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Abstract. We go back to results of Poincaré on the multipliers of a peri-
odic orbit for proving the C1 non-integrability of differential systems. We
apply these results to relevant systems such as the Lorenz, the Rossler and the
Michelson systems, among others.

1. Introduction and statements of the main results

These last years the Ziglin’s and the Morales-Ramis’ theories has been used for
studying the non-meromorphic integrability of a autonomous differential systems.
In some sense the Ziglin’s theory is a continuation of Kovalevskaya’s ideas used for
studying the integrability of the rigid body because it relates the non integrability
of the considered system with the behavior of some of its non-equilibrium solutions
as function of the complex time using the monodromy group of their variational
equations. Ziglin’s theory was extended to the so-called Morales-Ramis’ theory
which replace the study of the monodromy group of the variational equations by
the study of their Galois differential group, which is easier to analyze (see [8] for
more details and the references therein). But as Ziglin’s theory the Morales-Ramis’
theory only can study the non-existence of meromorphic first integrals.

Kovalevskaya’s idea and consequently Ziglin’s and Morales-Ramis’ theory go
back to Poincaré (see Arnold [1]), who used the multipliers of the monodromy
group of the variational equations associated to periodic orbits for studying the non
integrability of autonomous differential systems. The main difficulty for applying
Poincaré’s non integrability method to a given autonomous differential system is to
find for such an equation periodic orbits having multipliers different from 1.

It seems that this result of Poincaré was forgotten in the mathematical commu-
nity until that modern Russian mathematicians (specially Kozlov) have recently
publish on it, see [1, 10].

We consider the autonomous differential system

(1) ẋ = f(x),

where f : U → Rn is C2, U is an open subset of Rn and the dot denotes the
derivative with respect to the time t. We write its general solution as φ(t, x0) with
φ(0, x0) = x0 ∈ U and t belonging to its maximal interval of definition.

We say that the solution φ(t, x0) is T -periodic with T > 0 if and only if φ(T, x0) =
x0 and φ(t, x0) 6= x0 for t ∈ (0, T ). The periodic orbit associated to the periodic
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solution φ(t, x0) is γ = {φ(t, x0), t ∈ [0, T ]}. The variational equation associated to
the T -periodic solution φ(t, x0) is

(2) Ṁ =

(
∂f(x)

∂x

∣∣∣
x=φ(t,x0)

)
M,

where M is an n × n matrix. Of course ∂f(x)/∂x denotes the Jacobian matrix of
f with respect to x. The monodromy matrix associated to the T -periodic solution
φ(t, x0) is the solution M(T, x0) of (2) satisfying that M(0, x0) is the identity ma-
trix. The eigenvalues of the monodromy matrix associated to the periodic solution
φ(t, x0) are called the multipliers of the periodic orbit.

The following proposition and theorem go back to Poincaré (see [20]). Since we
cannot find their explicit proofs in the literature, we prove them in Section 2.

Proposition 1. Let φ(t, x0) be a T -periodic orbit of the C2 differential system (1).
The eigenvector tangent to the periodic orbit has associated an eigenvalue equal to
1. So the periodic orbit has at least one multiplier equal to 1.

Let F : U → R be a non-constant function of class C1 such that

∇F (x) · f(x) = 0.

Then F is called a first integral of f , because F is constant on the solutions of
system (1). We note that · indicates the usual inner product of Rn.

Given an n× n-matrix N we denote its transpose by NT . The gradient of F is
defined as

∇F (x) =

(
∂F

∂x1
, . . . ,

∂F

∂xn

)
.

We say that two first integrals F : U → R and G : U → R are linearly independent
if their gradients are independent in all the points of U except into a set of Lebesgue
measure zero.

Theorem 2. Let f : U → R be the C2 vector field associated to (1), and let
Fk : U → R a first integral for k = 1, . . . , r with r < n. Assume that F1, . . . , Fr

are linearly independent in U . Let γ be a T -periodic orbit of the vector field f
such that at every point x ∈ γ the vectors ∇F1(x), . . . ,∇Fr(x) and f(x) are lin-
early independent. Then 1 is a multiplier of the periodic orbit γ with multiplicity
at least r + 1.

