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Abstract. We use the stability or instability of the singular points together
with results of Poincaré on the multipliers of a periodic orbit for studying the
C1 non-integrability of the Belousov–Zhabotinskii system.

1. Introduction and statements of the main results

The Belousov–Zhabotinskii system (see [2]):

(1) ẋ = s(x + y − qx2 − xy), ẏ = s−1(−y + fz − xy), ż = w(x − z),

is one of the most interesting and best understood dynamical oscillators, where
x, y, z are real variables; and s, f , q, w are real parameters and s ̸= 0. This
system has been intensively investigated as a dynamical system (see for instance
[4, 5, 10, 12, 13, 14]). Here the dot denotes derivative with respect to the time t.

In MathSciNet there are now 265 published papers with some relation with the
Belousov–Zhabotinskii system but very few is known about the integrability or
non–integrability of this system.

A global analytic first integral or simply in what follows an analytic first integral
is a non–constant analytic function H : R3 → R whose domain of definition is R3,
and it is constant on the solutions of system (1), i.e.

(2) XH = s(x + y − qx2 − xy)
∂H

∂x
+ s−1(−y + fz − xy)

∂H

∂y
+ w(x − z)

∂H

∂z
= 0.

In [8] the authors proved the following result concerning the analytic integrability
of system (1).

Theorem 1. The following statements hold for the Belousov–Zhabotinskii system.

(1) The unique global analytic first integrals for system (1) with w = 0 are of
the form g(z) where g is an arbitrary global analytic function.

(2) System (1) with w ̸= 0 has no global analytic first integrals which are also
analytic in the parameter w in a neighborhood of w = 0.

We note that Theorem 1 characterizes all the global analytic first integrals for
system (1) with w = 0, q, f, s ∈ R with s ̸= 0. However it only provides partial
information of the first integrals when w ̸= 0.

Now we shall study the C1-nonintegrability of system (1). Let U be an open
subset of R3 and H : U → R be a C1 non-constant function satisfying (2). Then
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H is called a C1-first integral of system (1) on U . If U = R3 then H is called a
C1-global first integral.

The next result studies the C1 non-integrability of the Belousov–Zhabotinskii
system using the Hopf bifurcation at the origin together with Poincaré’s results
on the multipliers of a periodic orbit (see section 2 for details). We introduce the
notation

(3)

F = A101 + B011,
G = C020 + C200,
D = c

(
− 4aC002 + dF

)
,

E = D2 + 8ac2F
(

− 2aC002 + dF
)
.

Instead of working with the initial parameters f, q, s, w of the Belousov–Zhabotinskii
system we shall work with the parameters a, b, q, s, ε, where a and b are defined
through the following expressions

f = − (b2 + (s − a ε)2)(1 + b2s2 + 2asε + a2s2ε2)

s(s(1 + b2) + 2(s2 − 1)a ε − 3a2sε2)
,

w =
(1 + b2)s − 3a2sε2 + 2a(−1 + s2)ε

1 − s2 + 2asε
.

(4)

The reason of changing these parameters is that with the new parameters we will
be able to compute explicitly the family of periodic orbits and their multipliers (see
Theorem 5 and its proof for details).

We define

(5) K = as
(
s4 +

(
b2 − 1

)
s2 + 1

) (
(q − 1)s4 + (b2(q − 1) − 1)s2 + 1

)
∆12,

where

∆12 =
((

(4q − 1)b2 + 1
)
s8 +

(
b4 + 3b2 + 2

(
b4 − 4b2 + 2

)
q − 4

)
s6

+
(
b6 + b4 + b2 − 2

(
b2 − 2

)2
q + 5

)
s4 +

(
b4 − (4q + 1)b2 + 6q + 2

)
s2

+b2 − 2q − 5
)
s2 + 2.

In the next theorem we prove that system (1) under the assumptions of Theo-
rem 2 has no global C1 first integrals.

Theorem 2. Consider the one–parameter family in ε of the Belousov–Zhabotinskii
systems (1) with a, b, s and q satisfying the open condition K ̸= 0. If K > 0 there
exists ε0 > 0 such that for ε ∈ (−ε0, ε0) in a neighborhood of the (0, 0, 0) ∈ R3 the
Belousov–Zhabotinskii system (1) has no limit cycles if ε < 0, and has a unique
limit cycle γε if ε > 0. The limit cycle γε tends to (0, 0, 0) when ε → 0. For K < 0
the limit cycle γε only exists for ε < 0.

