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Abstract. For the family of scalar Abel-like equations x′ = A(t)xn +

bB(t)xm, where A(t) =
∑k
l=1 al sinil(t) cosjl(t), B(t) = sinib(t) cosib(t),

al, b ∈ R, n,m, k, il, jl, ib, jb ∈ Z+, n,m ≥ 2, and k ≥ 1, we characterize
the existence of non-trivial limit cycles (periodic solutions that are iso-
lated in the set of periodic solutions different from the trivial x(t) ≡ 0)
in terms of n,m, k, il, jl, ib, jb.

1. Introduction

Consider the generalized Abel equation

(1.1) x′ =
n∑

l=1

al(t)x
l,

where al(t), 1 ≤ l ≤ n are trigonometric polynomials. We shall say that
a periodic solution of (1.1) is a limit cycle if it is isolated in the set of all
periodic solutions of (1.1), and that the origin of (1.1) is a centre if there
exists a punctured neighbourhood of it such that every orbit contained in
that neighbourhood is periodic.

The problem of bounding the number of limit cycles of (1.1) in terms only
of n turned out to be impossible since Lins Neto [16] proved that, for a fixed
n ≥ 3, there are functions al(t) such that equation (1.1) has k limit cycles for
all k. Consequently, a new problem arose consisting of bounding the number
of limit cycles of (1.1), but now depending on n and on the degrees of al(t),
1 ≤ l ≤ n. This problem has been proposed by several authors, including
C. Pugh and A. Lins Neto [16] and Yu. Ilyashenko [15]. Besides its own
intrinsic interest, it is strongly related to Hilbert’s 16th problem since some
planar systems can be transformed into an equation of the form (1.1) (see
[16] for more details on the quadratic case and [10, 13, 14] for other planar
systems).

Nevertheless, bounding the number of limit cycles of equation (1.1) has
turned out to be very hard, and even in the simple case n = 3, a1(t) ≡ 0,
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and a2(t), a3(t) of degree one, the problem is unsolved. There are only some
partial results (see, for instance, [3, 6]).

In general, the usual way to study this problem is to consider a certain
family of generalized Abel equations. The Hilbert number of this family is
the maximum of the number of limit cycles that the equations of the family
can have.

This problem has been extensively studied, mainly for the classical Abel
equation x′ = A(t)x3+B(t)x2+C(t)x, obtaining that when A(t) orB(t) have
definite sign then the equation has at most three limit cycles (see [12, 18]).
These results have been extended to (1.1), usually imposing that some of
the functions al(t) do not change sign (see for instance [1, 11, 17, 20]). For
the case where all the al may change sign, see [6, 7].

Thus, one of the aims of this paper is study the role of the trigonometric
monomials in the generation of non-trivial limit cycles of a specific case of
equation (1.1) assuming conditions only on the exponents of sin t, cos t, and
x. In particular, for every n,m ≥ 2, k ∈ N, and il, jl, ib, jb ∈ Z+ = {0, 1, . . . },
1 ≤ l ≤ k, we study the families of generalized Abel equations of the form

(1.2) x′ =

(
k∑

l=1

al sin
il(t) cosjl(t)

)
xn + b sinib(t) cosjb(t)xm

where a1, . . . , ak, b ∈ R.
Denote i = (i1, . . . , ik, ib) and j = (j1, . . . , jk, jb), and define the Hilbert

number H(n,m, i, j) of (1.2) —H when no confusion is possible— as the
supremum (it could be infinite) over (a1, . . . , ak, b) ∈ Rk+1 of the number of
limit cycles of (1.2).

With this definition, H = 0 if and only if every bounded solution of (1.2)
is periodic for every (a1, . . . , ak, b), while H = 1 if and only if the solution
x(t) ≡ 0 is the only periodic solution of (1.2) for every (a1, . . . , ak, b), except
for some (a1, . . . , ak, b) for which the origin is a centre.

To simplify the notation, letAl(t) = sinil(t) cosjl(t), B(t) = sinib(t) cosjb(t),
and define the following sets

S = {sini(t) cosj(t) : i odd, j even}, E = {sini(t) cosj(t) : i, j even},

C = {sini(t) cosj(t) : i even, j odd}, O = {sini(t) cosj(t) : i, j odd}.
In [2, Theorem 3.3] we proved the following result:

Theorem 1.1. Consider the family of equations

(1.3)
x′ = (a1A1(t) + a2A2(t))xn + bB(t)xm,

(i1 − i2)(j1 − j2) ≤ 0, n,m ≥ 2,

where a1, a2, b ∈ R. Then

(1) H = 0 if and only if A1, A2, B ∈ S ∪ O, or A1, A2, B ∈ C ∪ O.
(2) H = 1 if and only if one of the following statements holds:
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(a) There exists a unique l such that Al ∈ E, and (1.3) has no limit
cycles for al = 0, or B ∈ E and (1.3) has no limit cycles for
b = 0.