The following two results are an immediate consequence of Theorem 2.

Corollary 3. Consider the C2 differential system (1). If there is a periodic orbit γ
having only s+1 multipliers equal to 1, then system (1) has at most F1, . . . , Fs C1

linearly independent first integrals defined in a neighborhood of γ satisfying that the
vectors ∇F1(x), . . . ,∇Fs(x) and f(x) are linearly independent on the points x ∈ γ.

Corollary 4. Under the assumptions of Corollary 3 if s = 0, then system (1) has
no C1 first integrals F defined in a neighborhood of γ such that the vectors ∇F (x)
and f(x) are linearly independent on the points x ∈ γ.

These two corollaries give us a tool for studying the C1 non-integrability of
system (1) in a neighborhood of the periodic orbit γ. Note that Corollary 4 prevents
the existence of a C1 first integral of system (1) defined in U .

Using Corollary 4 we shall prove under convenient assumptions the non–existence
of C1 first integrals for systems having a zero-Hopf bifurcation, see Theorem 5.
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Later on using Theorem 5 we shall show the non–existence of C1 first integrals
for the Lorenz system (see Theorem 6) and for the Rössler system (see Theorem
7). Finally we shall prove the non–existence of C1 first integrals for the Michelson
system (see Theorem 8), but for such a system we will not be able to apply Theorem
5.

The following four theorems are proved in section 3.
Now we present four applications of Corollary 4 showing the C1 non-integrability

of some differential systems in R3.

Theorem 5. Consider a C3 differentiable system in R3 having the origin as a
singular point with eigenvalues εa± ci and εd. Then such a system can be written
as

ẋ = p(x, y, z) = εax− cy +
∑

i+j+k=2

Aijkx
iyjzk +O3(x, y, z),

ẏ = q(x, y, z) = cx+ εay +
∑

i+j+k=2

Bijkx
iyjzk +O3(x, y, z),

ż = r(x, y, z) = εdz +
∑

i+j+k=2

Cijkx
iyjzk +O3(x, y, z),

(3)

where O3(x, y, z) denotes the terms of order at least three in x, y, z. Let

F = A101 +B011,

G = C020 + C200,

D = c
(
− 4aC002 + dF

)
,

E = D2 + 8ac2F
(
− 2aC002 + dF

)
.

(4)

Assume that (E − D2)/(FG) > 0 and that (D ±
√
E)/(2c2F ) 6= 1. Then system

(3) has a limit cycle γε tending to the origin as ε tends to zero. Moreover, there
exists ε0 > 0 such that for either ε ∈ (−ε0, 0) or ε ∈ (0, ε0) system (3) has no C1

first integrals F defined in a neighborhood of γε such that the vectors ∇F (x, y, z)
and

(
p(x, y, z), q(x, y, z), r(x, y, z)

)
are linearly independent on the points of γε.

We should apply Theorem 5 to the Lorenz and the Rossler systems.

Theorem 6 (Lorenz system). Consider the Lorenz system

(5) ẋ = σ(y − z), ẏ = rx− y − xz, ẏ = −bz + xy,

with (x, y, z) ∈ R3 and the parameters σ, r, b ∈ R. We change the parameters b and
r by the parameters a and c through

b = −2aε+
(c+ aε)2(σ − 1)

c2 + a2ε2 + 4aεσ + 2σ(1 + σ)
,

r = r1/r2,

r1 = (c2 + a2ε2)2 + (c2(3 + 2aε) + aε(−4 + aε(−5 + 2aε)))σ + (c2 + aε(−4aε))σ2,

r2 = c2(1 + 2aε− σ) + aε(2a2ε2 + 4σ(1 + σ) + a(ε+ 7εσ)).

Set

K =
a(4 + c2 + 2σ − 2σ2)

c2 + σ − 2σ2 + σ3
.