If (D ±
√

E)/(2c2F ) ̸= 1 with D, E, F defined in (3) and where A101, B011,
C200, C020 and C002 are given in (10), then the Belousov–Zhabotinskii system for
ε ∈ (0, ε0) when K > 0, and for ε ∈ (−ε0, 0) when K < 0 has no C1 first integrals
F (x, y, z) defined in a neighborhood of the zero-Hopf periodic orbit γε satisfying
that ∇F (x, y, z) and (s(x+ y − qx2 −xy), s−1(−y + fz −xy), w(x− z)) are linearly
independent on the points of γε.

Theorem 2 is proved in section 2.
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We introduce the following notation:

α1 =
s2 − ws − 1

s
,

α2 = w(1 + f),

α3 = (f + 1)w +
(s2 − ws − 1)(s + (s2 − 1)w)

s2
,

S =
√

f2 + 2(3q − 1)f + (q + 1)2,

α4 = −S(f + q + S − 1)w

2q
,

α5 =
−q(s2 + 2) + f(qs2 + 2) + 2S + qs(3s(q + S) − 4w) − 2

4qs
,

α6 =
1

16q2

(
1

s2

(
−q(s2 + 2) + f(qs2 + 2) + 2S + qs(3s(q + S) − 4w) − 2

) (
−2sf2+

(2w + s(−4S + q(sw − 6) + 2))f − 2sS(q + S − 1) − 2(q − S + 1)w + qs2(3q + 3S − 1)w
)

−8qS(f + q + S − 1)w

)
,

α7 = −S(−f − q + S + 1)w

2q
,

α8 =
f(qs2 + 2) − 2(S + 1) + q((3q − 3S − 1)s2 − 4ws − 2)

4qs
,

α9 =
1

16q2

(
8q(f + q − S − 1)Sw − 1

s2

(
f(qs2 + 2) − 2(S + 1) + q((3q − 3S − 1)s2 − 4ws − 2)

)

(
2sf2 − (2w + s(4S + q(sw − 6) + 2))f + 2sS(−q + S + 1) + 2(q + S + 1)w+

qs2(−3q + 3S + 1)w
) )

.

In the next result it is used the existence of attractor or repeller singular points
for studying the C1 non-integrability of the Belousov–Zhabotinskii system.

Theorem 3. The Belousov–Zhabotinskii system has no C1 global first integrals if
one of the following conditions hold.

(a) α1 > 0, α2 > 0 and α3 > 0,
(b) α1 < 0, α2 < 0 and α3 < 0,
(c) S2 > 0, α4 > 0, α5 > 0 and α6 > 0,
(d) S2 > 0, α4 < 0, α5 < 0 and α6 < 0,
(e) S2 > 0, α7 > 0, α8 > 0 and α9 > 0,
(f) S2 > 0, α7 < 0, α8 < 0 and α9 < 0.

Theorem 3 is proved in Section 3.

2. Proof of Theorem 2

Now we will use the multipliers of a periodic orbit for studying the C1 non-
integrability of the Belousov–Zhabotinskii system. To state the results we shall
introduce some notation.

We continue to consider system (11) and we write its general solution as ϕ(t,x0)
with ϕ(0,x0) = x0 ∈ U and t belonging to its maximal interval of definition.

We say that the solution ϕ(t,x0) is T -periodic with T > 0 if and only if ϕ(T,x0) =
x0 and ϕ(t,x0) ̸= x0 for t ∈ (0, T ). The periodic orbit associated to the periodic
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solution ϕ(t,x0) is γ = {ϕ(t,x0), t ∈ [0, T ]}. The variational equation associated to
the T -periodic solution ϕ(t,x0) is

(6) Ṁ =

(
∂f(x)

∂x

∣∣∣
x=ϕ(t,x0)

)
M,

where M is an n × n matrix. Of course ∂f(x)/∂x denotes the Jacobian matrix of
f with respect to x. The monodromy matrix associated to the T -periodic solution
ϕ(t,x0) is the solution M(T,x0) of (6) satisfying that M(0,x0) is the identity ma-
trix. The eigenvalues of the monodromy matrix associated to the periodic solution
ϕ(t,x0) are called the multipliers of the periodic orbit.

The gradient of a C1 function H is defined as

∇H(x) =

(
∂H

∂x1
, . . . ,

∂H

∂xn

)
.

In [9] the authors proved the following theorem which goes back to Poincaré (see
[11]).

