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Abstract

We study a one-parameter family of symmetric piecewise linear differ-

ential systems in R3 which is relevant in control theory. The family, which

has some intersection points with the adimensional family of Chua’s circuits,

exhibits more than one attractor even when the two matrices defining its

dynamics in each zone are stable, in an apparent contradiction with the 3-

dimensional Kalman’s conjecture.

For these systems we characterize algebraically their symmetric periodic

orbits and obtain a partial view of the one-parameter unfolding of its triple-

zero degeneracy. Having at our disposal exact information about periodic

orbits of a family of nonlinear systems, which is rather unusual, the analy-

sis allows us to assess the accuracy of the corresponding harmonic balance
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predictions. Also, it is shown that certain conditions in Kalman’s conjecture

can be violated without losing the global asymptotic stability of the origin.

Key words: Limit cycles, periodic orbits, Kalman’s conjecture, harmonic

balance, piecewise linear differential systems

1. Introduction and statement of the main results

In control theory (see [1, 2, 3, 4, 5]) an important class of differential

systems are the Lur’e systems

ẋ(t) = Ax(t) + bξ(t), σ(t) = cTx(t), (1)

where A is a n× n constant matrix, b, c ∈ Rn, and the input ξ(t) = ϕ(σ(t))

is the feedback of the output σ through a nonlinear continuous function

ϕ : R → R. Typically ϕ(0) = 0, so the origin is an equilibrium point. One of

the main problems in this theory is to characterize when the origin is a global

attractor. Related to this problem there is the Kalman’s conjecture [6] which

states that if k1 ≤ ϕ′(σ) ≤ k2 and the linear systems ẋ(t) = (A+ kbcT )x(t)

have the origin as a global attractor for all k ∈ [k1, k2], then the system (1)

has also the origin as a global attractor. Kalman’s conjecture is true for

dimension n ≤ 3 and fails for n > 3, see [7, 8].

We restrict our attention to systems (1) in R3, so that we can write x(t) =

(x(t), y(t), z(t)) ∈ R3, and without loss of generality we assume that c =

(1, 0, 0)T . A common case in applications is when the nonlinear characteristic

function is the saturation

ϕ(σ) = σ for |σ| ≤ 1, ϕ(σ) = sgn(σ) for |σ| > 1, (2)
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coming from the piecewise linear modeling of the saturation in actuators

or some other devices. Thus the function ϕ induces a partition of R3 into

three zones S−, S0 and S+ separated by the two planes Γ− and Γ+, where

S0 = {(x, y, z) ∈ R3 : −1 < x < 1}, S± = {(x, y, z) ∈ R3 : ±x > 1}, and
Γ± = {(x, y, z) ∈ R3 : x = ±1}. Therefore the differential system (1) splits

into the three linear differential systems

ẋ = Ax− b in S− ∪ Γ−, (3)

ẋ = Bx in Γ− ∪ S0 ∪ Γ+, (4)

ẋ = Ax+ b in S+ ∪ Γ+, (5)

where B = A+ bcT .

We remark that these control systems are analytic in R3\{Γ− ∪ Γ+} and

only C0 in Γ− ∪ Γ+. Since Ax + ϕ(cTx)b is a Lipschitz function in R3

with Lipschitz constant L = max{‖A‖, ‖B‖}, we obtain from the standard

theorems of ordinary differential equations the existence and uniqueness of

a solution for any initial conditions (t0,x0) ∈ R × R3, and its continuous

dependence on initial conditions and parameters. We remark that, in general,

the solutions of these piecewise linear control differential systems are C1 but

not C2. Note also that if we smooth adequately the characteristic function

(2) we can get a monotone smooth characteristic function whose derivative

runs through the whole closed interval [0, 1].

We recall that a limit cycle is a periodic orbit isolated in the set of all

periodic orbits of the differential system, and that a matrix is Hurwitz or

stable if it has all the eigenvalues with negative real part. Using matrices

A with −1 as a triple eigenvalue and B with λ < 0 as a triple eigenvalue,
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Moreno y Suárez [9] showed the existence of one stable limit cycle coexisting

with the stable equilibrium point at the origin for a unique fixed value of

the parameter λ. Their result was surprising as control practitioners do not

expect to find control systems of type (2) having two simultaneous attractors

when both matrices A and B are stable. Apparently this also seems to be

in contradiction with the 3–dimensional Kalman’s conjecture. By computing

the eigenvalues of the matrix pencil A+kbcT for k ∈ [0, 1] one can conclude

that there is no such contradiction. Later on, in [10] it was shown numerically

that there are two intervals of values of λ for which the system studied in [9]

has not one but two limit cycles, one stable and the other unstable. One can

think that this counter-intuitive coexistence of attractors is related to the

triple eigenvalues but this phenomenon is more general as it will be shown

in this paper.

Here we will consider system (1) in R3 satisfying (2) and with

A =




−6 −1 0

11 0 −1

−6 0 0


 , bµ =




6(µ+ 1)

11(µ2 − 1)

6(µ3 + 1)


 , c =




1

0

0


 . (6)

So the eigenvalues of A are −1, −2 and −3, while the eigenvalues of

Bµ = A+ bµc
T =




6µ −1 0

11µ2 0 −1

6µ3 0 0




are µ, 2µ and 3µ. The value µ = −1 should be neglected as then bµ = 0, so

that the system becomes purely linear.

The singular points of system (3)–(6) are only the origin (0, 0, 0) if µ < 0,

the segment {(x, 0, 0) : x ∈ [−1, 1]} if µ = 0, and the origin and the two points
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e± = ± (µ3 + 1, 6µ(1− µ2), 11µ2(1 + µ)) , if µ > 0. From the eigenvalues of

A and Bµ we deduce that the origin of system (3)–(6) is an attractor if

µ < 0, and a repeller if µ > 0, while the two singular points e± always are

attractors for µ > 0. Therefore at µ = 0 we detect a degenerate pitchfork

bifurcation of equilibrium points. Note that the situation leads to a triple

zero eigenvalue, so that the family of systems under study allows to obtain

a specific one-parameter unfolding for such triple-zero bifurcation.

The above eigenvalues have been selected in order to reduce the analytic

study of the symmetric periodic orbits to the solving process of a set of

polynomial equations. With these values the degree of such polynomials is the

lowest possible, but other choices of eigenvalues are possible even they should

provide higher degree polynomials and consequently longer computations. In

fact such eigenvalue configuration is shown to appear inside the adimensional

family of Chua’s circuits, see [11] and Section 4.

From (3)–(6) our differential systems are symmetric with respect to the

origin of R3, i.e. these systems do not change if we change x by −x. In other

words if x(t) is a solution of a system (1), then −x(t) is also a solution. When

the orbits corresponding to these two solutions coincide, we say that x(t) is

a symmetric solution. In what follows we shall study the symmetric periodic

solutions of the one–parameter family of differential systems (3)–(6).

Since the differential system ẋ = Bµx is linear in its domain of definition

Γ− ∪ S0 ∪ Γ+, and has no pure imaginary eigenvalues, system (4) has no

periodic orbits. Hence it follows that a symmetric periodic orbit intersects

the three zones S−, S0 and S+. In particular a symmetric periodic orbit

has at least two points on the plane Γ+. So every symmetric periodic orbit
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(x(t), y(t), z(t)) can be determined given an initial condition of the form

(x(0), y(0), z(0)) = (1, y0, z0) ∈ Γ+.

Our main contribution is to provide for the first time in the class of

differential systems (3)–(6) an analytical tool, more precisely an algebraic

tool, for studying the symmetric periodic orbits. Our algebraic approach is

based on the closing equations for symmetric periodic orbits. The use of such

closing equations can be traced back to Andronov and coworkers [12] and is

also called the Point Transformation method, see for instance [13]. In fact we

determine for every value of µ ∈ R all the symmetric periodic orbits having

two points in the plane Γ+, as stated in the next result, which constitutes

the main contribution of this paper. The possible existence of symmetric

periodic orbits with more than two points in Γ+ and non-symmetric periodic

orbits is to be studied elsewhere.

Theorem 1. Regarding symmetric periodic orbits of system (3)–(6) having

exactly 2 points in the plane Γ+ the following statements hold.