If K > 0 there exists ε0 > 0 such that for ε ∈ (−ε0, ε0) in a neighborhood of the
singular point q =

(√
br − b,

√
br − b, r − 1), the Lorenz system has no limit cycles
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if ε < 0 and has a unique limit cycle γε if ε > 0. Moreover γε → q if ε → 0. For
K < 0 the limit cycle γε exists only for ε ∈ (−ε0, 0).

If (D ±
√
E)/(2c2F ) 6= 1, with D,E, F given in (4) with

A101 =
Q1

(2 + c2 + 2σ)∆3/2Q
+O(ε),

B011 =
Q2

(2 + c2 + 2σ)∆3/2Q
+O(ε),

C200 = − Q3

∆1/2Q
+O(ε),

C020 = 0,

C002 = − Q4

(2 + c2 + 2σ)∆3/2Q
+O(ε),

where

∆ =
c2(c2 + (1 + σ)2)

c2 + 2σ(1 + σ)
,

Q = c6 + 12c2σ2(1 + σ)2 + 4σ2(1 + σ)4 + 4c4σ(1 + 2σ),

Q1 = c4(1 + σ)(c2 + (1 + σ)2)(c4 + 8c2σ + 4σ(1 + σ)2),

Q2 = c4(−1 + σ)(c2 + (1 + σ)2)(c4 − 2c2σ(1 + σ)− 4σ(1 + σ)3),

Q3 = σ2(2 + c2 + 2σ)(c2 + σ(1 + σ)2),

Q4 = c4σ(c2 − 2(σ − 2)(1 + σ))(c2 + (1 + σ)2)2,

then the Lorenz system for ε ∈ (0, ε0) when K > 0, and for ε ∈ (−ε0, 0) when
K < 0 has no C1 first integrals F (x, y, z) defined in a neighborhood of the zero-
Hopf periodic orbit γε satisfying that ∇F (x, y, z) and (σ(y−z), rx−y−xz,−bz+xy)
are linearly independent on the points of γε.

The Lorenz system (5) was defined in [12]. This system has been intensively
studied from the point of view of integrability using different integrability theories,
and in particular it has been studied its Darboux integrability and its analytic
integrability (for example, see [3, 5, 6, 7, 9, 16, 22, 23, 24, 25, 26, 27]), but never
from the view point of the C1 integrability.

The Rossler system (see (6) below) was obtained in [21]. It is a well-known
dynamical model which has been intensively investigated mainly with respect the
notion of dynamical chaos.

Theorem 7 (Rossler system). Consider the Rossler system

(6) ẋ = −(y + z), ẏ = x+ ay, ẏ = b− cz + xz,

with (x, y, z) ∈ R3 and the parameters a, b, c ∈ R. We change the parameters a, b
and c by the parameters a, u and v through

b = − b1b2
(−1 + (a− εu)2 + v2)2

,

c = −a− 2εu+ aε2u2 + av2 +
(a− 2εu)(1 + a2 − 2aεu)

−1 + (a− εu)2 + v2
,

b1 = (−1 + εu(a− εu))2 + (−2 + a2 − 2aεu+ 2ε2u2)v2 + v4,
b2 = 2a2εu− a(1 + 4ε2u2) + 2εu(ε2u2 + v2).
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Set

L = au(−2 + a2 + v2)Λ2

with

Λ2 = −2 + 4a2 − 4a4 + a6 + 5v2 − 8a2v2 + 3a4v2 − 4v4 + 3a2v4 + v6.

If L > 0 there exists ε0 > 0 sufficiently small such that for ε ∈ (−ε0, ε0) in a
neighborhood of the singular point

s =

(
c+

√
c2 − 4ab

2
,−c+

√
c2 − 4ab

2a
,
c+

√
c2 − 4ab

2a

)
,

the Rossler system (6) has no limit cycles if ε < 0 and has a unique limit cycle
γε if ε > 0 that tends to q when ε → 0. For L < 0 the limit cycle only exists for
ε ∈ (−ε0, 0).