Theorem 4. Consider the C2 differential system (11). If there is a periodic orbit
γ having only one multiplier equal to 1, then system (11) has no C1 first integrals
H defined in a neighborhood of γ such that the vectors ∇H(x) and f(x) are linearly
independent on the points x ∈ γ.

We will use Theorem 4. The main difficulty for applying this theorem is to
find for our system (1) periodic orbits having multipliers different from one. For
the Belousov–Zhabotinskii system we shall find periodic orbits and compute their
multipliers using the following theorem.

Theorem 5. Consider a C3 differentiable system in R3 having the origin as a
singular point with eigenvalues εa ± ci and εd. Then such a system can be written
as

ẋ = p(x, y, z) = εax − cy +
∑

i+j+k=2

Aijkxiyjzk + O3(x, y, z),

ẏ = q(x, y, z) = cx + εay +
∑

i+j+k=2

Bijkxiyjzk + O3(x, y, z),

ż = r(x, y, z) = εdz +
∑

i+j+k=2

Cijkxiyjzk + O3(x, y, z),

(7)

where O3(x, y, z) denotes the terms of order at least three in x, y, z. Let D,E, F, G
the constants defined in (3). Assume that (E − D2)/(FG) > 0 and that (D ±√

E)/(2c2F ) ̸= 1. Then system (7) has a limit cycle γε tending to the origin as
ε tends to zero. Moreover there exists ε0 > 0 such that for either ε ∈ (−ε0, 0)
or ε ∈ (0, ε0) system (7) has no C1 first integrals H defined in a neighborhood of
γε such that the vectors ∇H(x, y, z) and

(
p(x, y, z), q(x, y, z), r(x, y, z)

)
are linearly

independent on the points of γε.

Proof. From Theorem 1 of [3] it follows the existence of the limit cycle γε when
(E2 − D2)/(FG) > 0. In the proof of that theorem the multipliers of γε are

computed and they are 1 and (D ±
√

E)/(2c2F ). So from Theorem 4 the proof of
this theorem follows. �
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We should apply Theorem 5 to the Belousov–Zhabotinskii system to study its
Hopf bifurcation at the singular point located at the origin.

In order to apply Theorem 5 to system (1) we need to write it into the normal
form of system (7). The characteristic polynomial of the linear part at the origin
of system (1) is (6). On the other hand the characteristic polynomial of the linear
part of system (7) is

(8) λ3 − (2a + c)ελ2 + (b2 + a2ε2 + 2acε2)λ − (b2 + a2ε2)cε.

Changing the parameters f and w of the Belousov–Zhabotinskii systems by the
parameters a and b through the implicit equations given in (4) and defining

(9) c =
−1 + s2 − sw − 2asε

sε
,

we obtain that the two characteristic polynomials (6) and (8) coincide. Hence
using the new parameters a, b, s, q the singular point at the origin of the Belousov–
Zhabotinskii system (1) has the eigenvalues a ε ± b i and c ε.

Proof of Theorem 2. Consider the Belousov–Zhabotinskii system (1) with the pa-
rameters a, b, s and f defined using (4).

We consider the change of coordinates (U, V, W ) = B−1(x, y, z) which pass the
linear part at the origin of system (1) to its real Jordan normal form; i.e. to the
linear part at the origin of system (7).

The expressions of the coefficients of the quadratic terms of the Belousov–
Zhabotinskii system in the coordinates (U, V,W ) are very large and we do not
give them here. According to Theorem 5, the important coefficients for studying
the Hopf bifurcation and its stability are

(10)

A101 =
∆1

∆2
+

a∆3

∆2
2

ε + O(ε2),

B011 =
(s2 − 1)3∆4

s2∆2
+

a(s2 − 1)2∆5

∆2
2

ε + O(ε2),

C200 =
s2(b2 + 1)(b2 + s2)∆6

∆2
+

as2(b2 + 1)∆7

∆2
2

ε + O(ε2),

C020 = −b2s2(s2 − 1)(b2 + s2)∆8

∆2
+

b2s2∆9

∆2
2

ε + O(ε2),

C002 =
(s2 − 1)3∆10

s2∆2
+

2a(s2 − 1)∆11

s2∆2
2

ε + O(ε2),
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where the ∆i for i = 1, . . . , 11 are

