 θ sin θ − 3B110 cos
2 θ sin θ

+ 3A110 cos θ sin
2 θ − 3B020 cos θ sin

2 θ + 3B200 cos θ sin
2 θ

+A020 sin
3 θ −A200 sin

3 θ +B110 sin
3 θ]%2

)
,

y12(θ, %, ζ) =
%

2b

(
[C110 sin

2 θ − 2C020 sin θ cos θ]%+ [2C011 + 2C101 sin θ − 2C011 cos θ]ζ
)
.

We have

(16)

(
f1
1 (θ, %, ζ)
f1
2 (θ, %, ζ)

)
=



∂f1
∂%

(θ, %, ζ)
∂f1
∂ζ

(θ, %, ζ)

∂f2
∂%

(θ, %, ζ)
∂f2
∂ζ

(θ, %, ζ)




(
y11(θ, %, ζ)
y12(θ, %, ζ)

)
.

So

f10
i (%, ζ) =

1

2π

∫ 2π

0

f1
i (θ, %, ζ) dθ, for i = 1, 2,

g0i (%, ζ) =
1

2π

∫ 2π

0

gi(θ, %, ζ) dθ, for i = 1, 2,
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then

f10
1 (%, ζ) =

1

8b2
[−((A011 +B101)C020 +A101C110)%

3 + 2(A002(A110 + 3B020 +B200

− 4C011)−B002(A020 + 3A200 +B110 − 4C101))%ζ
2],

f10
2 (%, ζ) =

ζ

8b2
[((A020 + 3A200 +B110)C011 + 2(A011 +B101)C020

− (A110 + 3B020 +B200)C101 + 2A101C110)%
2 + 4(A002C011 −B002C101)ζ

2],

g01(%, ζ) =
%

8b2
[8ab+ (A110A200 +A020(A110 + 2B020)− 2A200B200 −B110(B020 +B200))%

2

+ 2(B002(A020 −A200 −B110) +A002(A110 +B020 −B200))ζ
2],

g02(%, ζ) =
ζ

8b2
[8bc+ ((3A020 +A200 −B110)C011 + 2(A011 +B101)C020 +A110C101

− (B020 + 3B200)C101 + 2A101C110)%
2 + 4(A002C011 −B002C101)ζ

2].

The averaged system f10
i (%, ζ) + g0i (%, ζ), i = 1, 2 has six singular points:

q1 =

(
−2

√
2ab√
N0

, 0

)
, q2 =

(
2
√
2ab√
N0

, 0

)
,

q3 =

(
−
√
N1√
N2

,−
√
N3√
N4

)
, q4 =

(√
N1√
N2

,−
√
N3√
N4

)
,

q5 =

(
−
√
N1√
N2

,

√
N3√
N4

)
, q6 =

(√
N1√
N2

,

√
N3√
N4

)
,

where

N0 =−A110A200 −A020(A110 + 2B020) + 2A200B200+

B110(B020 +B200) + (A011 +B101)C020 +A101C110,

N1 =4b(−A002(A110 + 2B020)c+B002(2A200 +B110)c+

2A002(a+ c)C011 − 2B002(a+ c)C101),

N2 =B002(−4A2
200C011 − 2A020(2A200 +B110)C011 − 2A011B110C020−

2B101B110C020 +B020B110C101 +B110B200C101 +A020C101

(A110 + 2B020 + 4C011) + 3A011C020C101 + 3B101C020C101−
4B020C

2
101 − 4B200C

2
101 − 2A101B110C110 + 3A101C101C110+

A200(−2B110C011 − 4(A011 +B101)C020 + (A110 + 4B020 + 2B200+

4C011)C101 − 4A101C110)) +A002(A020(A110 + 2B020 − 4C011)C011+

2A200(2B020 +B200 − 2C011)C011 − 4B2
020C101+

C011(B200(B110 + 4C101)− 3((A011 +B101)C020 +A101C110))+

A110(A200C011 + 2((A011 +B101)C020 − (B020 +B200)C101+

A101C110)) +B020(B110C011 + 4((A011 +B101)C020 −B200C101+

C011C101 +A101C110))),

N3 =− b(A002C011 −B002C101)(−A110A200c−A020(A110 + 2B020)c+

B020B110c+ 2A200B200c+B110B200c+ 4aA020C011 + 4aA200C011+

4aA011C020 + 4aB101C020 +A011cC020 +B101cC020 − 4aB020C101−
4aB200C101 +A101(4a+ c)C110),