(a) For µ < µSN1 ≈ −17.350 there exist two periodic orbits, collapsing at

µ = µSN1 to disappear for greater values of the parameter µ. One of

these two orbits is stable and the other unstable.

(b) For µSN1 < µ < µSN2 ≈ −0.036 there are no periodic orbits.

(c) For µSN2 < µ < 0 there are two periodic orbits, collapsing at µ = µSN2

to disappear for lower values of the parameter µ. One of these two

orbits is stable and the other unstable.

(d) For µ = 0 there is one hyperbolic, stable symmetric periodic orbit pass-
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Figure 1: The two symmetric periodic orbits for µ = −0.03. We have also drawn the

planes Γ+ and Γ−. One of the periodic orbits bifurcates from the segment of equilibria

{(x, 0, 0) : −1 ≤ x ≤ 1} when µ = 0.

ing through the points (1, y0, z0) and (1, Y0, Z0) in Γ+, where

y0 = −
(
3 + 2

√
3
)
/6, Y0 =

(
2
√
3− 3

)
/6, z0 = −Z0 =

√
3/6.

(e) For µ > 0 there is only one periodic orbit, being stable for µ < µ∗ ≈
1.495 and unstable for µ > µ∗.

From Theorem 1 we see that the stated symmetric periodic orbits are

organized in two branches which exist for different ranges of parameter µ.

Moreover, excepting the three values denoted by µSN1, µSN2 and µ∗, the

periodic orbits are hyperbolic when they exist, and so these periodic orbits

will persist under sufficiently small perturbations of A, bµ, c and ϕ. At

the critical values µSN1 and µSN2 system (3)–(6) undergoes a saddle-node
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bifurcation of periodic orbits, that is, two periodic orbit collides to disappear.

Note that the numerical approximations for these critical values can be as

precise as desired, since they come from solving algebraic equations. This is

rather uncommon in practice when dealing with such global bifurcations.

Theorem 1 is proved in Section 2, where algebraic expressions for de-

termining the mentioned branches of symmetric periodic orbits and their

stability are provided.

The determination of non-infinitesimal limit cycles is a very difficult prob-

lem which usually is solved numerically or by approximate methods, as the

harmonic balance method. The harmonic balance method is a tool for es-

timating periodic orbits by trying to fit a truncated Fourier series choosing

the frequency, amplitude and phase so that the lost of precision comes from

the neglected harmonics. Under certain hypotheses, the method can exactly

detect Hopf bifurcations, see [14]. Thanks to Theorem 1, we have exact infor-

mation about periodic orbits so that we can assess the accuracy of harmonic

balance predictions.

When the Fourier series takes into account only a single sinusoid, the

method is also called the describing function method, see for instance [15,

16, 17, 18]. This method is widely applied in engineering, because it has a

beautiful simple interpretation in terms of intersecting graphs. The describ-

ing function method can also be used to analyze the dependence of periodic

orbits on the parameters of autonomous systems, obtaining a first approach

to the bifurcation diagram associated to the periodic orbits of the system:

the so-called first harmonic bifurcation diagram, see [18].

Being an approximate method, the predictions of the first harmonic bi-
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furcation diagram can fail both qualitatively and quantitatively, see [19]. If

ϕ : R → R is an odd piecewise linear function with three pieces, then it

is shown in [18] for the nonlinear differential control systems of the form

ẋ(t) = Ax(t)+ϕ(cTx(t))b that while in dimension 2 such diagram describes

all the qualitative behavior of the periodic orbits, this is not the case in

dimension 3. In next result we will obtain the first harmonic bifurcation

diagram for differential systems (3)–(6) to be compared with the analytic

results of Theorem 1. We will show that such diagram is qualitatively but

not quantitatively correct. As a consequence, we also shed some light on the

non-equivalence in R3 of Kalman’s conditions on the matrix pencil with the

global asymptotic stability of the origin, see Remark 1 later.

Proposition 1. Regarding symmetric periodic orbits, the predictions of the

describing function method for system (3)–(6) are the following.

(a) For µ < µ ≈ −16.573 two periodic orbits are predicted, collapsing at

µ = µ to disappear for greater values of the parameter µ. One of these

two orbits is predicted to be stable and the other unstable.

(b) For µ < µ < µ ≈ −0.0603 no periodic orbits are predicted.

(c) For µ < µ < 0 two periodic orbits are predicted, collapsing at µ = µ to

disappear for lower values of the parameter µ. One of these two orbits

is predicted to be stable and the other unstable.

(d) For µ ≥ 0 only one periodic orbit is predicted, being stable for µ < 1

and unstable for µ > 1.
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Figure 2: Amplitude of symmetric periodic orbits for big negative values of parameter

µ from the algebraic solutions of the closing equations (AC) compared with harmonic

balance prediction (AHB). Note that the harmonic balance predicts the coalescence of two

periodic orbits to disappear at a certain critical value µ larger than the actual one µSN1.

Proposition 1 is proved in Section 3. In Figs. 2 and 3 we compare the

harmonic balance predictions with the exact results provided by Theorem 1

by plotting the amplitude of the different periodic orbits. We have defined

AHB =
√

1 + y2HB + z2HB, where (1, yHB, zHB) is the point which satisfies ẋ > 0

at the intersection with the plane x = 1 of the periodic orbit that is predicted

by harmonic balance, see [15] and Section 3 for details. Analogously we write

AC =
√

1 + y20 + z20 , where (1, y0, z0) is the intersection point (with ẋ > 0)

of the exact periodic orbit with the plane x = 1. Such values of y0, z0 are

obtained from the proof of Theorem 1. Thus in Figs. 2 and 3 the first
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Figure 3: Amplitude of symmetric periodic orbits for small values of parameter µ from

the algebraic solutions of the closing equations (AC) compared with harmonic balance

prediction (AHB). Note that now the harmonic balance predicts the coalescence of two

periodic orbits to disappear at a certain value µ smaller than the actual one µSN2.

harmonic bifurcation diagram for symmetric periodic orbits and their actual

bifurcation diagram are plotted. Although the discrepancy between the pre-

dictions of the harmonic balance method and the exact values is emphasized

in next remark, the method should not be underestimated in detecting the

symmetric periodic orbits.

Remark 1. From Theorem 3 of [18] we know that hypotheses of Kalman’s

conjecture requiring negative real part of the eigenvalues of the matrix pencil

are equivalent to the fact that the harmonic balance method does not predict

any periodic orbit. Here for the family of systems studied we have detected
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two intervals of the parameter µ, namely (µSN1, µ) and (µ, µSN2), where there

are not periodic orbits although they are predicted by harmonic balance. This

proves that in R3 the failing of the mentioned conditions of Kalman’s conjec-

ture is not sufficient to assure the existence of periodic orbits precluding the

global asymptotic stability of the origin.

From the above results, see also Fig. 3, we conclude that at µ = 0 there is

a change in the number of symmetric periodic orbits. In fact, from the proof

of Theorem 1 we can assure that one symmetric periodic orbit ends in (or

starts from) the segment of equilibrium points that exists at µ = 0. On the

other hand we already mentioned that at µ = 0 there is a degenerate pitch-

fork bifurcation of equilibrium points. Effectively, for µ > 0 there appear

two new stable equilibria which are born at the endpoints of the segment of

non-isolated equilibrium points that exists for µ = 0. This critical value cor-

responds to the triple zero eigenvalue situation, so that in our one-parameter

unfolding for such a bifurcation there are simultaneously both equilibrium

points and periodic orbits bifurcations. This one-parameter unfolding of the

triple zero bifurcation in piecewise linear systems with symmetry is not yet

complete: we conjecture that in this bifurcation there also appear other non-

symmetric periodic orbits for small positive values of µ associated to the new

equilibria. This conjecture, which can be analyzed with the same techniques,

is to be investigated elsewhere.

The rest of the paper is organized as follows. In Section 2, as already men-

tioned, all the algebraic expressions for determining the branches of symmet-

ric periodic orbits leading to prove Theorem 1 are provided. Next, in Section

3, the computations related to the harmonic balance predictions summarized
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in Proposition 1 are detailed. The intersection points of systems (3)–(6) with

the adimensional family of Chua’s circuits are shown in Section 4.