∆1 =
(
s2 − 1

) ((
2

(
b2 + 1

)
q − 1

)
s8 +

(
b2 − 1

) (
b2 + 2

(
b2 + 1

)
q
)
s6

+
(
b2 + 1

) (
b4 − 2qb2 + 3

)
s4 + b2

(
b2 + 3

)
s2 − 2b2 − 1

)
,

∆2 =
(
b2 + 1

)
s

(
s8 +

(
3b2 − 2

)
s6 +

(
b4 − 4b2 + 3

)
s4 +

(
3b2 − 2

)
s2 + 1

)
,

∆3 = −
(
b2 + 2

(
b2 + 1

)
q − 1

)
s20 −

(
(8q + 6)b4 − (2q + 9)b2 − 10q + 3

)
s18

−
(
10(2q + 1)b6 + (4q − 41)b4 + (16q + 7)b2 + 32q − 8

)
s16 −

(
(18q + 7)b8

−2(5q + 31)b6 + 4(5q + 9)b4 − 22b2 − 48q − 3
)
s14 −

((
(8q + 2)b8 − 2(q + 16)b6

+40(q + 2)b4 + (5 − 22q)b2 − 32q + 36
)
b2 + 40q + 33

)
s12 − 2

(
b2 + 1

) (
b10

+(3 − 4q)b8 − (q − 30)b6 − (25q + 32)b4 + 7(5q + 4)b2 − 8q − 21
)
s10

−
(((

2
(
b4 − (3q + 2)b2 + 2q + 15

)
b2 − 44q + 73

)
b2 − 56q − 54

)
b2 − 2q

+21) s8 +
(
7b8 + 2(q − 1)b6 − 4(4q − 9)b4 − 10(2q + 9)b2 − 2q − 11

)
s6

+
(
16b6 + (2q − 3)b4 + (2q + 63)b2 + 16

)
s4 +

(
8b4 − 15b2 − 5

)
s2 + 3b2 + 1,

∆4 =
(
2s4 − 2q

(
s4 − s2 + 1

)
+ b2

(
(2q − 1)

(
s2 − 2

)
s2 + 3

))
s2 + 2,

∆5 =
(
b2 + 1

) (
s2 − 1

) (
s8 +

(
3b2 − 2

)
s6 +

(
b4 − 4b2 + 3

)
s4 +

(
3b2 − 2

)
s2 + 1

)
((

s4 − 6s2 − 2q
(
s2 − 2

)2
+ b2

(
(3 − 6q)s2 + 3

))
s2 + 7

)
− 2

s2

(
s4 +

(
b2 − 1

)
s2

+1)
((

s6 − 3s4 + (3b4 + 7)s2 + 2b2
(
s4 + s2 + 1

)
− 3

)
s2 + 1

) ((
2s4

−2q
(
s4 − s2 + 1

)
+ b2

(
(2q − 1)