(b) H 6= 0, Al 6∈ E for any 1 ≤ l ≤ 2, B 6∈ E, and neither A1, A2 ∈
C, B ∈ S, nor A1, A2 ∈ S, B ∈ C.

The aim of this paper is to extend this result to the more general fam-
ily (1.2). Hence, we will prove the following characterizations for the family
of differential equations (1.2) to have H = 0 and H = 1.

Theorem 1.2. Consider the family of equations (1.2). Then

(1) H = 0 if and only if A1, . . . , Ak, B ∈ S∪O, or A1, . . . , Ak, B ∈ C∪O.
(2) H = 1 if and only if one of the following statements holds:

(a) There exists a unique l such that Al ∈ E, and (1.2) has no limit
cycles for al = 0, or B ∈ E and (1.2) has no limit cycles for
b = 0.

(b) A1 ∈ S, A2, . . . , Ak ∈ C ∪ O, and B ∈ C, reordering the Al,
1 ≤ l ≤ k, if necessary.

(c) A1 ∈ C, A2, . . . , Ak ∈ S ∪ O, and B ∈ S, reordering the Al,
1 ≤ l ≤ k, if necessary.

(d) A1 ∈ S, A2 ∈ C, A3, . . . , Ak ∈ O, and B ∈ O, reordering the
Al, 1 ≤ l ≤ k, if necessary. In the case k = 2, this statement
reduces to A1 ∈ S, A2 ∈ C, and B ∈ O.

Theorem 1.2 is proved in the following sections. The proof will be split
into two main parts.

First, in Section 2 we obtain upper bounds for the number of limit cycles.
This covers the sufficiency on the two statements of the theorem. Concretely,
Proposition 2.2 covers (1), (2a), (2b), and (2c). Proposition 2.3 covers (2d).
Moreover, this result extends the ones obtained in [7].

Second, in Section 4, for any of the remaining cases we obtain a limit cycle
different from x(t) ≡ 0 by a Hopf bifurcation. This proves the necessary
part of the two statements of the theorem. Proposition 4.1 proves that the
remaining cases, reordering {A1, . . . , Ak} if necessary, are:

(I.1) A1, A2 ∈ E .
(I.2) A1, B ∈ E .
(I.3) A1 ∈ E , A2 ∈ C (resp. S), and B ∈ S (resp. C).
(I.4) A1 ∈ E , A2 ∈ S, A3 ∈ C, and B ∈ O.
(I.5) A1, A2 ∈ C (resp. S) and B ∈ S (resp. C).
(I.6) A1 ∈ S, A2 ∈ C, A3 ∈ S ∪ C, and B ∈ O.

Proposition 4.2 shows that in every of the cases above, one can get an
additional limit cycle by a Hopf bifurcation of the solution x(t) ≡ 0.

Section 3 between the two parts will be devoted to obtaining some auxil-
iary results to compute the Hopf bifurcation using information provided by
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the moment problem. These new techniques have allowed to improve the re-
sults in [2], in particular, removing the technical condition (i1−i2)(j1−j2) ≤
0.

2. Upper bounds on the number of limit cycles

We begin this section with a definition that will be used recurrently
throughout the paper.

Definition 2.1. Consider the differential equation x′ = f(t, x). We say
that a function α(t) is an upper-solution of this equation provided that
α′(t) ≥ f(t, α(t)). We say that a function β(t) is a lower-solution of this
equation provided that β′(t) ≤ f(t, β(t)).

Most of the results we need on upper bounds are already proved in [2, 7].
We shall recall these results and complete them with a new one.

The following proposition covers the results known already.

Proposition 2.2. Consider equation (1.2). Then

(1) [2, Proposition 2.1]. If A1, . . . , Ak, B ∈ S ∪ O, or A1, . . . , Ak, B ∈
C ∪ O, then (1.2) has a centre at x = 0.

(2) [2, Proposition 2.2]. Assume that either there exists l ∈ {1, . . . , k}
such that Al ∈ E and if al = 0 then (1.2) has a centre at x(t) ≡ 0 or
that B ∈ E and if b = 0 then (1.2) has a centre at x(t) ≡ 0. Then
x(t) ≡ 0 is the only limit cycle of (1.2) for every al, b 6= 0.

(3) [7, Theorem 2.4] Suppose that A1 ∈ S (resp. A1 ∈ C), A2, . . . , Ak ∈
C ∪ O, and B ∈ C (resp. A2, . . . , Ak ∈ S ∪ O, and B ∈ S). Then
x(t) ≡ 0 is the only possible limit cycle of (1.2). Moreover, for
a1, . . . , ak, b 6= 0, (1.2) has no centre at x(t) ≡ 0.

(4) [7, Theorem 2.8] Suppose that k = 2, A1 ∈ S (resp. A2 ∈ C), A2 ∈ C
(resp. A2 ∈ S), B ∈ O. Then x(t) ≡ 0 is the only possible limit
cycle of (1.2).

