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Abstract

We consider the planar restricted (N + 1)-body problem where the interaction po-
tential between the particle and the primaries is taken to be a finite sum of terms
of the form (distance)−α with α > 0.

The primaries are assumed to be in a relative equilibrium, that is, they form a
uniformly rotating rigid configuration.

We show two results. First, if the infinitesimal particle is far from the primaries
and the long range dominant term γ/rα of the potential is such that γ < 0 and
α 6= 2, then there exist two one-parameter families of large nearly circular periodic
solutions. These solutions, called comet solutions, are elliptic and KAM stable for
α < 2, and unstable for α > 2. Second, if the infinitesimal particle is close to one of
the primaries and the short range dominant term γ/rα of the potential near that
primary is such that γ < 0 and α 6= 2, then there exist two one-parameter families
of nearly circular periodic solutions, called Hill solutions, that encircle the nearby
primary. For α > 2, these orbits are unstable.

The methodology applied involves appropriate symplectic scalings, Poincaré’s
continuation method and averaging theory. The KAM stability of the comet pe-
riodic orbits is decided by verifying Arnol’d’s non-degeneracy conditions.
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1 Introduction

Motivated by its applicability in celestial mechanics, astronomy and astro-
dynamics, the dynamics of a small object (satellite) in the gravitational field
of two or more mass points has been subject of numerous research papers (see
[27,20,17] and references therein). Under the assumption that the evolution
of the attractive mass points is not disturbed by the presence of the small
mass and it is a priori known, the mathematical description of the planar
problem is given by a non-autonomous Hamiltonian system with two degrees
of freedom (see [21]).
Probably the most standard case studied is the restricted three-body prob-

lem, that is the motion of a particle of negligible mass under the Newtonian
attraction of two mass points considered in a uniformly rotating rigid configu-
ration ([27]). The extra assumption made over the motion of the mass points,
which are called the primaries, simplifies the dynamics to the autonomous
case. The analysis of this problem is non-trivial and has lead to many ideas
that now lay at the foundations of modern dynamics (see [24,3]).
Looking for the objects which organize the dynamics of these systems, the

periodic orbits play an important role (see [21,11,31]).
In the systems depending on a small parameter, the periodic orbits are usu-

ally determined using the Poincaré’s continuation method: a periodic orbit of
the unperturbed system persists in the perturbed dynamics if its character-
istic multipliers are not unity (see [21]). This method is based on the finite-
dimensional version of the Implicit Function Theorem, and its origin is in the
work of Poincaré (see [24]) for studying the existence of periodic solutions in
the restricted three-body problem.
For the differential systems with continuous symmetries the simplest class

of periodic orbits are the relative equilibria, i.e. periodic solutions of the equa-
tions of motion that are also orbits of a one-dimensional symmetry subgroup.
For symmetric systems depending on a small parameter the relative equi-

libria may be used as the unperturbed periodic orbit that can be continued
into the perturbed system.
A notable class of applications amenable to Poincaré’s continuation method

is given by the problems associated to the N -body problem of celestial me-
chanics (see [20]). In the context of the planar restricted three-body problem,
two extreme situations appear: the case when the negligible mass is far away
from all the primaries and in particular from its centre of mass (“comet pe-
riodic orbits”), and the case when the negligible mass is close to one of the
primaries (“Hill periodic orbits”). The first case is thoroughly investigated by
Meyer in [19] who demonstrates the existence of two families of periodic orbits
of elliptic type (i.e. orbits with non-trivial multipliers of unit modulus and not
equal to ±1) which are close to circles of very large radii. Moreover, by using
the Delaunay coordinates and verifying the KAM “twist condition”, the same
author proves that these orbits are stable. The second case, which is the first
approximation of the lunar problem (see [12]), is analyzed by Szebehely in
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[27] and Meyer in [21], wherein the existence of two families of elliptic peri-
odic orbits that encircle a primary for all values of the mass ratio parameter
is established.
In this paper we extend these previous works related to the comet and Hill

solutions. First, we consider a wider class of restricted (N+1)-body problems,
i.e. the motions of an infinitesimal particle in the potential fields of N point
sources, which we call primaries. More precisely, the interaction potential be-
tween the particle and the primaries is taken to be a finite sum of terms of
the form (distance)−α with α > 0. This class of potentials includes a wide
range of applications: post-Newtonian potentials such as Manev (see [6,15])
and Schwarzschild potentials (see [26,30]), truncations of the expansion of the
gravitational potential of a spheroidal body (see [28]), problems with charges
and classical approximations of molecular interactions (see [4]). Second, the
primaries are considered in a relative equilibrium, i.e. a rigid configuration in
a uniformly rotating system, of course assuming that the internal potential
allows such a configuration to exist. Note that the internal potential binding
the N point sources does not have to coincide with the potential exerted on
the infinitesimal particle.
We prove two main results:

1. If the infinitesimal particle is far from the primaries, and the long range
dominant term γ/rα of the potential is such that γ < 0 and α 6= 2, then there
exist two one-parameter families of large nearly circular periodic solutions.
These solutions are elliptic KAM stable for 0 < α < 2, and unstable for
α > 2. See Theorem 3.6.

2. If the infinitesimal particle is close to one of the primaries and the short
range dominant term γ/rα of the potential near that primary is such that
γ < 0 and 0 < α 6= 2, then there exist two one-parameter families of nearly
circular periodic solutions that encircle the nearby primary. For α > 2, these
orbits are unstable. See Theorem 4.4.

Each result is then applied to various physically relevant problems.
As noted in the abstract, the methodology we use involves appropriate sym-

plectic scalings, Poincaré’s continuation method and averaging theory. To set-
tle the stability of the comet periodic orbits we verify Arnol’d’s non-degeneracy
conditions (see [3]). We employ the action-angle variables for the central force
problem, but since these coordinates are explicitly computable only in excep-
tional cases (as for instance in the Newtonian case, leading to the Delaunay
coordinates), we work implicitly. We thus avoid the verification of the twist
condition as accomplished by Meyer in [19].
The paper is organized as follows: in Section 2 we briefly review the central

force problem and introduce relative equilibria. We also define the class of
quasi-homogeneous potentials and describe the generalized restricted (N +1)-
body problems considered here. Section 3 concerns with periodic orbits at
infinity. We prove the main theorem in two ways, first by applying Poincaré’s
continuation method and after by using the averaging theory. We further prove
the KAM stability of the periodic orbits in the elliptic case. We conclude

3



by stating a series of corollaries describing direct applications to different
physical problems. In Section 4 we analyze the existence of Hill orbits and
deduce analogous results to those in the previous section. There we use the
Implicit Function Theorem and Poincaré’s method. The Appendix contains
the statement of the averaging theorem used in Section 3.

2 Preliminaries

2.1 Dynamics in a central field

Consider the planar motion of a particle in a central field described by a
differentiable potential V : (0,∞) → R, V = V (r) where as usual r denotes
the distance from the particle to the source.
It is well known that in polar coordinates (r, θ, pr, pθ) the motion is deter-

mined by the Hamiltonian

H(r, θ, pr, pθ) =
1

2
p2r +

p2θ
2r2

+ V (r).

Moreover due to the rotational symmetry, the planar dynamics of a particle
in a central field has two independent first integrals: the total energy

h =
1

2
p2r +

p2θ
2r2

+ V (r) = const.,

and the angular momentum c = pθ = const. Thus is an integrable problem
(see [2]). Associated to the rotational symmetry there is the reduction of the
problem to a system with one degree of freedom described by the Hamiltonian
(see [2], [10]):

Hred(r, pr) =
1

2
p2r +

c2

2r2
+ V (r).

The centrifugal term c2/2r2 added to the potential gives rise to the so-
called augmented potential Vaug(r) := (c2/2r2)+V (r) and, for non-zero values
of c the dynamics is organized around the critical points r0(c) of Vaug(r). The
solution (r0(c), 0) of the reduced dynamics lifts in the phase space to the
relative equilibrium solution

r(t) = r0(c), pr(t) = 0, θ(t) =

(
c

r20(c)

)
t+ θ(0), pθ(t) = c.

Physically relative equilibria are states where the centrifugal term balances
the attraction of the source and appear as circular orbits of uniform angular
velocity.
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2.2 Relative equilibria

For general systems with continuous symmetries the relative equilibria are
solutions that are also orbits of an one-dimensional symmetry subgroup and,
similarly the equilibria of the non-symmetric systems may be used as organi-
zational centres of the dynamics (see [16]).
As in the central force problems in the case of planar rotationally symmetric

systems, the relative equilibria are retrieved as critical points of the function
obtained augmenting the potential with the centrifugal term. Physically they
are states where the binding forces are balanced by the centrifugal term.
For planar rotationally symmetric N mass points systems the relative equi-

libria are solutions where the bodies are encircling with uniform angular ve-
locity their centre of mass while the shape of the configuration formed by the
bodies does not change. For example, a relative equilibrium for the two body
problem is a solution where the two bodies are moving with uniform angular
velocity on circles around their centre of mass; in a frame joint to the rotating
system, the bodies appear in a rigid configuration (in this case a segment of
fixed length).