(
s2 − 2

)
s2 + 3

))
s2 + 2

)
,

∆6 =
(
qb2 + q − 1

)
s4 −

(
b2 + 1

)
s2 + 1,

∆7 = −b2s16 +
(
−5b4 − b2 + 4

(
b2 + 1

)2
q − 3

)
s14 +

(
−8b6 − 2b4 − 9b2

+2
(
b2 + 1

)2 (
5b2 − 4

)
q + 3

)
s12 +

(
(8q − 5)b8 + 2(q − 2)b6 − (14q + 9)b4

+(17 − 2q)b2 + 6q + 8
)
s10 −

(
b2 + 1

) (
b8 + 2(5q + 1)b6 + (4q − 6)b4 − 4(q + 5)b2

+2q + 13) s8 +
(
9b8 + 20b6 + 11b4 − 7b2 − 2

(
b2 + 1

)2 (
3b2 + 1

)
q + 12

)
s6

+
(
2b6 + 6b4 + 21b2 − 1

)
s4 −

(
b4 + 9b2 + 1

)
s2 + b2,

∆8 = −(q − 1)s4 +
(
b2 + q + 1

)
s2 − 1,

∆9 = −2a
(
b2 + 1

) (
3(q − 1)s6 +

(
2(q − 2)b2 − 4q − 1

)
s4 −

(
b4 + 2qb2 − q − 4

)
s2

+2b2 − 1
) (

s8 +
(
3b2 − 2

)
s6 +

(
b4 − 4b2 + 3

)
s4 +

(
3b2 − 2

)
s2 + 1

)
s2

−2a
(
1 − s2

) (
s2 − 1

) (
b2 + s2

) (
−(q − 1)s4 +

(
b2 + q + 1

)
s2 − 1

) (
s8 − 5s6

+
(
−4b4 − 6b2 + 6

)
s4 − 5s2 + 1

)
,

∆10 = qs8 +
(
b2(q + 1) − q

)
s6 +

(
b4 − (q − 1)b2 + 1

)
s4 + s2 − 1,

∆11 =
(
1 − s2

)3 (
s8 − 5s6 +

(
−4b4 − 6b2 + 6

)
s4 − 5s2 + 1

) (
qs8

+
(
b2(q + 1) − q

)
s6 +

(
b4 − (q − 1)b2 + 1

)
s4 + s2 − 1

)
−

(
b2 + 1

)
s2

(
s2 − 1

)
(
s8 +

(
3b2 − 2

)
s6 +

(
b4 − 4b2 + 3

)
s4 +

(
3b2 − 2

)
s2 + 1

) (
5qs8 +

(
4(q + 1)b2

−6q − 1) s6 +
(
3b4 + (2 − 4q)b2 + q + 4

)
s4 + 5s2 − 5

)
.

In order to apply Theorem 5 we compute the constant

E − D2

FG
=

8ab2
(
s4 +

(
b2 − 1

)
s2 + 1

)
∆12

εs5 (b2 + s2) (b2s2 + 1) ((q − 1)s4 + (b2(q − 1) − 1) s2 + 1)
+ O(1),

where ∆12 is given in the statement of Theorem 2.

The hypothesis (5) implies (E − D2)/(FG) ̸= 0 for ε > 0 sufficiently small.
According to Theorem 5 the Belousov–Zhabotinskii system (1) has a limit cycle γε.
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Computing the multipliers (D ±
√

E)/(2c2F ) and considering when they are
different from one, from Theorem 5, the proof of this theorem follows. �

3. Proof of Theorem 3

To prove Theorem 3 we need some auxiliary results. We consider the autonomous
differential system

(11) ẋ = f(x),

where f : U → Rn is C2, U is an open subset of Rn and the dot denotes the
derivative with respect to the time t.

Theorem 6. If system (11) has an isolated singular point p which is either attractor
or repeller, then it has no C1 first integrals defined in a neighborhood of p.

Proof. We proceed by contradiction. Assume that system (11) has an isolated
attractor singular point p and a C1 first integral H. Let U be a neighborhood of p
such that all the orbits starting in a point of U have p as ω-limit. Let H(p) = h.
Clearly H−1(h)

∩
U ̸= ∅. Then for ε > 0 sufficiently small H−1(h + ε)

∩
U ̸= ∅.

Since p ̸∈ H−1(h+ ε) and H−1(h+ε) is an invariant set by the flow of system (11),
clearly p is not the ω-limit of the orbits starting at points of H−1(h + ε)

∩
U ̸= ∅,

a contradiction with the definition of U .

When system (11) has an isolated repeller singular point, reversing the time, it
becomes an attractor, and the proof of the theorem follows. �

Theorem 7. The zeros of G(x) = a3x
3 +a2x

2 +a1x+a0 with a3 ̸= 0 have negative
real part if and only if

(12) a2 > 0, a0 > 0 and D1 := a1a2 − a3a0 > 0.

Proof. This theorem is the well-known Roth-Hurwitz criterion. For a proof see for
example [7, p.230]. �

Proof of Theorem 3. Computing the singular points of (1) they are of the form

s0 = (0, 0, 0),

s1 =

(
− f + q + S − 1

2q
,
1

4
(3f + q + S + 1), −f + q + S − 1

2q

)
,

s2 =

(
− f + q − S − 1

2q
,
1

4
(3f + q − S + 1), −f + q − S − 1

2q

)
,

with s2 and s3 being real when S2 > 0. The eigenvalues of the Jacobian matrix of
system (1) at the singular point s0 are the zeros of the characteristic polynomial

−u3 +
s2 − ws − 1

s
u2 +

s + (s2 − 1)w

s
u + (f + 1)w = 0.

Therefore we have that

a0 = w(1 + f), a1 =
s + (s2 − 1)w

s
, a2 =

s2 − ws − 1

s
, a3 = −1.
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In view of (12) the singular point s0 is an attractor if and only if

a2 =
s2 − ws − 1

s
> 0,

a0 = w(1 + f) > 0,

D1 = (f + 1)w +
(s2 − ws − 1)(s + (s2 − 1)w)

s2
> 0.

(13)

Then statement (a) is proved.