2. Proof of main results

We start by introducing the algebraic procedure which allows us to con-

vert the problem of determining the symmetric periodic orbits into the prob-

lem of solving a set of algebraic equations.

2.1. The algebraic procedure

The solution (x(t), y(t), z(t)) of system (5)–(6) in the region S+ ∪ Γ+

starting at the point (1, y0, z0) when t = 0 is



x(t)

y(t)

z(t)


 =




1 + µ3

6µ(1− µ2)

11µ2(1 + µ)


 + eAt







1

y0

z0


−




1 + µ3

6µ(1− µ2)

11µ2(1 + µ)





 , (7)

where

eAt =
u

2




1− 8u+ 9u2 1− 4u+ 3u2 1− 2u+ u2

−5 + 32u− 27u2 −5 + 16u− 9u2 −5 + 8u− 3u2

6− 24u+ 18u2 6− 12u+ 6u2 6− 6u+ 2u2


 , (8)

and u = e−t. Note that for all positive values of t we will have 0 < u < 1.

Regarding the solution (X(T ), Y (T ), Z(T )) of the system (4)–(6) in the

region Γ− ∪ S0 ∪ Γ+ starting at the point (1, Y0, Z0) when T = 0, it satisfies

(X(T ), Y (T ), Z(T ))T = eBµT (1, Y0, Z0)
T .

The way for computing the symmetric periodic orbits of system (3)–

(6) having two points in the plane Γ+ is as follows. Assuming that there
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exists one of such periodic orbits, let (1, y0, z0) ∈ Γ+ be the point where

this periodic orbit enters into the zone S+ ∪ Γ+ and let (1, Y0, Z0) ∈ Γ+ be

the point where this periodic orbit exits such zone to enter S0. Since this

periodic orbit is symmetric it will enter into the zone S− ∪ Γ− through the

point (−1,−y0,−z0) ∈ Γ−. Let t be the elapsed time for this periodic orbit

in going from the point (1, y0, z0) to the point (1, Y0, Z0), and let T be the

time needed for this periodic orbit to go from the point (1, Y0, Z0) to the

point (−1,−y0,−z0). Then we have the closing equations

(x(t), y(t), z(t)) = (1, Y0, Z0), (X(T ), Y (T ), Z(T )) = (−1,−y0,−z0).

(9)

Equivalently, we can integrate backwards in time the solution from the point

(−1,−y0, −z0) to (1, Y0, Z0) within S0, by defining

(
X(T ), Y (T ), Z(T )

)T
= e−BµT (−1,−y0,−z0)

T .

We assume in what follows µ 6= 0, since the case µ = 0 will be treated in a

specific way. Then the exponential e−BµT is the matrix

v

2µ2




(1− 8v + 9v2)µ2 (1− 4v + 3v2)µ 1− 2v + v2

(−5 + 32v − 27v2)µ3 (−5 + 16v − 9v2)µ2 (−5 + 8v − 3v2)µ

(6− 24v + 18v2)µ4 (6− 12v + 6v2)µ3 (6− 6v + 2v2)µ2


 ,

where v = e−µT . Then we must now have (X(T ), Y (T ), Z(T )) = (1, Y0, Z0).

If we take Y0 = y(t) and Z0 = z(t), then the four unknowns (y0, z0, t, T )

associated to this symmetric periodic orbit must satisfy the four equations

x(t)− 1 = 0, 1−X(T ) = 0, y(t)− Y (T ) = 0, z(t)− Z(T ) = 0. (10)
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Using the variables u = e−t and v = e−µT instead of t, T, equations (10)

become

ei(y0, z0, u, v) = 0 for i = 1, 2, 3, 4, (11)

being the ei’s polynomials in their variables.

Note that to every symmetric periodic orbit having two points in the

plane Γ+ we can associate one solution (y0, z0, u, v) of equations (11) with

0 < u < 1 and v > 1 (0 < v < 1) if µ < 0 (µ > 0). Also since ẋ = 6µ − y

when x = 1, the two conditions 6µ−y0 > 0 and 6µ−Y0 < 0 must be fulfilled.

It is not obvious (and not necessarily true in general) the converse statement

associating every solution (y0, z0, u, v) of (11) satisfying the above inequality

restrictions to one symmetric periodic orbit. However due to the eigenvalues

configuration the following result can be shown.

Proposition 2. Given µ 6= 0, let (y0, z0, u, v) be one solution of correspond-

ing equations (11) and let Y0 = y(t), Z0 = z(t) computed from equation (7).

Setting ỹ0 = y0 − 6µ and Ỹ0 = Y0 − 6µ, the following statement holds.

If µ < 0 (µ > 0) and the four conditions ỹ0 < 0, Ỹ0 > 0, 0 < u < 1 and

v > 1 (0 < v < 1) are fulfilled, then system (3)–(6) has a symmetric periodic

orbit passing through the points (1, y0, z0) and (1, Y0, Z0) of Γ+.

Proof. Given a solution under the conditions listed, it can be assured that

one orbit of system (5) starting at (1, y0, z0) enters S+ and after a time

t = − log u arrives at the point (1, Y0, Z0) to abandon S+ by entering into S0.

Similarly we can assure that one orbit of system (4) starting at (1, Y0, Z0) en-

ters S0 and after a time T = −(log v)/µ arrives at (−1,−y0,−z0) to abandon

S0 by entering into S−.
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However only if the two quoted orbits do not make unforeseen excur-

sions for intermediate times out of the regions S+ and S0 respectively, it can

be guaranteed that the two orbits define, by invoking the symmetry of the

global system (3)–(6), the half part of a symmetric periodic orbit. If we use

the parameterizations x(u) and x(v), respectively, we realize that they are

cubic polynomials in their parameter. This fact allows to assure that all the

intermediate points are in the same region.

For instance, if we suppose that the orbit in S+ enters partially the region

S0, apart from the initial and final point, at least other two points would be

in Γ+ and so there should be four roots for the cubic equation x(u) = 1 with

y0 and z0 given. Obviously this is not possible.

A similar reasoning can be done for the orbit in S0 using the parame-

terization x(v) but here the exclusion of intermediate points out of S0 can

be guaranteed if we take into account that by letting T → ±∞ (depending

on the sign of µ) the orbit should arrive at the origin. Thus if there is an

excursion into S+ or S− then by considering the extension of the given orbit

up to the origin there should be three changes of sign in the derivative of

x(v), but this is not allowed for a cubic polynomial.

Proposition 2 allows to establish an equivalence relationship between so-

lutions of equations (11) and symmetric periodic orbits with two points in

Γ+. Once a solution is detected, to study the stability of the corresponding

periodic orbit we must locate their characteristic multipliers wit respect to

the unit disk of the complex plane. This can be done by using Proposition 3.2

from [20], which assures the similarity between the derivative of the transition

map that can be defined from Γ+ to Γ− corresponding to the half part of the
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symmetric periodic orbit and the product of matrix exponentials eBµT eAt,

when evaluated at the appropriate flight times t and T . Such transition map

is the Poincaré half-return map of the periodic orbit. The above product of

matrices has always one eigenvalue equal to −1, and if ν1 and ν2 are the other

two eigenvalues, then ν2
1 and ν2

2 are the desired characteristic multipliers of

the periodic orbit. In [10] it is proved the following simple algebraic result,

useful to avoid explicit eigenvalue computations when we have the trace and

determinant of the above product of exponential matrices.

Lemma 1. For p, q ∈ R the roots of the quadratic x2−px+ q = 0 are inside

the unit circle of the complex plane if and only if the two conditions |q| < 1

and |p| < q + 1 are satisfied.

Endowed with these tools, the proof of Theorem 1 can be tackled.

2.2. Proof of Theorem 1

In order to show Theorem 1, we start by considering the easier case µ = 0,

which corresponds with its statement (d) and needs a special treatment.