Following the above proposition, the remaining case to be proved for the
sufficiency of the conditions in Theorem 1.2 is the following.

Proposition 2.3. Suppose that A1 ∈ S, A2 ∈ C, A3, . . . , Ak ∈ O, and
B ∈ O. Then x(t) ≡ 0 is the only limit cycle of (1.2) for a1 6= 0, a2 6= 0,
and b 6= 0. If a1, a2, or b are null, then (1.2) has a centre at x(t) ≡ 0.

Proof. First, let us prove last sentence of the statement. If a1 = 0 or a2 = 0,
then by Proposition 2.2(1), Eq. (1.2) has a centre at x(t) ≡ 0. If b = 0,
then (1.2) is an equation in separate variables, and by direct integration one
obtains that (1.2) has a centre at x(t) ≡ 0.

The changes of variables t → −t, t → π ± t allow one to choose the
signs of a1 and a2. Assume that a1, a2 < 0 and (m − n)b > 0, with the
case (m − n)b < 0 being analogous. For brevity, we shall write h(t) =
a3A3(t) + . . .+ akAk(t). We recall that h(t− kπ/2) is odd for every k ∈ Z,
since A3, A4, . . . Ak ∈ O.
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Consider the one-parameter family

(2.4) x′ = (a1A1(t) + λa2A2(t) + h(t))xn + bB(t)xm, 0 ≤ λ ≤ 1.

For λ = 0, (2.4) has a centre at x(t) ≡ 0. We shall prove that x(t) ≡ 0 is
the only periodic solution of (2.4) for λ = 1.

Denote by u(t, x, λ0) the solution of (2.4) determined by λ = λ0 and
u(0, x, λ0) = x. The proposition will be proved in two steps. In the first
we shall prove that, if u(t, x, λ) is defined for all t ∈ [−π, π] and λ ∈ [0, 1]
with x > 0, then u(−π, x, 1) > u(π, x, 1). In the second, we shall prove
that, if u(t, x, 1) is defined for all t ∈ [−π, π], then u(t, x, λ) is defined for all
t ∈ [−π, π] and λ ∈ [0, 1]. The inequality u(−π, x, 1) > u(π, x, 1) obtained in
the first part shows that (2.4) has no positive periodic solutions for λ = 1.
By the change of variables x → −x, we conclude that it has no negative
periodic solutions. Thus, x(t) ≡ 0 is the only limit cycle.

Firstly, let us prove that, if u(t, x, λ) is defined for all t ∈ [−π, π] and
λ ∈ [0, 1], then u(−π, x, 1) > u(π, x, 1). In particular, we shall prove that
for all x > 0

∂u

∂λ
(π, x, λ) < 0 <

∂u

∂λ
(−π, x, λ).

Since u(−π, x, 0) = u(π, x, 0) due to hypotheses, then u(−π, x, 1) > u(π, x, 1).
By the change of variables t→ −t, and taking into account that A1, h,B

are odd and A2 is even,

∂u

∂λ
(−π, x, λ) = −∂u

∂λ
(π, x,−λ).

Therefore, it is sufficient to prove that ∂u(π, x, λ)/∂λ < 0 for all x > 0,
λ ∈ [−1, 1].

Take x > 0, λ ∈ [−1, 1], and denote u(t) = u(t, x, λ). Deriving (2.4) with
respect to λ and integrating over [0, π], one obtains

∂u

∂λ
(π) =

∫ π

0
a2A2(t)un(t)e

∫ π
t n

u′
u

+(m−n)bB(s)um−1(s) ds dt

= un(π)

∫ π

0
a2A2(t)e

∫ π
t (m−n)bB(s)um−1(s)dsdt.

Since un(π) > 0 and A2(t−π/2) is odd, the sign of ∂u
∂λ(π) is the same as the

sign of
∫ π/2

0
a2A2(t)

(
e
∫ π
t (m−n)bB(s)um−1(s)ds − e

∫ π
π−t(m−n)bB(s)um−1(s)ds

)
dt.

Now we shall prove that the expression in parentheses is positive for all
t ∈ (0, π/2). Then, as a2 < 0, it will follow that ∂u

∂λ(π) < 0.
This is equivalent to proving that

∫ π

t
B(s)um−1(s)ds−

∫ π

π−t
B(s)um−1(s)ds > 0,
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or equivalently

∫ π−t

t
B(s)um−1(s)ds

=

∫ π/2

t
B(s)um−1(s)ds+

∫ π−t

π/2
B(s)um−1(s)ds > 0.

As B(t− π/2) is odd, the above integrals can be rewritten as

∫ π/2

t
B(s)

(
um−1(s)− um−1(π − s)

)
ds.