2.3 Quasi-homogeneous potentials

In this paper we consider interactions modeled by quasi-homogeneous po-
tentials, i.e. functions V : (0,∞) → R that are finite sums of homogeneous
terms in 1/r. Formally V (r) is a quasi-homogeneous potential if it is of the
form

V (r) =
a1
rα1

+
a2
rα2

+ . . .+
an
rαn

,

where 0 < α1 < α2 < . . . < αn, and ak ∈ R, k = 1, 2 . . . , n with an 6= 0. The
short-range (r small) dynamics may be attractive or repulsive if the sign of the
leading term an is negative or positive, respectively. Similarly the long-range
(r large) dynamics may be attractive or repulsive if the sign of a1 is negative
or positive, respectively.
This class of potentials includes the usual Newtonian interaction with V (r) =

−1/r, Newtonian interactions amended by post-Newtonian corrections, such
as the Manev V (r) = −a/r+ b/r2, a > 0, b > 0 (see [6,15]) and Schwarzschild
potentials V (r) = −a/r+b/r3, a > 0, b > 0 (see [26,30]). It also includes trun-
cations of the expansion of the gravitational potential of a spheroidal body
taken in the equatorial plane of the body. For example the first approximation
of the gravitational potential in the equatorial plane of an oblate planet is

V (r) = −k2M

r
−
(
J2R

2k2M

2

)
1

r3
,

where k is the gravitational constant, M is the mass of the body, R is the
radius of the equator of the planet and J2 is a dimensionless constant related
to the lengths of the spheroid’s axes (see [28]).
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Furthermore this class comprises classical approximations of molecular in-
teractions, such as the “6 − 12” V (r) = −a/r6 + b/r12 (with a > 0, b > 0)
Lennard-Jones potential, and more general molecular attractive-repulsive po-
tentials of the form

V (r) = − a

rα
+

b

rβ
, (1)

where a > 0, b > 0 and 2 < α < β (see [13,22]).
A particle motion with quasi-homogeneous interaction displays interesting

dynamical features which are subject of numerous papers. In [7] and [23], the
authors investigate motion near total collision for the collinear three-body
problem where potential is taken a sum of two attractive homogenous terms.
Results related with the existence of a class of special solutions for the N -
body problems with attractive homogenous and molecular-type potentials of
the form (1) are presented in [8,18,13]. In the same physical context the escape
mechanism in collinear three point mass systems was recently analyzed in [22].
In [5] the authors study the equilibrium points and planar relative equilibria
for the Lennard-Jones 2- and 3-body problems.

2.4 Restricted (N + 1)-body problems

Consider the motion of an infinitesimal mass P in the potential field of a sys-
tem formed by N punctual masses, called primaries, of masses m1,m2, . . .mN .
Denote by (x, y) ∈ R2×R2, the position and momenta, respectively, of P with
respect to the centre of mass of the N -body system, which is considered at
the origin. While the primaries determine the dynamics of the infinitesimal P ,
their motion is not affected by the presence of P .
Let qj(t) be the position of the primary mj at time t. Then the distance

between P and the point mass mj is ‖x − qj(t)‖, and the dynamics of P is
determined by the two-degree of freedom time-dependent Hamiltonian system
with Hamiltonian

H =
1

2
y2 +

N∑

j=1

V (‖x− qj(t)‖) .

Consider the primaries in a relative equilibrium and denote by (q01, q
0
2, . . . q

0
N)

the rigid configuration of the primaries in the rotating system. Again we denote
by (x, y) ∈ R2×R2, the position and momenta of P with respect to the centre
of mass of the N -body system, located at the origin, but now in the rotating
system. The motion of the infinitesimal P in the uniformly rotating system is
then given by the Hamiltonian system

H(x, y) =
1

2
y2 − (x1y2 − x2y1) +

N∑

j=1

V (‖x− q0j‖). (2)

From now on unless otherwise stated, the interaction potential between P and
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the primaries is taken to be of quasi-homogeneous type and so

V (‖x− q0j‖) =
n∑

k=1

a
(j)
k

‖x− q0j‖αk
, (3)

where 0 < α1 < α2 < . . . < αn, n ∈ N, and a
(j)
k ∈ R with a(j)n 6= 0. The

classical Newtonian case is retrieved for n = 1 and αn = 1.