If (D ±
√
E)/(2c2F ) 6= 1, with D,E, F given in (4) with

A101 = −a(∆1 − 1)(v2 +∆1(a
2 + (−2 + a2)v2 + v4))

∆1(1 + (−2 + a2)v2 + v4)∆2
+O(ε),

B011 =
a(∆1 − 1)3(a4 − v2 + v4 + 2a2(−1 + v2))

∆1(1 + (−2 + a2)v2 + v4)∆2
+O(ε),

C200 =
a∆1(1 + (−2 + a2)v2 + v4)

v2(1 + (−2 + a2)v2 + v4)∆2
+O(ε),

C020 = 0,

C002 =
a(∆1 − 1)

∆2
+O(ε),

where

∆1 = a2 + v2,

∆2 = v2 + (−2 + a2 + v2)(a4 + v4 + 2a2(−1 + v2)),

Λ1 = 2u− 4uv2 + 2a2uv2 + 2uv4 + 2w − 4a2w + 4a4w − a6w−
5v2w + 8a2v2w − 3a4v2w + 4v4w − 3a2v4w − v6w,

Λ3 = 1− 2v2 + a2v2 + v4,

Λ4 = 4a2 − 4a4 + a6 + v2 − 6a2v2 + 3a4v2 − 2v4 + 3a2v4 + v6,

then the Rossler system for ε ∈ (0, ε0) when L > 0, and for ε ∈ (−ε0, 0) when
L < 0 has no C1 first integrals F (x, y, z) defined in a neighborhood of the zero-Hopf
periodic orbit γε satisfying that ∇F (x, y, z) and (−(y + z), x+ ay, b− cz + xz) are
linearly independent on the points of γε.

The Rossler system has been studied in [17] from the viewpoint of the Darbouxian
integrability and in [14] from the viewpoint of the analytic integrability but never
from the view point of the C1 integrability.

Note that Theorem 5 cannot be applied to the Michelson system defined in the
next theorem.
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Theorem 8 (Michelson system). Consider the Michelson system

(7) ẋ = y, ẏ = z, ż = c2 − y − x2

2
,

with (x, y, z) ∈ R3 and the parameter c ∈ R. The Michelson system for c > 0
sufficiently small has no C1 first integrals F (x, y, z) defined in a neighborhood of

the zero-Hopf periodic orbit γ satisfying that ∇F (x, y, z) and
(
y, z, c2−y− x2

2

)
are

linearly independent on the points of γ.

The Michelson system has been studied in [15] from the viewpoint of the analytic
and Darboux integrability but never from the view point of the C1 integrability.

2. Proof of Proposition 1 and Theorem 2

Proof of Proposition 1. Let φ(t, x0) with t ∈ R and x0 ∈ U be a T -periodic solution
of the autonomous differential system (1). Clearly we have that

(8) φ(τ, φ(t, x0)) = φ(t+ τ, x0).

Differentiating (8) with respect to t and setting t = 0 and τ = T we get

(9)
∂φ

∂x
(T, x0)φ̇(0, x0) = φ̇(T, x0).

Since φ(T, x0) = x0 we get that φ̇(T, x0) = f(φ(T, x0)) = f(x0). In a similar way

we have that φ̇(0, x0) = f(x0), and thus we can rewrite (9) into the form

(10)
∂φ

∂x
(T, x0)f(x0) = f(x0).

Note that differentiating with respect to x equation (1) we have that

∂

∂x

dφ(t, x)

dt
=

∂f(φ(t, x))

∂x

∂φ(t, x)

∂x
.

By the Schwartz’s lemma we can rewrite the above equation as

d

dt

∂φ(t, x)

∂x
=

∂f(φ(t, x))

∂x

∂φ(t, x)

∂x
,

which implies that
∂φ

∂x
(t, x) is a solution of (2). Note that since φ(0, x) = x, taking

derivative with respect to x we obtain that
∂φ(t, x)

∂x
= Id. Thus,

∂φ

∂x
(T, x0) is the

monodromy matrix associated to φ(t, x0). It follows from (10) that
∂φ

∂x
(T, x0) has 1

as an eigenvalue with eigenvector f(x0) 6= 0 because x0 is not an equilibrium point.