(17)
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N4 =(−A002C011 +B002C101)B002(4A
2
200C011 + 2B101B110C020+

A011C020(2B110 − 3C101)−B020B110C101 −B110B200C101−
3B101C020C101 + 4B020C

2
101 + 4B200C

2
101 +A020(4A200C011+

2B110C011 − (A110 + 2B020 + 4C011)C101) + 2A101B110C110−
3A101C101C110 +A200(2B110C011 + 4(A011 +B101)C020−
(A110 + 4B020 + 2B200 + 4C011)C101 + 4A101C110))−
A002(A020(A110 + 2B020 − 4C011)C011 + 2A200(2B020 +B200−
2C011)C011 − 4B2

020C101 + C011(B200(B110 + 4C101)−
3((A011 +B101)C020 +A101C110)) +A110(A200C011+

2((A011 +B101)C020 − (B020 +B200)C101 +A101C110))+

B020(B110C011 + 4((A011 +B101)C020 −B200C101+

C011C101 +A101C110))).

We observe that the averaged theory can be conclusive only at points q2, q4 and q6. In fact, at
q1, q3 and q5 we have % < 0 and it means that R < 0 which does not make sense.

For k = 2, 4, 6 the Jacobian matrix (12) at point qk has determinant nk/dk where

(18)

n2 = −2a(−A110A200c+B020B110c+ 2A200B200c+B110B200c+
A011C020c+B101C020c+A101C110c+ 4aA200C011−
A020(A110c+ 2B020c− 4aC011) + 4aA011C020 + 4aB101C020−
4aB020C101 − 4aB200C101 + 4aA101C110),

d2 = b2(−A110A200 + 2B200A200 −A020(A110 + 2B020)+
B020B110 +B110B200 +A011C020 +B101C020 +A101C110),

n4 = 2(A002(A110c− 2((a+ c)C011 −B020c)) +B002(−2A200c−B110c+
2(a+ c)C101))(A110A200c−B020B110c− 2A200B200c−B110B200c−
A011C020c−B101C020c−A101C110c− 4aA200C011 +A020(A110c+
2B020c− 4aC011)− 4aA011C020 − 4aB101C020 + 4aB020C101+
4aB200C101 − 4aA101C110),

d4 = b2(B002(−4C011A
2
200 + (−2B110C011 + 4C101C011 − 4A011C020−

4B101C020 +A110C101 + 4B020C101 + 2B200C101 − 4A101C110)A200−
4B020C

2
101 − 4B200C

2
101 − 2A011B110C020 − 2B101B110C020+

B020B110C101 +B110B200C101 + 3A011C020C101 + 3B101C020C101+
A020(−4A200C011 − 2B110C011 + (A110 + 2B020 + 4C011)C101)−
2A101B110C110 + 3A101C101C110) +A002(−4C101B

2
020+

4A200C011B020 +B110C011B020 + 4A011C020B020 + 4B101C020B020−
4B200C101B020 + 4C011C101B020 + 4A101C110B020 − 4A200C

2
011+

2A200B200C011 +B110B200C011 +A020(A110 + 2B020 − 4C011)C011−
3A011C011C020 − 3B101C011C020 + 4B200C011C101 − 3A101C011C110+
A110(A200C011 + 2A011C020 + 2B101C020 − 2B020C101 − 2B200C101+
2A101C110))).