To conclude, we shall prove that u(s) > u(π − s) for all s ∈ (0, π/2).
Recall that, due to the parities of Al and B, the function u(π − t) is the
solution of

x′ = (−a1A1(t) + λa2A2(t) + h(t))xn + bB(t)xm.

determined by x(π/2) = u(π/2). Since a1A1(t)+a1A1(π−t) = 2a1A1(t) < 0
for all t ∈ (0, π/2), u(π− t) is an upper-solution of (1.2) that coincides with
u(t) at t = π/2. Therefore u(t) > u(π − t) for all t ∈ (0, π/2) (note that
reversing the time an upper-solution becomes a lower-solution).

Finally, we must prove that if u(t, x, 1) is defined in [−π, π], then u(t, x, λ)
is defined for all t ∈ [−π, π], λ ∈ [0, 1].

For all λ ∈ [0, 1], u(t, x, 1) is a lower-solution of (2.4) in (−π
2 , 0). For

each fixed λ, u(−π − t, x, λ) is a lower-solution of (2.4) in (−π,−π
2 ) and

u(−t, x, λ) is an upper-solution of (2.4) in (0, π2 ). Therefore u(t, x, λ) is
defined in [−π, π2 ]. Moreover, since u(t, x, 0) is symmetric with respect to
t = 0, it is defined in [−π, π]. Let us define

I =
{
λ0 ∈ [0, 1] : u(t, x, λ) ≤ u(t, x, 0), t ∈

[π
2
, π
]
, 0 ≤ λ < λ0

}
.

If I = [0, 1], then 0 < u(t, x, λ) ≤ u(t, x, 0), and u(t, x, λ) is defined for all
t ∈ [π2 , π], λ ∈ I.

We shall prove that I is open and closed, and since 0 ∈ I then I = [0, 1].
If λ0 ∈ I, then by continuity of the solutions with respect to the param-

eters, u(t, x, λ) is defined in [π2 , π] for all λ > λ0 close enough, and, since
∂u
∂λ(π, x, λ) < 0, u(π, x, λ) ≤ u(π, x, λ0) ≤ u(π, x, 0) for all λ > λ0 close
enough. Since u(t, x, 0) is a lower-solution of (2.4) in [π2 , π], one obtains
u(t, x, λ) ≤ u(t, x, 0) for all t ∈ [π2 , π]. Therefore λ ∈ I and I is open.

Let λn → λ0, n → ∞, λn ∈ I. For all 0 ≤ λ < λ0 and t belonging to
the interval of definition of u(t, x, λ0), one has λ < λn, for some n large
enough. Since λn ∈ I, u(t, x, λ) ≤ u(t, x, 0). Therefore λ0 ∈ I and I is
closed. Consequently, I = [0, 1] and u(t, x, λ) is defined for all t ∈ [−π, π]
and all λ ∈ [0, 1], concluding the proof.

�
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3. Hopf bifurcation and the Moment Problem

In this section we introduce the basic notation and results for the Hopf
bifurcations that we will need in the following final section to generate limit
cycles for equation (1.2).

If u(t, x, a1, . . . , ak, b) is the solution of (1.2) determined by the initial
condition u(0, x, , a1, . . . , ak, b) = x, then

u(t, x, a1, . . . , ak, b) =
∞∑

j=0

υj(t, a1, . . . , ak, b)x
j .

The following Lemma describes the Hopf bifurcations we shall be using.

Lemma 3.1 ([2, Lemma 3.2]). Consider Eq. (1.2). Let a1, a2, . . . , ak, b ∈ R,
and j∗ > 1 be such that the following conditions hold:

(i) υj(2π, a, a2, . . . , ak, b) = 0 for every 1 < j < j∗ and every a ∈ R.
(ii) υj∗(2π, a1, a2, . . . , b) < 0 < υj∗(2π, ā1, a2, . . . , b) for every a1 < a1 <

ā1.
(iii) x(t) ≡ 0 is a limit cycle of (1.2) for a1, a2, . . . , ak, b.

Then there exists a∗1 ∈ R such that Eq. (1.2) has a positive limit cycle for
a∗1, a2, . . . , ak, b.

The same result holds replacing a1 < a1 < ā1 by a1 > a1 > ā1. The result
is also valid if we replace the role played by a1 by al, l = 2, . . . , k or by b.

The structure of the coefficients υj(t) = υj(t, , a1, . . . , ak, b) is determined

by the following result of [2, Appendix A], in which we set A =
∑k

l=1Al,
na = n. Before stating this result, we shall define some notation. For any
functions C,D,E, we denote

IC(t) =

∫ t

0
C(s) ds, ICD(t) =

∫ t

0
C(s)

∫ s

0
D(u) du ds,

ICDE(t) =

∫ t

0
C(s)

∫ s

0
D(u)

∫ u

0
E(σ) dσ du ds.

Lemma 3.2 ([2, Proposition A.1]). There exist continuous functions Kk1,k2(t)
such that

υj(t) =
∑

k1,k2∈Z+,
jk1,k2=j

Kk1,k2(t),

where

jk1,k2 = k1n+ k2m− (k1 + k2 − 1).