Remark 2.1 In our context we do not need to have any knowledge about the
internal potential of the N-body system; it is sufficient to consider that the
primaries are in a relative equilibrium. Note that this internal potential does
not have to coincide with the interaction potential between the infinitesimal
and the primaries.

3 Comet periodic orbits

We assume that the motion of the infinitesimal mass located at P is free
of singularities and bounded appropriately, that is x(t) is defined for all t ∈
(−∞,∞), and is bounded above and below. The infinitesimal mass is con-
sidered far away from all the primaries, and consequently far away from the
centre of mass of the primaries, and so we apply the scaling

x → ε−2x̄, y → εα1 ȳ .

This is a symplectic transformation of multiplier ε(2−α1) (see [21]). The Hamil-
tonian (2) becomes

H =
1

2
ε2α1 ȳ2 − ε(α1−2)(x̄1ȳ2 − x̄2ȳ1) +

N∑

j=1

V
(
1

ε2
‖x− ε2 q0j‖

)
,

which, after rescaling H → ε−(α1−2)H̄, and dropping the bars, reads

H = −(x1y2 − x2y1) + εα1+2 y2

2
+ ε−(α1−2)

N∑

j=1

V
(
1

ε2
‖x− ε2q0j‖

)
. (4)

For each j the potential is

V
(
1

ε2
||x− ε2q0j ||

)
=

n∑

k=1

ε2αk a
(j)
k

‖x− ε2 q0j‖αk
. (5)

Expanding in powers of ε each a
(j)
k /‖x− ε2q0j‖αk we have

a
(j)
k

‖x− ε2 q0j‖αk
=

a
(j)
k

‖x‖αk
+O(ε2αk).
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Substituting into (5) we obtain

V
(
1

ε2
||x− ε2 q0j ||

)
=

n∑

k=1


ε2αk

a
(j)
k

‖x‖αk
+O(ε4αk)




= ε2α1
a
(j)
1

‖x‖α1
+O(εmin{4α1,2α2}).

Using the above expansion and denoting by γ the opposite of the sum of the
coefficients of the long-range dominating terms,

γ := −
N∑

j=1

a
(j)
1 ,

the Hamiltonian (4) reads

H = −(x1y2 − x2y1) + εα1+2

(
y2

2
− γ

‖x‖α1

)
+O

(
εmin{3α1+2,2α2−α1+2}

)
.

In polar coordinates (r, θ, pr, pθ) this Hamiltonian becomes

H = −pθ + εα1+2

[
1

2

(
p2r +

p2θ
r2

)
− γ

rα1

]
+O

(
εmin{3α1+2,2α2−α1+2}

)
, (6)

and the first approximation of the problem is given by

H = −pθ + εα1+2

[
1

2

(
p2r +

p2θ
r2

)
− γ

rα1

]
. (7)

Remark 3.1 In the first approximation the infinitesimal particle feels only
the accumulative effect of the attraction of the long-range dominating terms

a
(1)
1 + a

(2)
1 + . . .+ a

(N)
1

rα1
=

(−γ)

rα1
,

as exerted by the centre of mass of the primaries.

Remark 3.2 For n = 1, α1 = 1 and γ = 1 the Hamiltonian (6) coincides
with the Hamiltonian of the Newtonian restricted three-body problem presented
in the “Comets” example of the Chapter 9 of [21].

The equations of motion are

ṙ =εα1+2pr, (8)

ṗr =εα1+2

(
p2θ
r3

− α1 γ

rα1+1

)
+O

(
εmin{3α1+2,2α2−α1+2}

)
, (9)

θ̇ =− 1 + εα1+2 pθ
r2
, (10)

ṗθ =−O
(
εmin{3α1+2,2α2−α1+2}

)
. (11)
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The standard technique for proving the existence of periodic orbits in per-
turbed systems is the Poincaré’s continuation method: a periodic orbit of the
unperturbed system persists in the perturbed dynamics if its characteristic
multipliers are different from the unity (see Chapter 9 of [21]). In our case the
unperturbed system is given by the first approximation of the Hamiltonian
(7). Since we have an autonomous Hamiltonian system, two of the multipliers
are always equal to the unity, and the restriction of the flow to an energy level
is necessary (see [21]). This method is applicable in our case as well. Drop-

ping the terms O
(
εmin{3α1+2,2α2−α1+2}

)
, if γ > 0 then for every c 6= 0, system

(8)-(11) accepts the periodic solutions

r0 =

(
c2

γα1

)1/(2−α1)

, pr = 0, pθ = ±c ,

of period

T =
2π

1∓ εα1+2
( |c |
r20

) .