Reversing time in equation (1). i.e., considering the system

(14) ẋ = −s(x + y − qx2 − xy), ẏ = −s−1(−y + fz − xy), ż = −w(x − z),

we get that the eigenvalues of the Jacobian matrix of system (14) at the singular
point s0 are the zeros of the characteristic polynomial

−u3 − s2 − ws − 1

s
u2 +

(s + (s2 − 1)w)

s
u − (f + 1)w = 0.

Therefore in view of (12) the singular point s0 is an attractor of system (14) if and
only if

s2 − ws − 1

s
< 0, w(1 + f) < 0, (f + 1)w +

(s2 − ws − 1)(s + (s2 − 1)w)

s2
< 0.

So statement (b) follows.

Computing the eigenvalues of the Jacobian matrix of system (1) at the singular
point s1 we get that they are the zeros of the characteristic polynomial

a0 + a1u + a2u
2 + a3u

3 = 0,

with

a0 = −S(f + q + S − 1)w

2q
,

a1 =
1

4qs

(
− 2sf2 + (2w + s(−4S + q(sw − 6) + 2))f − 2sS(q + S − 1)−

2(q − S + 1)w + qs2(3q + 3S − 1)w
)
,

a2 =
−q

(
s2 + 2

)
+ f

(
qs2 + 2

)
+ 2S + qs(3s(q + S) − 4w) − 2

4qs
,

a3 = −1.

Then using (12) the Jacobian matrix associated to system (1) at the singular point
s1 has all its eigenvalues with real negative part (i.e. s1 is an attractor) if and
only if a0 > 0, a2 > 0 and D1 > 0. Computing them we get statement (c) of the
theorem.

Moreover reversing the time and proceeding as for s0, we get that the Jacobian
matrix associated to system (14) at the singular point s1 has all its eigenvalues
with real negative part (i.e. they are repellers for system (1)) if and only if a0 < 0,
a2 < 0 and D1 < 0. Computing them we get statement (d) of the theorem.

Finally computing the eigenvalues of the Jacobian matrix of system (1) at the
singular point s2 we get that they are the zeros of the characteristic polynomial

a0 + a1u + a2u
2 + a3u

3 = 0,
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with

a0 = −S(−f − q + S + 1)w

2q
,

a1 =
1

4qs

(
− 2sf2 + (2w + s(4S + q(sw − 6) + 2))f + 2sS(q − S − 1)S+

qs2(3q − 3S − 1)w − 2(q + S + 1)w
)
,

a2 =
f

(
qs2 + 2

)
− 2(S + 1) + q

(
(3q − 3S − 1)s2 − 4ws − 2

)

4qs
,

a3 = −1.

Then using (12) the Jacobian matrix associated to system (1) at the the singular
point s2 has all its eigenvalues with real negative part if and only if a0 > 0, a2 > 0
and D1 > 0. Computing them we get statement (e) of the theorem.

Moreover reversing the time and proceeding as for s0 and s1, we get that the
Jacobian matrix associated to system (14) at the singular point s2 has all its eigen-
values with real negative part if and only if a0 < 0, a2 < 0 and D1 < 0. Computing
them we get statement (f) of the theorem. This completes the proof of the theo-
rem. �

4. Further comments and conclusions

In this paper we have applied a method which goes back to Poincaré for studying
the C1 integrability of the Belousov–Zhabotinskii system, see Theorem 2. In [8]
the analytic integrability of this system has been studied, see Theorem 1.

This last 30 years several methods for studying the meromorphic integrability of
differential systems have been developed, mainly these methods are due to Ziglin
and Morales–Ramis. According with Arnold [1], Ziglin’s and Morales–Ramis’ the-
ory are inspired in Kovalevskaya’s ideas which go back to Poincaré. These two
theories used the multipliers of the monodromy group of the variational equations
associated to some orbits for studying the non-integrability of the differential equa-
tions. Poincaré’s method allows to prove under convenient assumptions the non-
existence of first integrals of class C1. The main difficulty for applying the Poincaré
non-integrability method to a given differential system is to find for such a sys-
tem periodic orbits having multipliers different from 1. It seems that this result
of Poincaré was forgotten by the mathematical community until modern Russian
mathematicians (mainly Kozlov) have recently published on it, see [1, 6]. Here we
have applied the Poincaré criterion to the Belousov–Zhabotinskii system (1) and we
have shown the non-existence of C1 first integrals under convenient assumptions.

We note that this method for studying the non-existence of C1 first integrals can
be applied to any differential system for which we know analytically some periodic
orbits and their multipliers.
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