2.2.1. The case µ = 0

For the solution (x(t), y(t), z(t)) of system (5)–(6) in the region S+ ∪ Γ+

starting at the point (1, y0, z0) when t = 0 we can use (7) and (8). The

solution (X(T ), Y (T ), Z(T )) of system (4) in the region Γ−∪S0∪Γ+ passing

through the point (1, Y0, Z0) when T = 0 is here




X(T )

Y (T )

Z(T )


 = eB0T




1

Y0

Z0


 =




1 −T T 2

2

0 1 −T

0 0 1







1

Y0

Z0


 .
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If we start from (1, y0, z0) with y0 < 0, we see that ẋ = −y0 > 0 and so

we remain for a time t in the right zone until we arrive at (1, Y0, Z0), where

from (7) with µ = 0 we get (0, Y0, Z0)
T = eAt (0, y0, z0)

T . Now, using the flow

in the central zone and starting from (1, Y0, Z0), after a time T we follow the

half part of a symmetric periodic orbit if the equations

(0, Y0, Z0)
T = eAt (0, y0, z0)

T

(−1,−y0,−z0)
T = eB0T (1, Y0, Z0)

T

hold. After eliminating Y0 = −y0 − Tz0 and Z0 = −z0 by using the last

two equations, and some standard simplifications we arrive at the algebraic

system of equations

0 =
(
1− 4u+ 3u2

)
y0 +

(
1− 2u+ u2

)
z0,

0 =
(
1− u+ 2u2

)
y0 +

(
T − u+ u2

)
z0,

0 =
(
2u− 2u2

)
y0 +

(
1 + 2u− u2

)
z0,

0 = 4 + 2Ty0 + T 2z0,

where we have used (8) with u = e−t. We observe that the first and third

equations are homogeneous in (y0, z0) and do not depend on T . The deter-

minant of this homogeneous system of equations must vanish, since from the

last equation the values (y0, z0) = (0, 0) are not admissible solutions. Com-

puting such determinant, we must have (1−u)(1+u) (1− 4u+ u2) = 0. Thus

the only meaningful value is u = 2 −
√
3, because the other do not belong

to the interval (0, 1). From this moment we assume this value for u, remov-

ing the third equation and non-vanishing factors, and using the condition

18



1− 4u+ u2 = 0 to get a simplified system of equations, namely

uy0 + z0 = 0, (7u− 1) y0 + (T + 3u− 1) z0 = 0, 4 + 2Ty0 + T 2z0 = 0.

Now we get only one solution, as given in the statement (d) of Theorem 1.

To study the stability of this periodic orbit, we follow the ideas of the end

of Section 2.1 and compute the trace and determinant of the matrix eB0T eAt.

We get

−1 + ν1 + ν2 = u+ u2 + u3 − T (u+ 20u2 − 21u3)/2 + T 2(3u− 12u2 + 9u3)/2,

−ν1ν2 = u6.

We will apply Lemma 1. It is clear from q = −u6 that |q| < 1. After

substituting the values of T and u we see that p = ν1+ν2 = −6(26
√
3−45) <

0 and 1+q = 30(26
√
3−45) so that |p| = −p < 1+q clearly holds. Thus ν1, ν2,

and so the multipliers ν2
1 and ν2

2 of the periodic orbit, are in the unit circle

of the complex plane, so that it is hyperbolic and stable. Thus statement (d)

of Theorem 1 is shown.

2.2.2. The case µ 6= 0

We will analyze the solutions of equations (11) and their relation with

the symmetric periodic orbits of system (3)–(6). We first realize by direct

inspection that the four equations are linear in y0 and z0. Furthermore the

polynomial e1 is cubic in u and independent on v, having the trivial factor

u− 1 since x(0) = 1 by definition. Also the polynomial e2 is cubic in v and

independent on u, while polynomials e3 and e4 are cubic polynomials both

in u and v without mixed terms of the form umvn.
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We also note that a dual approach is possible in writing the closing equa-

tions. Thus we can define the solution of system (5) in the region S+ ∪ Γ+

backwards in time starting from the point (1, Y0, Z0) when t = 0 as




x(t)

y(t)

z(t)


 =




1 + µ3

6µ(1− µ2)

11µ2(1 + µ)


+ e−At







1

Y0

Z0


−




1 + µ3

6µ(1− µ2)

11µ2(1 + µ)





 , (12)

where e−At has the same expression that eAt in (8) if we change u by U =

1/u = et. Then we can take y(t) = y0 and z(t) = z0 to write the closing

equations in the four unknowns (Y0, Z0, U, V )

x(t)− 1 = 0, 1 +X(T ) = 0, y(t) + Y (T ) = 0, z(t) + Z(T ) = 0. (13)

Here (X(T ), Y (T ), Z(T ))T = eBµT (1, Y0, Z0)
T , where the matrix eBµT comes

from e−BµT if we change v by V = 1/v = eµT . Note that for all t > 0 we will

have U > 1, and if µ < 0 (µ > 0) then 0 < V < 1 (V > 1). We get so the

following remark.

Remark 2. It should be emphasized that equations (13) give rise to four

equations of the form ei(Y0, Z0, U, V ) = 0, where the four polynomials ei are

exactly the same that in (11). Thus, if for µ 6= 0 there exists a symmetric pe-

riodic orbit with two points at Γ+, namely (1, y0, z0) and (1, Y0, Z0), taking a

time t in passing from the first point to the second one and a time T in going

from the last one to (−1,−y0,−z0), then both (y0, z0, u, v) and (Y0, Z0, U, V )

are solutions of equations (11), where U = 1/u = et and V = 1/v = eµT .

Thus every symmetric periodic orbit must be associated to two different so-

lutions of equations (11).
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To simplify a bit equations (11), it is useful to do the translation ỹ0 =

y0−6µ and z̃0 = z0−11µ2 in order to reallocate the (y, z)-origin of the plane

x = 1. Next, by removing the factor (1 − u)/2 in the equation e1 = 0, we

obtain a simplified first equation ẽ1 = 0, where

ẽ1 = 2µ3(u− 1)2 + u(1− 3u)ỹ0 + u(1− u)z̃0.

The new second equation, after multiplying it by 2µ2 becomes ẽ2 = 0, where

ẽ2 = 2µ2(1 + 3v − 3v2 + v3)− µv(1− v)(1− 3v)ỹ0 + v(1− v)2z̃0,

and to obtain a simplified version of the third equation we define the poly-

nomial ẽ3 = [−2µe3 + 3ẽ2 + µ(3u − 5)ẽ1]/2, so that the equation becomes

ẽ3 = 0, where

ẽ3 = µ4(1− u)2 − 3µ2(1 + 2v − v2) + µ(u2 + v − 2v2)ỹ0 − v(1− v)z̃0.

Finally to simplify the fourth equation we define the polynomial ẽ4 = e4 +

ẽ3 − ẽ2 + (u− 2)ẽ1 and the equation becomes ẽ4 = 0, where

ẽ4 = µ4(1−u)2+µ3(1−u)(7−u)+6µ2(1+v)+[µ(u2−v)+u(1+u)]ỹ0+(u+v)z̃0.

Now we use the linearity of above equations in ỹ0, z̃0 to solve two equations

for them and substitute in the two remaining equations. For this we select

as more convenient the second and third modified equations, obtaining

ỹ0 = −(u− 1)2(v − 1)µ3 + (v + 1) (v2 − 4v + 1)µ

(v − 1) (u2 + v2)
(14)

and a longer expression for z̃0, namely

− (u− 1)2(3v − 1)

(v − 1) (u2 + v2)
µ4 − v (5v4 − 16v3 + 8v − 1) + 2u2 (v3 − 3v2 + 3v + 1)

(v − 1)2v (u2 + v2)
µ2.

(15)
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Substituting expressions (14)-(15) in the first and fourth equations and re-

moving the trivial factors −µ/(v − 1)2v (u2 + v2) we obtain two new poly-

nomial equations f1(u, v) = 0 and f2(u, v) = 0. We have for f1(u, v) the

expression

(u− 1)3u(v − 1)v(3v − 1)µ3 + (u− 1)2(v − 1)2v
(
5u2 − u+ 2v2

)
µ2

+(u− 1)u
[
2
(
v3 − 3v2 + 3v + 1

)
u2 + v

(
5v4 − 16v3 + 8v − 1

)]
µ (16)

+u(3u− 1)(v − 1)v(v + 1)
(
v2 − 4v + 1

)
,

while the expression of f2(u, v) is not shown for sake of brevity. In fact, a

more convenient alternative is to take instead of f2 the polynomial f1(u, v)+

(1 − u)f2(u, v), which after simplifying by v leads to a new polynomial f̃2.