Furthermore, since f(x0) = φ̇(0, x0) we get that the eigenvector f(x0) is tangent to
the periodic orbit at the point x0. This completes the proof of the proposition. ¤

Proof of Theorem 2. Since for each k = 1, . . . , r, Fk is a first integral of system (1),
we have that Fk(φ(t, x)) = Fk(x). Differentiating this relation with respect to x we
get

∇Fk(φ(t, x))
∂φ(t, x)

∂x
= ∇Fk(x).
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Then taking t = T and x = x0 in the previous equality, and since φ(T, x0) = x0,
we obtain

∇Fk(x0)
∂φ(T, x0)

∂x
= ∇Fk(x0),

or equivalently, (
∂φ(T, x0)

∂x

)T

∇Fk(x0) = ∇Fk(x0).

Therefore, ∇Fk(x0) is an eigenvector of

(
∂φ(T, x0)

∂x

)T

with eigenvalue 1. On the

other hand from the proof of Proposition 1 we know that

∂φ(T, x0)

∂x
f(x0) = f(x0).

For ending the proof since by assumption the vectors ∇F1(x0), . . . ,∇Fr(x) and
f(x0) are linearly independent on the points of the periodic orbit γ, there at at
least r + 1 multipliers for the monodromy matrix equal to 1. ¤

3. Proof of Theorems 5, 6, 7 and 8

The proof of Theorem 5 is an immediate consequence of Corollary 4 and the
following theorem (together with its proof which is given in [11]).

Theorem 9. The following statements hold for system (3).

(a) If (E −D2)/(FG) > 0 then the differential system (3) has a limit cycle γε
tending to the origin as ε → 0.

(b) The multipliers of the limit cycle γε are 1 and (D ±
√
E)/(2c2F ).

Proof of Theorem 6. The part of the proof of Theorem 6 concerning the existence
of γε follows from Theorem 2 in [11]. Computing the eigenvalues at the singular
point q and using Theorem 5 together with Corollary 4 the proof follows easily. ¤

Proof of Theorem 7. The part of the proof of Theorem 7 concerning the existence
of γε follows from Theorem 3 in [11]. Computing the eigenvalues at the singular
point s and using Theorem 5 together with Corollary 4 the proof follows easily. ¤

The Michelson system (7) was obtained by Michelson [19] in the study of the
travelling wave solutions of the Kuramoto-Sivashinsky equation. It is well-known
that system (7) is reversible with respect to the involution R(x, y, z) = (−x, y,−z)
and is volume-preserving under the flow of the system. It is easy to check that
system (7) has two finite singularities

p1 = (−
√
2c, 0, 0) and p2 = (

√
2c, 0, 0)

for c 6= 0 which are both saddle–foci. The singular point p1 has a 2-dimensional
stable manifold and p2 has a 2-dimensional unstable manifold. Note that when c = 0
the Michelson system has a unique singular point at the origin with eigenvalues 0,
±i. In [18] it is proved that for c > 0 sufficiently small the Michelson system (7)
has a Hopf-zero bifurcation at the origin for c = 0. Here we shall reproduce the
short proof of [18] because it is necessary for proving our result:

To prove Theorem 8 we shall need the following result essentially due to Malkin
(1956) and to Roseau (1966) (see [4]). In [2] it is given a new and shorter proof.