In particular, for k1 = k2 = 0, one has υ1(t) = K0,0(t) ≡ 1. Thus every
solution of (1.2) defined in [0, 2π] is periodic if and only if υj(2π) = 0 for
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every j > 1. Moreover, from the results of Appendix A of [2] one has

K1,0(t) = IA(t), K0,1(t) = IB(t),

K1,1(t) = nIAB(t) + (m− n)IBA(t),

K2,1(t) =
nm+m(m− 1)

2
I2
A(t)IB(t) +

(
n(n− 1)−m(m− 1)

)
IA(t)IAB(t)

+ (m− 1)(m− n)IAAB(t).

In the literature, the first υj(2π) different from zero is known as the Lya-
punov constant. We shall compute the Lyapunov constants in order to
obtain a Hopf bifurcation of the zero solution. These computations will
ensure that conditions (i) and (ii) of Lemma 3.1 hold.

The second problem is to check whether (iii) holds. To this end, we shall
use the following necessary condition for the existence of a centre.

Lemma 3.3 ([8]). Take A,B trigonometric polynomials and consider the
one-parameter family of differential equations

(3.5) x′ = λA(t)xn +B(t)xm, λ ∈ R, n 6= m, n,m ≥ 2.

If (3.5) has a centre at x(t) ≡ 0 for every λ, then
∫ 2π

0
A(t)IB(t)j dt = 0 for every j ∈ Z+.

The reciprocal of the above lemma is false. Nevertheless, there is a very
strong relationship between the centre problem and the so-called Moment
Problem which consists of, given B(t), obtaining all functions A(t) such that

∫ 2π

0
A(t)IB(t)j dt = 0, for every j ∈ Z+.

This problem has been completely solved for A(t), B(t) polynomials, see
[19], and is being studied for the trigonometric case.

The relationship between the aforementioned two problems is the follow-
ing. Let u(t, x, λ) be the solution of Eq. (3.5) such that u(0, x, λ) = x. The
infinitesimal centre condition of Eq. (3.5) at λ = 0, that is, Eq. (3.5) has a
centre for λ = 0 and for any solution of (3.5), ∂u

∂λ(2π, x, 0) = 0, is equivalent

to the moment equations
∫ 2π

0 A(t)IB(t)j dt = 0, for every j ∈ Z+. (See [8,
Theorem 2.1]). However, as was noted above, it is not true that if the func-
tions A and B are such that all the moment equations vanish then Eq. (3.5)
has a centre at the origin for every λ— it has a centre only at ”first order
of λ”.

Nonetheless, the moment equations will be very useful to prove that an
equation of type (3.5) has no centre at the origin. It will be enough to prove
that there exists a j ∈ Z+ such that the j moment equation is not zero. In
order to find such a j, we prove the following result.

Lemma 3.4. Let A,B be analytical functions on the interval [t1, t2] such

that |
∫ t
t1
B|, has a unique global maximum at a point t∗. If A has no changes
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of sign in a neighbourhood of t∗ and is not identically null then there exists
j ∈ N such that ∫ t2

t1

A(t)

(∫ t

t1

B(s) ds

)j
dt 6= 0.

Proof. Let IB,t1(t) =
∫ t
t1
B. Assume that A(t) is positive in a neighbour-

hood U of t∗, and that t∗ is a maximum of IB,t1(t), with the other cases
being analogous. We prove that there exists M < IB,t1(t∗) such that

V = I−1
B,t1

((M,∞)) ⊂ U . Indeed, assume that there exist Mk < IB,t1(t∗) and

tk ∈ I−1
B,t1

((Mk,∞)) such that Mk → IB,t1(t∗) and tk 6∈ U . One may assume

that tk → t∗∗ 6= t∗. Then IB,t1(tk) → IB,t1(t∗∗) = IB,t1(t∗) in contradiction
with the uniqueness of the maximum t∗.

Thus, there exists V ⊆ U such that A(t) ≥ 0 and IB,t1(t) > M ≥ |IB,t1(s)|
for all t ∈ V , s 6∈ V . Consequently

∫ t2

t1

A(t)
IjB,t1(t)

M j
dt→ +∞ as j →∞.

Therefore, there exists j such that
∫ t2

t1

A(t)IjB,t1(t) dt = M−j
∫ t2

t1

A(t)
IjB,t1(t)

M j
dt 6= 0.

�

4. Lower bounds on the number of limit cycles

To conclude the proof of Theorem 1.2, one needs to show that, in any of
the cases not included in Propositions 2.2 or 2.3, there exists a limit cycle
different from x(t) ≡ 0.