Thus f̃2(u, v) is

(u− 1)3(v − 3)(v − 1)v2µ3 − (u− 1)2(v − 1)2
(
2u2 − v2u+ 5v2

)
µ2

−(u − 1)
[
u2
(
v4 − 8v3 + 16v − 5

)
− 2v2

(
v3 + 3v2 − 3v + 1

)]
µ (17)

−(u − 3)u2(v − 1)(v + 1)
(
v2 − 4v + 1

)
.

Our next goal will be to characterize the solutions of the polynomial

system formed by the two equations

f1(u, v) = 0, f̃2(u, v) = 0. (18)

From Remark 2, note that if (u, v) are both different from zero and satisfy

the polynomial system (18) for a given value of µ, the same is true for the

pair (1/u, 1/v). Note also that if we take Ỹ0 = Y0 − 6µ, we can write for

it the same expression that for ỹ0 in (14) by doing the changes u → U and

v → V . Then after using the relations u = 1/U , v = 1/V , we get

Ỹ0 = −(u − 1)2(v − 1)v2µ3 − u2(v + 1) (v2 − 4v + 1)µ

(v − 1) (u2 + v2)
. (19)
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From Proposition 2 and using (14) and (19) we can obtain more quan-

titative information about the admissible values of (u, v) corresponding to

symmetric periodic orbits having exactly 2 points in the plane Γ+.

Lemma 2. Consider the next two sets of inequalities

S1 =

{
µ < 0, 0 < u < 1, 1 < v < 2 +

√
3, µ2 <

(v + 1) [3− (v − 2)2]

(u− 1)2(v − 1)

}
,

S2 =

{
µ > 0, 0 < u < 1, 2−

√
3 < v < 1, µ2 <

u2(v + 1) [3− (v − 2)2]

(u− 1)2(1− v)v2

}
.

The followings statements hold.

(a) Assume that for a given µ 6= 0 there exists a symmetric periodic orbit of

system (3)–(5) having exactly 2 points in the plane Γ+, then, depending

on the sign of µ, the corresponding values of (u, v) satisfy one of the

two set of inequalities S1 and S2.

(b) Conversely, if a pair (u, v) is a solution of (18) with µ 6= 0 satisfying

one of the two sets of conditions, then system (3)–(6) has one symmet-

ric periodic orbit having exactly 2 points in the plane Γ+.

Proof. (a) From the hypothesis and conditions given in Proposition 2 we

must have for the periodic orbit that ỹ0 < 0 and Ỹ0 > 0. Taking into account

that v = exp(−µT ), it is clear that µ/(1− v) is always positive. Thus from

(14) and (19), we arrive, both for positive and negative values of µ, to the

two inequalities

(u− 1)2(v − 1)µ2 + (v + 1)(v2 − 4v + 1) < 0,

(u− 1)2(v − 1)v2µ2 − u2(v + 1)(v2 − 4v + 1) > 0.
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If µ < 0 then v > 1 and the only possibility to satisfy the first inequality

is that v2 − 4v + 1 = (v − 2)2 − 3 < 0, and then the second inequality is

automatically fulfilled. When µ > 0 we have 0 < v < 1, and now the first

inequality holds but the second one requires again v2−4v+1 = (v−2)2−3 < 0.

Thus statement (a) is true.

(b) Reasoning in a converse way, it is now immediate to obtain under both

sets of inequalities that ỹ0 < 0 and Ỹ0 > 0. Then from Proposition 2 we

must have the stated symmetric periodic orbit. The lemma follows.

Lemma 2 establishes, under adequate hypotheses, the equivalence be-

tween solutions of the polynomial system (18) and symmetric periodic orbits

having exactly 2 points in the plane Γ+. The remaining task is then to

find the solutions of the polynomial system (18) satisfying the hypotheses of

Lemma 2. In particular we will only need the solutions with (u, v) in the

open rectangle W = (0, 1)× (2−
√
3, 2 +

√
3).

We start by computing the resultant polynomial of the elimination of µ

from the equations f1(u, v) = 0 and f̃2(u, v) = 0, getting a long expression

in the form 2(1− u)6u(1− v)6v4(1+ v)(u+ v)(u2 + v2)2(1− 4v+ v2)K(u, v),

where K(u, v) is

8(3v − 1)
(
v3 − 3v2 + 3v + 1

)2
u8

+
(
5v9 + 53v8 − 235v7 − 245v6 + 1737v5 − 1061v4 − 637v3 − 179v2 + 26v + 24

)
u7

−v
(
169v8 − 1114v7 + 1100v6 + 1474v5 − 950v4 − 726v3 − 1356v2 + 398v − 83

)
u6

+v
(
10v10 − 170v9 + 876v8 + 851v7 − 4659v6 + 1545v5 + 1671v4 − 683v3 + 1137v2 − 199v + 5

)
u5

−2v3
(
55v8 − 38v7 − 1536v6 − 218v5 + 4754v4 − 218v3 − 1536v2 − 38v + 55

)
u4

+v3
(
5v10 − 199v9 + 1137v8 − 683v7 + 1671v6 + 1545v5 − 4659v4 + 851v3 + 876v2 − 170v + 10

)
u3

+v5
(
83v8 − 398v7 + 1356v6 + 726v5 + 950v4 − 1474v3 − 1100v2 + 1114v− 169

)
u2

+v5
(
24v9 + 26v8 − 179v7 − 637v6 − 1061v5 + 1737v4 − 245v3 − 235v2 + 53v + 5

)
u

−8(v − 3)v7
(
v3 + 3v2 − 3v + 1

)2
.
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For the definition and the basic properties of the resultant of two polynomials

see [21] and [22]. Obviously, we can discard all the previous factors so that

we will pay attention only to the roots of the equation K(u, v) = 0.

Lemma 3. The number of solutions of the equation K(u, v) = 0 in W , that

is, with 0 < u < 1 and 2−
√
3 < v < 2 +

√
3 is as displayed in Table 1, see

also Figure 4. The extremes of intervals with different number of solutions

appear in Table 2.

Proof. In this proof all the computations are based in the root determina-

tion of polynomials in only one variable, which is a numerical process that

can be made with as much accuracy as needed. In fact, we can select any

value of v = v̄ in the interval (2−
√
3, 2 +

√
3) and then follow a systematic

search for the roots u ∈ (0, 1) of the corresponding polynomial K(u, v̄).

It is well-known that polynomial roots are continuous complex functions

of the coefficients of the polynomial, excepting when the highest degree coef-

ficient vanishes but in this case one root goes to (comes from) infinity. Thus

by varying v̄, the number of real roots of K(u, v̄) with u ∈ (0, 1) can change

only at values of v where the curve K(u, v) = 0 has a horizontal tangent, a

branching point, or one solution escapes through the boundary of the rectan-

gle W . We first study possible roots in the boundary of W . Starting at the

top of the rectangle W , the polynomial K(u, 2 +
√
3) has u7 as the unique

solution for u > 0. This follows easily from the fact that K(u, 2 +
√
3) =

288(71+41
√
3)(2+

√
3+u)(δ+u)(δ+2δu+2u2+u3)(−δ+3δu−3u2+u3),

with δ = 7+4
√
3, and the last factor is the only one giving positive real roots.

The point P7 = (u7, v7) is the top limit endpoint of a branch of solutions of
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Figure 4: The zero level set of K(u, v) in the rectangle W = (0, 1)× (2−
√
3, 2+

√
3). The

horizontal line drawn is v = 1. Points P2, P5, P6 and P7 are in the boundary of the open

rectangle.

K(u, v) = 0 in the open rectangle under study. Since (2−
√
3)−1 = 2 +

√
3

and a direct computation shows that u8v14K(1/u, 1/v) = K(u, v), according

to Remark 2, the only positive root for K(u, 2−
√
3) = 0 is 1/u7 > 1; so this

equation has no solution for u ∈ (0, 1).