4. Proof of Theorem 3

In the cylindrical change of coordinates U = R cos θ, V = R sin θ, W = W the system (1)
with n = 3 in the region R > 0 has the following form

Ṙ = aεR+ h11(θ)R
3 + h12(θ)R

2W + h13(θ)RW 2 + h14(θ)W
3 +O4(R,W ),

θ̇ =
1

R

[
bR+ h21(θ)R

3 + h22(θ)R
2W + h23(θ)RW 2 + h24(θ)W

3 +O4(R,W )
]
,

Ẇ = cεW + h31(θ)R
3 + h32(θ)R

2W + h33(θ)RW 2 + h34(θ)W
3 +O4(R,W ),

(19)



8 J. LLIBRE AND C. VALLS

where

h11(θ) = A300 cos
4 θ + (A210 +B300) cos

3 θ sin θ + (A120 +B210) cos
2 θ sin2 θ

+ (A030 +B120) cos θ sin
3 θ +B030 sin

4 θ,

h12(θ) = A201 cos
3 θ + (A111 +B201) cos

2 θ sin θ + (A021 +B111) cos θ sin
2 θ

+B021 sin
3 θ,

h13(θ) = A102 cos
2 θ + (A012 +B102) cos θ sin θ +B012 sin

2 θ,

h14(θ) = A003 cos θ +B003 sin θ,

h21(θ) = B300 cos
4 θ + (A300 −B210) cos

3 θ sin θ + (−A210 +B120) cos
2 θ sin2 θ

+ (A120 −B030) sin
3 θ cos θ −A030 sin

4 θ,

h22(θ) = B201 cos
3 θ + (A201 −B111) cos

2 θ sin θ + (−A111 +B021) cos θ sin
2 θ

−A021 sin
3 θ,

h23(θ) = B102 cos
2 θ + (A102 −B012) cos θ sin θ −A012 sin

2 θ,

h24(θ) = B003 cos θ −A003 sin θ,

h31(θ) = C300 cos
3 θ + C210 cos

2 θ sin θ + C120 cos θ sin
2 θ + C030 sin

3 θ,

h32(θ) = C201 cos
2 θ + C111 cos θ sin θ + C021 sin

2 θ,

h33(θ) = C102 cos θ + C012 sin θ,

h34(θ) = C003.

Therefore, system (19) in the region θ̇ 6= 0 is equivalent to

dR

dθ
=

R[aεR+ h11(θ)R
3 + h12(θ)R

2W + h13(θ)RW 2 + h14(θ)W
3 +O4(R,W )]

bR+ h21(θ)R3 + h22(θ)R2W + h23(θ)RW 2 + h24(θ)W 3 +O4(R,W )
,

dW

dθ
=

R[cεW + h31(θ)R
3 + h32(θ)R

2W + h33(θ)RW 2 + h34(θ)W
3 +O4(R,W )]

bR+ h21(θ)R3 + h22(θ)R2W + h23(θ)RW 2 + h24(θ)W 3 +O4(R,W )
.

(20)

We note that this system is 2π-periodic in the variable θ. Performing the rescaling (R,W ) =
(%
√
ε, ζ

√
ε) the system (20) becomes into the normal form for applying the averaging theory.

That is, in the variables (%, ζ) system (20) writes

d%

dθ
= εf1(θ, %, ζ) + ε2g1(θ, %, ζ, ε),

dζ

dθ
= εf2(θ, %, ζ) + ε2g2(θ, %, ζ, ε),

(21)

where

f1(θ, %, ζ) =
1

b
[a%+ h11(θ)%

3 + h12(θ)%
2ζ + h13(θ)%ζ

2 + h14(θ)ζ
3],

f2(θ, %, ζ) =
1

b
[cζ + h31(θ)%

3 + h32(θ)%
2ζ + h33(θ)%ζ

2 + h34(θ)ζ
3].

So, system (21) is equivalent to system (5) taking x = (%, ζ), t = θ, f(t, x) = (f1(θ, %, ζ), f2(θ, %, ζ)),
T = 2π and ε = ε.

Let Ω be the open subset which appear in the statement of Theorem 4. Then it is easy to
verify that system (21) satisfies the assumptions of Theorem 4 if we take as Ω an open disc
centered at the origin in R2 and a sufficiently small ε0. Since

f0
i (%, ζ) =

1

2π

∫ 2π

0

fi(θ, %, ζ) dθ,
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for i = 1, 2, we get that

f0
1 (%, ζ) =

%

8b
[8a+ (A120 + 3(A300 +B030) +B210)%

2 + 4(A102 +B012)ζ
2],

f0
2 (%, ζ) =

ζ

2b
[2c+ (C021 + C201)%

2 + 2C003ζ
2].