8 J. LLIBRE AND C. VALLS

Theorem 10 (Perturbations of an isochronous open set). Consider a differential
system

(11) ẋ = F0(t, x) + εF1(t, x) + ε2F2(t, x, ε), (t, x, ε) ∈ R× Ω× (−ε0, ε0),

where Ω is an open subset of Rn, and F0, F1 and F2 are C2 smooth and T -periodic
in the time t. Let x(t, z) be a solution of (11) when ε = 0 such that x(0, z) = z.
Denote by Mz(t) the fundamental solution matrix of the variational equation

ẏ = DxF0(t, x(t, z))y,

such that Mz(0) = Id. Assume that there exists an open and bounded subset V
with its closure cl (V ) ⊂ Ω such that for each z ∈ cl (V ), the solution x(t, z) is
T -periodic. If a ∈ V is a zero of the map F : cl (V ) → Rn defined by

(12) F (z) =

∫ T

0

M−1
z (t)F1(t, x(t, z)) dt,

and det(DzF (a)) 6= 0, then for |ε| > 0 sufficiently small system (11) has a T -
periodic solution φ(t, ε) such that φ(0, ε) → a as ε → 0. Moreover the periodic
solution φ(t, ε) has the same stability type than the singular point at the origin of
the linear differential system ẏ = (DzF (a))y if this singular point is hyperbolic.

Proof of Theorem 8. For any ε 6= 0 we take the change of variables

x = εx̄, y = εȳ, z = εz̄ and c = εd.

Then the Michelson system (7) becomes

(13) ẋ = y, ẏ = z, ż = −y + εd2 − ε
x2

2
,

where we still use x, y, z instead of x̄, ȳ, z̄. Now doing the change of variables

x = x, y = r sin θ and z = r cos θ,

system (13) goes over to

(14) ẋ = r sin θ, ṙ =
ε

2
(2d2 − x2) cos θ, θ̇ = 1− ε

2r
(2d2 − x2) sin θ.

This system can be written as

dx

dθ
= r sin θ +

ε

2
(2d2 − x2) sin2 θ + ε2f1(θ, r, ε),

dr

dθ
=

ε

2
(2d2 − x2) cos θ + ε2f2(θ, r, ε),

(15)

where f1 and f2 are analytic functions in their variables.
For any given x0 and r0, system (15) in ε = 0 has the 2π-periodic solution

(16) x(θ) = r0 + x0 − r0 cos θ, r(θ) = r0,

check such that x(0) = x0 and r(0) = r0. It is easy to see that the variational
equation of (15) on ε = 0 along the solution (16) is



dy1
dθ
dy2
dθ


 =

(
0 sin θ
0 0

)(
y1
y2

)
.
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It has the fundamental matrix solution

M =

(
1 1− cos θ
0 1

)
,

which is independent of the initial condition (x0, r0). Using Theorem 10 we have

F (x0, r0) =
1

2

∫ 2π

0

M−1

(
(2d2 − x2) sin2 θ
(2d2 − x2) cos θ

) ∣∣∣
(16)

dθ.

Then F (x0, r0) = (g1(x0, r0), g2(x0, r0)) with

g1(x0, r0) =
1

4
(4d2 − 5r20 − 6r0x0 − 2x2

0), g2(x0, r0) =
1

2
r0(x0 + r0).

Solving F (x0, r0) = 0 we get that it has a unique non–trivial solution x0 = −2d
and r0 = 2d. The eigenvalues of the Jacobian matrix on this solution are

λ1 = −d

2
(1 +

√
5) 6= 1 and λ2 = −d

2
(1−

√
5) 6= 1,

taking d 6= 2/(1±
√
5). Therefore, by Theorem 10, the multipliers of this zero-Hopf

periodic orbit γ are

1, −d

2
(1 +

√
5) 6= 1 and − d

2
(1 +

√
5) 6= 1,

if d 6= 2/(1±
√
5). Consequently, by Corollary 4 system (7) has no C1 first integrals

F defined in a neighborhood of γ satisfying that

∇F (x, y, z) and
(
y, z, c2 − y − x2

2

)

are linearly independent on the points of γ. ¤

Acknowledgements

The first author has been supported by the grants MCYT/FEDER numbers
MTM2008-03437 and CIRIT 2009SGR-410. The second author has been partially
supported by FCT through CAMGDS, Lisbon.

References

1. V.I. Arnold, Forgotten and neglected theories of Poincaré, Russian Math. Surveys 61 No. 1
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