For the left edge of the rectangle we get

K(0, v) = 8(3− v)v7
(
1− 3v + 3v2 + v3

)2
,

so that the unique point that could be a limit point of an interior branch of
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Range # Solutions # Periodic orbits

v6 ≤ v < v7 1 1

v5 ≤ v < v6 2 1

v4 < v < v5 3 2

v = v4 2 2

v3 < v < v4 3 2

v = v3 2 1

v2 < v < v3 1 1

v1 < v < v2 2 2

v = v1 1 1

2−
√
3 < v < v1 0 0

Table 1: Number of solutions of K(u, v) = 0 in the open rectangle W . Regarding the

last column, we see that not all these solutions correspond with symmetric periodic orbits

with two points in Γ+, as shown in Lemma 4.
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solutions of K(u, v) = 0 in the open rectangle is P6 = (0, 3). In the right

edge the situation is more involved as K(1, v) factorizes in a polynomial of

degree twelve multiplied by 2(1 + v)2. Such polynomial has two solutions,

namely v2 and v5, see Table 2, satisfying v2v5 = 1. We also obtain

K(u, 1) = 64(1 + u)2
(
1− 4u+ u2

) (
1− 3u+ u2

)2
,

where the last two factors have solutions with 0 < u < 1, namely u0 = 2−
√
3

and u3 = (3−
√
5)/2, being the last value a double root. In fact, the point

P3 is a point of horizontal tangent for the curve K(u, v) = 0.

Now we search for other points belonging to the curve K(u, v) = 0 with

horizontal tangent. Taking derivatives with respect to u in K(u, v) = 0, we

see that dv/du = −Ku/Kv, so that the wanted points (u, v) ∈ W must verify

K(u, v) = 0, Ku(u, v) = 0, (20)

with Kv(u, v) 6= 0. To study the solutions of (20) we compute the resultant

with respect to the variable v. We obtain a polynomial R(u), which excepting

a integer factor, is (−1+u)2u35(1+u)4(1−3u+u2)(1+u+u2)2R26(u)
2R62(u).

The polynomials R26 and R62 have the degrees indicated in their subscripts

and are not explicitly given for sake of brevity. The factor 1 − 3u + u2

gives again the value u3, already obtained before. The other roots of R(u)

in (0, 1) are approximately 0.041177, 0.085276, 0.090199, 0.252159, 0.268219

and 0.387007. For these values of u we must find the corresponding value

of v verifying (20) to guarantee that the corresponding point is in W . For

instance, when u = 0.041177 there is no value for v in the range (2−
√
3, 2+

√
3) verifying (20). After checking the other points we conclude that points

P1 and P3 are the unique points of the curve K(u, v) = 0 with horizontal
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Value of ui Value of vi

u7 = 1− 3

√
6
(
5 + 3

√
3
)
+ 3

√
2
(
9 + 5

√
3
)
≈ 0.340721 v7 = 2 +

√
3

u6 = 0 v6 = 3

u5 = 1 v5 ≈ 1.118278

u4 ≈ 0.268219 v4 ≈ 1.032622

u3 =
(
3−

√
5
)
/2 ≈ 0.381966 v3 = 1

u2 = 1 v2 ≈ 0.894232

u1 ≈ 0.387007 v1 ≈ 0.770719

u0 = 2−
√
3 ≈ 0.267949 v0 = 1

Table 2: Numerical values corresponding to marked points in Figure 4.

tangent in W , while P4 is a branching point, since then both Ku and Kv

vanish.

To show the statement, regarding the first two columns of Table 1, it

now suffices to take intermediate values of v̄ in the corresponding range and

look for the number of solutions of K(u, v̄) in (0, 1). This is a standard

computation for polynomials in one variable and will be not detailed.

Lemma 4. The number of symmetric periodic solutions of system (3)-(6)

with two points in Γ+ is as indicated in last column of Table 1.

Moreover the two branches of symmetric periodic solutions with exactly 2

points in the plane Γ+ are as indicated in Theorem 1.

Proof. To guarantee that a solution of equations (3)–(6) corresponds to

a symmetric periodic orbit with only two points in Γ+, we have to apply
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Lemma 2 to all the solutions of Lemma 3. We start by checking the sign of

µ for such solutions.

From eqs. (16) and (17), we see that the common factors of terms of

degree zero in µ are u(v − 1)(v + 1) (v2 − 4v + 1) . Thus when one follows

a branch of solutions shown in Figure 4, the sign of µ only can change if

one of these factors vanishes. Accordingly, in the rectangle W the value of

µ only can vanish in the line v = 1. This happens for instance in the point

P0 with coordinates (u0, v0) = (2 −
√
3, 1) that corresponds with the only

periodic orbit already analyzed for µ = 0. However, it must be emphasized

that v−1 is also a common factor of third degree terms in µ of eqs. (16) and

(17). In fact, it is not difficult to see that if we denote by µ(u) the value of

µ along the branch of solutions from P3 to P5 we have limu→u+
3
µ(u) = −∞,

and limu→u−
5
µ(u) = −∞. Analogously, it can be shown for the branch from

P3 to P4 that limu→u−
3
µ(u) = +∞, being µ positive for all the branch from

P3 to P6. Then by applying Lemma 2 we discard this branch for counting

periodic solutions.

In short, except the branch from P3 to P6, the sign of µ is consistent

with Lemma 2. To finish the first statement it remains to show the last

inequalities in S1 and S2, depending on the sign of µ.

To check the last inequality in S1 we start by looking for possible values

of (u, v) in the branches P0-P7 or P3-P5 where such inequality is not true any

longer, that is

(u− 1)2(v − 1)µ2 − (v + 1)
[
3− (v − 2)2

]
= 0. (21)

Using the above expression to simplify (16) and (17) and removing trivial
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non-vanishing factors, we obtain the two conditions

(−1 + u)u(1 + 3v − 3v2 + v3)µ− v(−1 + 4v − 4v3 + v4) = 0,

(−1 + u)(−5 + 16v − 8v3 + v4)µ+ (−5 + u)(−1 + 4v − 4v3 + v4) = 0.

Eliminating µ between these two equations and between the first of them

and equation (21), we get from the polynomial resultants, removing again

trivial non-vanishing factors, the conditions

h1(u, v) = (−1 + v)3v2(1 + v)(1− 4v + v2) + u2(1 + 3v − 3v2 + v3)2 = 0,

h2(u, v) = u(u− 5)(1 + 3v − 3v2 + v3) + v(−5 + 16v − 8v3 + v4) = 0.

Computing now the polynomial resultant of h1 and h2 with respect to u, we

obtain a polynomial in v whose only roots in the interval (1, 2+
√
3) are v = 2

and v ≈ 1.267616. Going back with these values to h1 = 0 and h2 = 0, we

obtain the points (u, v) = (−2, 2) and (u, v) ≈ (0.205425, 1.267616). Clearly,

only the last point is in W being in fact on the discarded branch P3-P6. The

conclusion is that, by continuity, the sign of the left hand side of (21) does

not change along the branches P0-P7 and P3-P5.

Since at P0 the left hand side of (21) is equal to −4, we can assure that

the last inequality in S1 holds for all the points of the branch P0-P7. We take

now an arbitrary point of the branch P3-P5 to check that such inequality is

also fulfilled along the branch. We select u = 1/2 and compute the values of

v ≈ 1.011567 and µ ≈ −23.460760 for the corresponding point in the branch,

so that the value of the left hand side of (21) is approximately −2.477814.

Then we conclude from Lemma 2 that all the points of the branches P0-P7

and P3-P5 correspond to periodic orbits of system (3)-(6).
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It remains to show that the same is true for the branch P0-P2, where

the sign of µ is positive, and now we must check the last inequality in S2.

We start by looking for possible values of (u, v) in the branch where such

inequality is not true any longer, that is

(u− 1)2(v − 1)v2µ2 − u2(v + 1)
[
3− (v − 2)2

]
= 0. (22)

Using the above expression to simplify (16) and (17) and removing trivial

non-vanishing factors, we now obtain the two conditions

(1− 5u)(1− v2)(1− 4v + v2) + µ(1− u)(1− 8v + 16v3 − 5v4) = 0,

u2(1− v2)(1− 4v + v2)− µ(1− u)v2(1− 3v + 3v2 + v3) = 0.