Proposition 4.1. Assume that (1.2) does not satisfy the sufficient condi-
tions in Propositions 2.2 and 2.3. Then, reordering {A1, . . . , Ak} if neces-
sary, one of the following cases holds:

(I.1) A1, A2 ∈ E.
(I.2) A1, B ∈ E.
(I.3) A1 ∈ E, A2 ∈ C (resp. S), and B ∈ S (resp. C).
(I.4) A1 ∈ E, A2 ∈ S, A3 ∈ C, and B ∈ O.
(I.5) A1, A2 ∈ C (resp. S) and B ∈ S (resp. C).
(I.6) A1 ∈ S, A2 ∈ C, A3 ∈ S ∪ C, and B ∈ O.

Proof. If equation (1.2) does not satisfy the sufficient conditions in Proposi-
tions 2.2 and 2.3 then, for any reordering {A1, . . . , Ak}, none of the following
assumptions hold:

(N.1) A1, . . . , Ak, B ∈ S ∪ O, or A1, . . . , Ak, B ∈ C ∪ O.
(N.2) A1 ∈ E and (1.2) for a1 = 0 has a centre at x(t) ≡ 0.
(N.3) B ∈ E and (1.2) for b = 0 has a centre at x(t) ≡ 0.
(N.4) A1 ∈ S, A2, . . . , Ak ∈ C ∪ O, and B ∈ C.
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(N.5) A1 ∈ C, A2, . . . , Ak ∈ S ∪ O, and B ∈ S.
(N.6) A1 ∈ S, A2 ∈ C, A3, . . . , Ak ∈ O, and B ∈ O.

If one of the previous conditions holds then there is at most one function
among {A1, . . . , Ak, B} belonging to E . Thus, if there exist two functions
among {A1, . . . , Ak, B} belonging to E , then none of (N.1), (N.2),. . . , (N.6)
hold. Therefore, after a reordering, either (I.1) or (I.2) holds.

Now, assume that only one of the functions A1, . . . , Ak, B belongs to E .
If B ∈ E and (1.2) for b = 0 has no centre at x(t) ≡ 0 then Al ∈ E for some
1 ≤ l ≤ k, in contradiction with our hypothesis. If A1 ∈ E and (1.2) for
a1 = 0 has no centre at x(t) ≡ 0 then either (I.3) or (I.4) holds.

Finally, assume that none of {A1, . . . , Ak, B} belong to E . We shall dis-
tinguish two cases: when B ∈ C (resp. B ∈ S), and when B ∈ O. If B ∈ C
(resp. B ∈ S), since neither (N.1) nor (N.4) hold, then at least two of
the functions A1, . . . , Ak belong to S (resp. C), and, after reordering, (I.5)
holds. If B ∈ O, since neither (N.1) nor (N.6) hold, then at least two of
the functions A1, . . . , Ak belong to S and one to C, or at least two of the
functions A1, . . . , Ak belong to C and one to S. In any case, after reordering,
(I.6) holds. �

Now we shall study the Hilbert number for (1.2), when the monomials
satisfy one of the conditions (I.1)–(I.6).

Proposition 4.2. Assume that one of (I.1)–(I.6) holds. Then there exist
coefficients a1, . . . , ak, b such that (1.2) has at least one limit cycle different
from x(t) ≡ 0. Therefore (1.2) has H ≥ 2.

Proof. Assume that (1.2) satisfies one of (I.1)–(I.6).
If (I.2) or (I.3) holds, then Theorem 3.3 of [2] proves that there exist

a1, b ∈ R or a1, a2, a3 ∈ R such that (1.2) has one limit cycle different from
x(t) ≡ 0.

If (I.1) holds and B ∈ S (the case B ∈ C follows after the change of
variable t → π/2 − t), by Lemma 3.2, for every j > 1, υj(t) ≡ 0 except
for j = k1n + k2m − (k1 + k2 − 1). Moreover, since B is odd, (1.2) has a
centre at x(t) ≡ 0 for a1 = a2 = 0. Then K0,k2(2π) = 0 for every k2 ∈ N.
Consequently, the lowest j = k1n+k2m− (k1 +k2−1) such that υj(2π) 6= 0
must have k1 > 0. Indeed, this is obtained for k1 = 1 and k2 = 0 since

υn(2π) = a1IA1(2π) + a2IA2(2π),

and IA1(2π), IA2(2π) > 0. Then υn(2π) = 0 if and only if

a2 = −a1
IA1(2π)

IA2(2π)
.

By Lemma 3.1 with j∗ = n, it is sufficient to prove that (1.2) has no

centre at x(t) ≡ 0 for some a1, −a1
IA1

(2π)

IA2
(2π) , and b. Take b = 1, λ = a1 in
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equation (3.5), and A = A1 − IA1
(2π)

IA2
(2π)A2. By Lemma 3.3, one only needs to

prove that there exists j such that

(4.6)

∫ 2π

0
A(t)IjB(t) dt 6= 0.

Since IB(t) is increasing in (0, π) and decreasing in (π, 2π), |IB(t)| has a
unique maximum at t = π. Since A(t− π) is even, it has no changes of sign
in a neighbourhood of t = π. By Lemma 3.4, there exists j such that (4.6)
holds. Therefore (1.2) has no centre at x(t) ≡ 0 for some a1 ∈ R.