Hence with the notation of D1 and D2 introduced in (2), the averaged system (6) has nine
singular points:

p1 = (0, 0), p2 = (−
√

−D0, 0), p3 = (
√

−D0, 0),

p4 =

(
0,

−i
√
c√

C003

)
, p5 =

(
0,

i
√
c√

C003

)
,

p6 =

(
−2

√
−(A102 +B012)c+ 2aC003√−D2

,
−√−D1√

C003

)
,

p7 =

(
2
√

−(A102 +B012)c+ 2aC003√−D2

,
−√−D1√

C003

)
,

p8 =

(
−2

√
−(A102 +B012)c+ 2aC003√−D2

,

√−D1√
C003

)
,

p9 =

(
2
√

−(A102 +B012)c+ 2aC003√−D2

,

√−D1√
C003

)
.

We observe that the averaged theory can be conclusive only at points p3, p7 and p9. In fact at
p2, p6 and p8 we have % < 0 and it means that R < 0 which does not make sense. Moreover at
p1, p4 and p5 we have % = 0, i.e., R = 0 and the cylindrical coordinates change R = 0 is not a
diffeomorphism.

The Jacobian matrix (8) at point p3 has determinant

D0(−(A120 + 3(A300 +B030) +B210)c+ 4a(C021 + C201))

4b2
,

which is different from zero according to our hypothesis ( see (3)). So, by statement (b) of
Theorem 4, there exists a limit cycle for system (21) which converges to p3 as ε → 0.

To prove statement (b) we just observe the following. The limit cycle Γε can be written in
the system (20) as {R(θ),W (θ)) : θ ∈ S}. The point p3 in the coordinates (R,W ) is written as

(
√

−D0ε, 0).

Thus statement (b) of Theorem 3 follows immediately from statement (b) of Theorem 4. It
completes the proof of (a) and (b).

The stability of the limit cycle is determined by the eigenvalues of system (6) at the point
p3. Taking the notation of D0 given in (2), the eigenvalues are

−2a

b
and

2c−D0(C021 + C201)

2b
.

By statement (c) of Theorem 4 it follows immediately the different kind of stability for the limit
cycle stated in (b) of Theorem 3. So statement (c) of Theorem 3 is proved.

The Jacobian matrix (8) at points p7 and p8 have determinant

−2D1((A102 +B012)c− 2aC003)

b2C003
,

which is different from zero according to our hypothesis (see (4)). So, by statement (b) of
Theorem 4, there exists two limit cycles for system (21) one that converges to p7 as ε → 0 and
one that converges to p9 as ε → 0.
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To prove statement (e) we just observe the following. The limit cycle Γ1
ε can be written in

the system (20) as {R(θ),W (θ)) : θ ∈ S}. The point p7 at the coordinates (R,W ) is written as
(
2
√
ε
√

−(A102 +B012)c+ 2aC003√−D2

,−
√−D1ε√

C003

)
.

Thus statement (e) of Theorem 3 follows immediately from statement (b) of Theorem 4.
To prove statement (f) we just observe the following. The limit cycle Γ2

ε can be written in
the system (20) as {R(θ),W (θ)) : θ ∈ S}. The point p9 at the coordinates (R,W ) is written as

(
2
√
ε
√

−(A102 +B012)c+ 2aC003√−D2

,

√−D1ε√
C003

)
.

Thus statement (f) of Theorem 3 follows immediately from statement (b) of Theorem 4. In
short this completes the proofs of statements (d), (e) and (f) of Theorem 3.

The stability of those limit cycles is determined by the eigenvalues of system (6) at the
points p7 and p9, respectively. Then, by statement (c) of Theorem 4, it follows immediately the
different kind of stability for the limit cycles. Since those eigenvalues can be computed easily
using Mathematica or any other algebraic manipulator, but their expressions are very long,
here they have been omitted.
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