Eliminating µ between these two equations and between the first of them

and equation (22), we get from the polynomial resultants, removing again

trivial non-vanishing factors, the conditions

h̃1(u, v) = u2(1− v)3(1 + v)(1− 4v + v2) + v2(1− 3v + 3v2 + v3)2 = 0,

h̃2(u, v) = (1− 5u)v2(1− 3v + 3v2 + v3) + u2(1− 8v + 16v3 − 5v4) = 0.

Computing now the polynomial resultant of h̃1 and h̃2 with respect to u, we

obtain a polynomial in v whose only roots in the interval (2−
√
3, 1) are v =

1/2 and v ≈ 0.788883. Going back with these values to h̃1 = 0 and h̃2 = 0,

we obtain the points (u, v) = (−1/2, 1/2) and (u, v) ≈ (4.867950, 0.788883).

Clearly, no point is in W and, by continuity, the sign of the left hand side of

(22) does not change along the branch P0-P2.

Since at P0 the left hand side of (22) is equal to −4(2 −
√
3)2, we can

assure that the last inequality in S2 holds for all the points of the branch
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P0-P2. We then conclude from Lemma 2 that all the points of the branch

P0-P2 correspond to periodic orbits of system (3)-(6).

Now, to count the number of periodic orbits, we only have to remark that

the point P0 corresponds with the only periodic orbit detected for µ = 0. This

explains that in passing such point the number of periodic orbits does not

change. Thus the first statement follows.

To show the second statement, we first consider the branch from P3 to

P5. By considering the common factors of the coefficients of third degree in

(16) and (17), we conclude that in both ends the value of µ tends to −∞. By

continuity the value of µ(u) reaches a maximum negative value. This value

corresponds with µSN1, which can be computed by standard procedures with

as much accuracy as desired.

The value of µ in P1 is positive, being also positive for all points from

P0 to P2. Furthermore, reasoning as before, limu→u−
2
µ(u) = +∞. From P0

to P7, the value of µ is negative and, considering the common factors of the

coefficients of zero degree in (16) and (17), it vanishes in both endpoints. By

continuity the value of µ reaches a minimum negative value corresponding

to µSN2 and the statement follows.

From Lemma 3 and Lemma 4, Theorem 1 is shown with the exception

on the stability assertions about the periodic orbits. It suffices to compute

the trace and determinant of the above product of matrix exponentials and

apply Lemma 1. After tedious but standard computations, the stability of

the periodic orbits can be obtained and the proof of Theorem 1 is complete.
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3. Computations leading to the first harmonic bifurcation diagram

Before applying the describing function method to our system (3)-(6),

we recall that under their assumptions, if σ(t) ≈ σ1 sinωt then ϕ(σ(t)) ≈
σ1N(σ1) sinωt, where N(.) is the describing function of the normalized satu-

ration representing the nonlinear gain factor for the first harmonic amplitude,

that is N(σ1) = 1 for 0 < σ1 < 1, and

N(σ1) =
1

πσ1

∫ 2π

0

ϕ(σ1 sin θ) sin θ dθ =
2

π

(
arcsin

(
1

σ1

)
+

1

σ1

√
1− 1

σ2
1

)

(23)

for σ1 ≥ 1. Thus N(σ1) is decreasing for σ1 > 1 and tends to zero when

σ1 → ∞. Then the pair (σ1, ω) corresponds with a symmetric periodic orbit

of the system when the determining equation

1 +N(σ1)G(jω) = 0 (24)

is satisfied. Here G(s) = cT (A−sI)−1b is the transfer function of the system.

Effectively, after the formal identification s = d/dt we can write system (1) in

the form (A−sI)x+bϕ(cTx) = 0. If we apply it the 1×n matrix polynomial

differential operator cT adj(A−sI), where adj(A−sI)(A−sI) = det(A−sI)I,

we see that

cT adj(A− sI)(A− sI)x = cT det(A− sI)Ix = det(A− sI)cTx,

and then we arrive at the scalar differential equation in the output σ

det(A− sI)σ(t) + cT adj(A− sI)bϕ(σ(t)) = 0. (25)

Thus equation (24) arises by assuming jω to be a root of the characteristic

polynomial of the scalar linear substitution differential equation that results
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by substituting in (25) the nonlinearity ϕ(σ(t)) by N(σ1)σ(t), see [3, 18] for

more details. Note that in our case cTx(t) = x(t), so that for every solu-

tion pair (σ1, ω) of (24) the describing function method predicts an elliptic

periodic orbit given by

x(t) ≈ σ1 sinωt,

y(t) ≈ 6σ1 [(µ+ 1)N(σ1)− 1] sinωt− ωσ1 cosωt, (26)

z(t) ≈ σ1

[
11(µ2 − 1)N(σ1) + 11− ω2

]
sinωt− 6σ1ω [(µ+ 1)N(σ1)− 1] cosωt,

where we have used ϕ(cTx(t)) ≈ σ1N(σ1) sinωt and (3)-(6).

Typically the determining equation (24) is solved graphically by plotting

in the complex plane the curve G(jω) for ω > 0 and the set corresponding to

−1/N(σ1), which in our case is the interval (−∞,−1], and looking for pos-

sible intersections of both sets. Here we will solve the determining equation

(24) in an analytical way as follows. We introduce for any σ1 ≥ 1 a negative

auxiliary variable r = r(σ1) = 1−1/N(σ1) ≤ 0, and solve instead of (24) the

equivalent equation

r = 1 +G(jω) =
det
[
sI− (A+ bcT )

]

det (sI−A)

∣∣∣∣∣
s=jω

, (27)

where the last equality comes from a corollary of the Schur’s lemma, see [2].

Now we give a proof of Proposition 1, and next we describe the computations

needed to get AHB, the harmonic balance amplitude approximation for the

point (1, y0, z0), to be compared with the exact value AC .

3.1. Proof of Proposition 1

Substituting A, b and c in equation (27), to predict approximately the

different periodic orbits, we must look for solutions with r ≤ 0 and ω > 0 of
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the equation

r =
s3 − 6µs2 + 11µ2s− 6µ3

s3 + 6s2 + 11s+ 6

∣∣∣∣
s=jω

=
6µ(ω2 − µ2) + jω(11µ2 − ω2)

6(1− ω2) + jω(11− ω2)
,

or, after separating real and imaginary parts, of the system

r(1− ω2) = µ(ω2 − µ2), rω(11− ω2) = ω(11µ2 − ω2). (28)

Eliminating r, we arrive at a quadratic in Ω = ω2, namely

(1 + µ)Ω2 − (µ3 + 11µ2 + 11µ+ 1)Ω + 11µ2(1 + µ) = 0. (29)

That is, after eliminating the common factor (1+µ) we get Ω2− (µ2+10µ+

1)Ω+ 11µ2 = 0. This equation has positive solutions when µ2+10µ+1 > 0,

and the discriminant µ4 + 20µ3 + 58µ2 + 20µ + 1 ≥ 0. So, we get the two

values Ω± =
(
µ2 + 10µ+ 1±

√
µ4 + 20µ3 + 58µ2 + 20µ+ 1

)
/2, whenever

the above restrictions are satisfied. These restrictions lead to the conditions

µ /∈
(
−5− 2

√
6,−5 + 2

√
6
)
≈ (−9.898979,−.101021) and µ /∈

(
µ, µ

)
, where

µ = −5−
√
11−

√
5
(
7 + 2

√
11
)
, µ = −5−

√
11 +

√
5
(
7 + 2

√
11
)
,

which is approximately the interval (−16.5729,−0.06034), so that it is enough

to consider only this last one.

We must check if the corresponding values of r are negative. By elimi-

nating Ω = ω2 in (28) we arrive at 10r2− (µ3 +11µ2− 11µ− 1)r− 10µ3 = 0,

with roots

r± =
(µ− 1)(µ2 + 12µ+ 1)± |µ+ 1|

√
µ4 + 20µ3 + 58µ2 + 20µ+ 1

20
. (30)

The expression under the square root is the same than for Ω±. Thus for

µ < 0 both roots are negative provided that µ2+2
(
5 +

√
11
)
µ+1 > 0, (this
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also implies µ2 + 12µ + 1 > 0 and µ2 + 2
(
5−

√
11
)
µ + 1 > 0) that is for

µ /∈
(
µ, µ

)
. However, for µ = 0 the root r+ vanishes, and for µ > 0 only

the root r− turns out to be negative. Note that the vanishing of r should be

related with N(σ1) = 1, that is we have for the amplitude σ1 = 1.