If B ∈ O, the proof follows as before, now just taking into account that
A(t− π) and IB(t− π) are even, and therefore

∫ 2π

0
A(t)IjB(t) dt = 2

∫ π

0
A(t)IjB(t) dt.

Now IB(t) has its unique maximum for t ∈ (0, π) at t = π/2, and A(t−π/2)
is even and hence has no changes of sign in a neighbourhood of t = π/2.

If (I.4) holds, arguing as in (I.1), since IA1(2π) > 0, the first υj(2π) that
can be different from zero is

υn(2π) = a1IA1(2π).

For a1 = 0, a2 6= 0, a3 6= 0 and b 6= 0, applying Proposition 2.3 one obtains
that x(t) ≡ 0 is the only limit cycle of (1.2), then it is not a centre. The
proof follows by Lemma 3.1.

Assume that (I.5) holds and that A1, A2 ∈ C, and B ∈ S. The other case
follows by the change of variable t→ π/2− t.

Now, if a1 = a2 = 0 or b = 0 then (1.2) has a centre at x(t) ≡ 0. Then
Kk1,0(2π) = 0 and K0,k2(2π) = 0. Consequently, the first υj(2π) that can
be different from zero is

υn+m−1(2π) = a1b(n−m)IA1B(2π) + a2b(n−m)IA2B(2π).

By integration by parts, IA1B(2π) + IBA1(2π) = IA1(2π)IB(2π). As A1 ∈ C,
IA1(2π) = 0, and IA1B(2π) = −IBA1(2π). Since IA1(t), B(t) are positive in
(0, π) and negative in (π, 2π), IBA1(2π) > 0. Analogously, IA2B(2π) < 0.

Fix b > 0. By Lemma 3.1 for j∗ = n + m − 1, one only needs to prove
that (1.2) has no centre at x(t) ≡ 0 for some a1, a2 such that

a1 = −a2
IA2B(2π)

IA1B(2π)
.

Now, taking into account that IB(t) has a unique maximum at t = π and
that A1(t − π), A2(t − π) are even, thus A(t) = a1A1(t) + a2A1(t) has no
changes of sign in a neighbourhood of π, the proof follows by Lemma 3.4
and Lemma 3.3.
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Assume that (I.6) holds and that A1 ∈ S, A2 ∈ C, A3 ∈ C, B ∈ O. The
other case follows by the change of variable t→ π/2− t.

Let A = a1A1 + a2A2 + a3A3. If b = 0 then (1.2) has a centre, therefore,
from Lemma 3.2 one obtains Kk1,0(2π) = 0. Analogously, if ak = 0 for
every k then (1.2) has a center and then K0,k2(2π) = 0. Moreover, by the
symmetries of A and B, one obtains IAiB(2π) = 0, then K1,1(2π) = 0. Thus
the first υj(2π) that can be different from zero is

υ2n+m−2(2π) = (m− 1)(m− n)IAAB(2π).

One has

IAAB(2π) =
3∑

i,j=1

aiajIAiAjB(2π).

By symmetry, IAiAiB(2π) = 0 for i = 1, 2, 3. Then

IAAB(2π) = a1a2b(IA1A2B(2π) + IA2A1B(2π)) + a1a2b(IA1A3B(2π) + IA3A1B(2π))

= a1a2b

∫ 2π

0
IA1(t)IA2(t)B(t) dt+ a1a3b

∫ 2π

0
IA1(t)IA3(t)B(t) dt.

Therefore

υ2n+m−2(2π)

=(m− 1)(m− n)a1b

(∫ 2π

0
(a2IA1(t)IA2(t)B(t) + a3IA1(t)IA3(t)B(t)) dt

)
.

Set

µ =

∫ 2π
0 B(t)IA1(t)IA2(t) dt
∫ 2π

0 B(t)IA1(t)IA3(t) dt
.

Since B(t)IA1(t)IA2(t) is even and

0 < B(t)IA1(t)IA2(t) < −B(π − t)IA1(π − t)IA2(π − t),
one has that∫ 2π

0
B(t)IA1(t)IA2(t) dt = 2

∫ π

0
B(t)IA1(t)IA2(t) dt < 0.

Analogously,
∫ 2π

0 B(t)IA1(t)IA3(t) dt < 0, and therefore µ > 0.
Let a3 = −µa2. If we prove that x(t) ≡ 0 with coefficients a1, a2,−µa2, b 6=

0 is not a centre, then from Lemma 3.1 we will obtain the existence of a
positive limit cycle.

Denote

F (t) = a2(A2(t)− µA3(t)) = sin2i(t) cos2j+1(t)G(t),

where i = min(i1, i2), j = min(j1, j2), and

G(t) = a2

(
sin2(i2−i)(t) cos2(j2−j)(t)− µ sin2(i3−i)(t) cos2(j3−j)(t)

)
.

Let us prove that we may assume that G(kπ/2) 6= 0 for every k ∈ Z. If
G(kπ/2) = 0 for certain k ∈ Z then µ = 1 and either i2 − i = i3 − i = 0 or
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j2 − j = j3 − j = 0. In any case F (t) has a definite sign at (π/2, 3π/2). By
[7, Theorem 2.4], one obtains that (1.2) is not a centre.

One has the following possibilities depending on whether i = i1, i = i2,
j = j1, or j = j2:

A(t) = sin2i t cos2j+1 t
(
a1 sin2(i1−i)+1 t cos2(j1−j)−1 t+G(t)

)
, or

A(t) = sin2i t cos2j1 t
(
a1 sin2(i1−i)+1 t+ cos2(j−j1)+1 tG(t)

)
,

(4.7)

A(t) = sin2i1+1(t) cos2j1(t)
(
a1 + sin2(i−i1)−1 t cos2(j−j1)+1 tG(t)

)
, or

A(t) = sin2i1+1(t) cos2j+1(t)
(
a1 cos2(j1−j)−1(t) + sin2(i−i1)−1(t)G(t)

)
,

(4.8)

where all the exponents are chosen to be positive.
We shall apply Lemma 3.3 where the roles of A and B have been inter-

changed.
Assume (4.7) holds. For a2 = 0, |IA(t)| has its unique maximum at t = π.

Let a2 be small enough. Since G(π) 6= 0, one has that d2iA
dt2i

(π) 6= 0 and
IA has no extremum point at π. Therefore |IA(t)| has its unique global
maximum at t∗ 6= π close to π.

Assume now that (4.8) holds. Denote by tk ∈ (0, 2π), k = 1, . . . , r, the
global maxima of IF (t). Since IF (t) is odd and 2π-periodic, {2π− tk}1≤k≤r
are the global minima. Moreover, tk 6= π. Let t∗ be the tk closest to π.
There are two possibilities for t∗:

First, suppose that t∗ 6∈ {π/2, 3π/2}. Now, since for any a1 > 0, a1IA1(t)
is positive, strictly increasing in (0, π) and strictly decreasing in (π, 2π), then
for a1 > 0 small enough, |IA(t)| has a unique global maximum at t̄ ∈ (0, 2π)
(close to t∗), such that t̄ 6∈ {π/2, π, 3π/2}. One concludes by Lemma 3.4
and Lemma 3.3.

Second, suppose that t∗ = π/2 (the argument is analogous for t∗ = 3π/2).
Note that then IF (t) has a global minimum at 3π/2. Since IA1(t) is positive
and increasing for t ∈ (0, π/2), if one takes a1 > 0 small enough then |IA(t)|
has a unique maximum at a certain t̄ close to π/2 (it might be precisely at
π/2). Moreover, since F (−π/2 + t) is odd IF (−π/2 + t) is even. Thus for
all t ∈ (0, π/2), one has

(4.9) IA(π/2 + t) > IA(π/2− t).

Take |IA(t̄)| > M > 0 such that |IA(t̃)| < M for any local extremum t̃ 6= t̄
of IA(t). Then the equation IA(t) = M has two solutions t−, t+ ∈ (0, π),
and t− < π/2 < t+. Moreover, by the inequality (4.9), π/2− t− < t+−π/2,
that is, π − t− < t+. Let

I(j) =

∫ 2π

0
B(t)IjA(t) dt = M j

∫ 2π

0
B(t)

(
IA(t)

M

)j
dt = M j

∫ 2π

0
a(t, j) dt,
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where

a(t, j) = B(t)

(
IA(t)

M

)j
.

We shall prove that there exists j ∈ N such that I(j) 6= 0 and conclude by
Lemma 3.3. Assume on the contrary that I(j) = 0 for every j ∈ N. Then

∫ 2π

0
a(t, j) dt = 0, for every j ∈ N.

One has that∫ 2π

0
a(t, j) dt =

∫

[0,2π]\[t−,t+]
a(t, j) dt+

∫ π−t−

t−
a(t, j) dt+

∫ t+

π−t−
a(t, j) dt.

The function a(t, j) is bounded for all t 6∈ (t−, t+), j ∈ N. Assume that
b > 0. Since (4.9), B ∈ O and b > 0, then a(π/2 + t, j) < a(π/2 − t, j) for
all t ∈ (π/2, π − t−) and j ∈ N. Therefore

∫ π−t−

t−
a(t, j) dt < 0.

Finally, since a(t, j) is continuous with respect to t and a(t, j) → −∞ as

j → +∞ for all t ∈ (π − t−, t+), one has I(j)/M j =
∫ 2π

0 a(t, j) dt→ −∞ as
j →∞, in contradiction with I(j) = 0 for every j ∈ N. �
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