In short the harmonic balance method predict two periodic orbits for

µ < µ and for µ < µ < 0. Consequently the analysis predicts saddle-node

bifurcations of periodic orbits at such two negative values of µ. At µ = 0,

it is also predicted the disappearance of one periodic orbit (in some kind of

heteroclinic connection, since then Ω− = 0). For µ > 0, only one periodic

orbit remains, namely the associated to the pair (r−,Ω+).

The stability of the predicted limit cycles can be deduced in several ways,

see [17] or [18]. For the symmetric periodic orbits predicted by harmonic

balance in R3, the notions of axial stability and radial stability are useful, see

[18]. Roughly speaking, the axial stability is associated to the third root ρ of

the characteristic polynomial corresponding to the linear substitution problem

for every solution (σ1, ω) of the determining equation. Such polynomial is in

our case

det(sI−A) +N(σ1) [det(sI−Bµ)− det(sI−A)] ,

which for every solution (σ1, ω) of the determining equation has the roots

±jω and ρ. Thus we can deduce easily from the coefficient of s2 in

s3 + 6s2 + 11s+ 6− 1

1− r

[
6(µ+ 1)s2 + 11(µ2 − 1)s+ 6(µ3 + 1)

]

that ρ = 6(µ + r)/(1 − r). Since r is negative by definition, sign(ρ) =

sign(µ + r) and the axial stability can be guaranteed always for µ < 0.
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However for µ > 0 the axial stability can be lost. In fact from (30) and using

r−, we can write

µ+ r− =
2µ(µ+ 1)(µ− 1)

µ2 + 10µ− 1 +
√

µ4 + 20µ3 + 58µ2 + 20µ+ 1
,

and this expression becomes positive for µ > 1. Therefore the predicted

symmetric periodic orbit for µ > 1 is unstable.

The radial stability can be characterized by computing for every solution

of the determining equation the sign of the following expression:

d

dω
ImG(jω) =

d

dω
Im [1 +G(jω)] =

d

dω
Im

(
6µ(ω2 − µ2) + jω(11µ2 − ω2)

6(1− ω2) + jω(11− ω2)

)
,

and it is required to have positive sign for stable cases. This is equivalent to

the so-called Loeb criterion, see [17]. We obtain so for (d/dω) ImG(jω) the

expression

d

dω

(
6ω

(1− ω2)(11µ2 − ω2)− µ(ω2 − µ2)(11− ω2)

36(1− ω2)2 + ω2(11− ω2)2

)
=

d

dω

(
6ω

num(ω)

den(ω)

)
,

where the numerator num(ω) is exactly the left hand side of equation (29)

determining the value of ω for the periodic orbit. Denoting such value for ω∗

and using that num(ω∗) = 0, we see that

d

dω

(
6ω

num(ω)

den(ω)

)∣∣∣∣
ω=ω∗

= 6ω∗
d

dω

(
num(ω)

den(ω)

)∣∣∣∣
ω=ω∗

=
6ω∗ num

′(ω∗)

den(ω∗)
.

Finally we compute num′(ω) = 2(1+µ)ω [2ω2 − (µ2 + 10µ+ 1)] , and recall-

ing the expression for Ω± and the stability criterion, we deduce that for the

different values of µ only one periodic orbit is radially stable, namely the

corresponding to Ω− when µ < µ ≈ −16.572910, and the corresponding to

Ω+ when µ > µ ≈ −0.060339 (the one that persists for µ > 0).

The proposition is shown.
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3.2. Computation of AHB

For the computation of AHB it suffices to use the approximation to the

point (1, yHB, zHB) given by (26) when we assume x = 1 and ẋ > 0, that is

sinωt = 1/σ1 and cosωt =
√
1− 1/σ2

1. Thus

yHB ≈ 6 [(µ+ 1)N(σ1)− 1]− ωσ1

√
1− 1/σ2

1,

zHB ≈ 11(µ2 − 1)N(σ1) + 11− ω2 − 6σ1ω [(µ+ 1)N(σ1)− 1]
√

1− 1/σ2
1.

To obtain the value of σ1 from the value of r given in (30), which involves

basically the inversion of function N(σ1), it turns out more convenient to

work with the saturation angle θ satisfying σ1 sin(θ) = 1 with θ ∈ (0, π/2].

Thus we write
1

1− r
= N(σ1) =

2

π
(θ + sin θ cos θ).

Then, after solving numerically the above equation for θ, we get finally some

expressions independent on σ1, namely

yHB ≈ 6
µ+ r

1− r
− ω

cos θ

sin θ
,

zHB ≈ 11
µ2 − r

1− r
− ω2 − 6ω

(µ+ r) cos θ

(1− r) sin θ
.

4. Realization in the Chua’s circuit

We will see that system (3)–(6) is realized by certain set of parameters in

the celebrated Chua’s oscillator, see [11] and references therein. The dimen-

sionless equations of the Chua’s oscillator are

Ẋ = α [Y − bX + (b− a) sat(X)]

Ẏ = X − Y + Z, (31)

Ż = −βY − γZ.
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i αi βi γi ai bi µi

1 0.0998711 0.0536638 2.04857 9.29757 29.5524 −0.662854

2 0.159613 1.26329 3.66348 28.8122 8.37350 −1.54372

3 −2.64515 0.213248 0.736936 0.775919 −1.61166 0.0525804

Table 3: Numerical values of parameters where Chua’s circuit realizes system (3)–(6).

See [23] or again [11] for the meaning of different parameters. This system

can be written in the form used for system (3)–(6) by the linear change of

variables

X = x, αY = −(1 + γ)x− y, αZ = (γ2 − β)x+ γy + z, (32)

well defined for α 6= 0.

To show that this oscillator realizes system (3)–(6) it suffices to see that

the equality between the linear invariants of the corresponding matrices is

possible, namely that the equations

6µ = −1− aα− γ, (33)

11µ2 = −α + β + γ + aα(1 + γ), (34)

6µ3 = αγ − aα(β + γ), (35)

−6 = −1− bα− γ, (36)

11 = −α + β + γ + bα(1 + γ), (37)

−6 = αγ − bα(β + γ), (38)

are solvable. We can assume a 6= b and µ 6= −1 to exclude the purely linear

cases. Instead of equations (36)-(38) we will use their respective differences
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with equations (33)-(35), namely

6(µ+ 1) = (b− a)α, (39)

11(µ2 − 1) = (a− b)(1 + γ)α, (40)

6(µ3 + 1) = (b− a)(β + γ)α, (41)

and assume in the sequel α 6= 0. From the division between (40) and (39),

we get γ = (5 − 11µ)/6, and then by dividing (41) and (39) we obtain

β = (6µ2 + 5µ + 1)/6. Since from (39) we can write b = a + 6(µ + 1)/α,

it suffices to bring these expressions to equations (33)-(35) and solve for

variables a, α and µ. Now from (33) we get aα = −(11+25µ)/6 and then from

(34) we obtain α = −5(17µ2 + 38µ+ 17)/36. Finally by substituting in (35)

we get the cubic 539µ3 +1161µ2 +489µ− 29 = 0, which has three real roots

µi, i = 1, 3. In short we have shown that the Chua’s circuit realizes system

(3)–(6) in the three different set of dimensionless parameters of Table 3.

From the application of Theorem 1 we now deduce that in the first

two cases we must expect global asymptotic stability for the origin, while

in the third case, as 0 < µ3 < µ∗, the origin is a repeller and there ex-

ists a stable limit cycle. In the last case, by using (18) we get (u, v) ≈
(0.273356, 0.891417) and then the flight times t = − log u ≈ 1.29698 and

T = −(log v)/µ ≈ 2.18605. Furthermore from (14)-(15), we can assure that

such Chua’s oscillator has one stable periodic orbit passing through the point

(1, y0, z0) = (1,−1.55048, 0.491692).
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