Linearizing equations (8)-(9) about r = r0 and pr = 0, we obtain

ṙ = εα1+2pr, ṗr = −εα1+2(2− α1)

(
|c|
r20

)2

r .

The nontrivial multipliers of (8)-(11) are given by

1± i εα1+22π
√
2− α1

(
|c |
r20

)
+O

(
εα1+4

)
.

Recall that for a Hamiltonian system a fixed point is unstable if at least one
if its non-trivial multipliers has modulus greater than the unity, and elliptic if
all its non-trivial multipliers of unit modulus and not equal to ±1.
Assuming α1 6= 2, by applying with minor modifications the arguments

given in [19] and [21], we have the following result.

Proposition 3.3 (Existence of comet periodic solutions) In the gener-
alized restricted (N + 1)-body problem described by the Hamiltonian (2) with
quasi-homogenous potential (3), if the sum (−γ) of the coefficients of the long-
range dominating terms is negative (i.e. if the potential near infinity is attrac-
tive) and α1 6= 2, then there exist two-parameter families of nearly circular
large periodic solutions located far away from the centre of mass of the pri-
maries. If 0 < α1 < 2 these orbits are elliptic. If α1 > 2 these orbits are
unstable.

An alternative and easier proof of Proposition 3.3, using the averaging the-
ory, is presented below. From the energy integral

−pθ + εα1+2

(
1

2

(
p2r +

p2θ
r2

)
− γ

rα1

)
= h+O

(
εmin{3α1+2,2α2−α1+2}

)
,
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we get that

pθ = −h+O
(
εα1+2

)
.

Substituting pθ into (8) we have the system

ṙ = εα1+2pr,

ṗr = εα1+2

(
h2

r3
− α1 γ

rα1+1

)
+O

(
εmin{3α1+2,2α2−α1+2}

)
,

θ̇ = −1 +O
(
εmin{3α1+2,2α2−α1+2}

)
,

which taking θ as independent variable becomes

dr

dθ
= −εα1+2pr,

dpr
dθ

= −εα1+2

(
h2

r3
− α1 γ

rα1+1

)
+O

(
εmin{3α1+2,2α2−α1+2}

)
.

(12)

In the variable y := (r, pr) this system is of the form

dy

dθ
= εα1+2f(y) + εα1+4G(y, θ; ε)

where G(y, θ; ε) is of order 0 and higher in ε and 2π-periodic in θ. Since
f(y) does not depend explicitly on θ, we may say that f is 2π−periodic in θ
(trivially). Thus we can “average” over θ and obtain the averaged vector field

faverage(y) =
1

2π

2π∫

0

f(y)ds = f(y) = −




pr

h2

r3
− α1 γ

rα1+1


 .

We apply then the averaging theorem (see [31]; also presented in the Appendix)
and we calculate the zeros of the averaged equations. Assuming γ > 0 there
is a unique of such zeros, given by

y0 = (r0(h), 0) =



(

h2

γα1

)1/(2−α1)

, 0


 .

The determinant of the Jacobian matrix Df(y0) of the averaged vector field
at the zero is

det (Df(y0)) =
h2

r40(h)
(2− α1) .

By the averaging theorem it follows that for α1 6= 2 and for sufficiently small
ε, there exists a T -periodic solution yε(θ) of (12) such that yε(0) → y0 as
ε → 0. Since the eigenvalues of Df(y0) are given by

±εα1+2|h|/r20(h)
√
α1 − 2 ,
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if α1 > 2 we have that the singular point y0 of the averaged system is hyper-
bolic and unstable. By the averaging theorem, it results that for sufficiently
small ε, the periodic orbit yε(θ) is also hyperbolic and unstable.
Of course, if α1 < 2 then the periodic orbit yε(θ) is linearly elliptic or stable.

Remark 3.4 Alternatively we could use −θ as the independent variable in-
stead of θ. Then the proof follows identically, but the obtained periodic solution
encircle the centre of mass of the primaries rotating in opposite direction.

In short Proposition 3.3 follows.

3.1 Stability

In [19] it is proven using KAM theory that in case γ = 1 and α1 = 1, the
elliptic periodic orbits at infinity are stable. We generalize this result to the
case γ > 0 and 0 < α1 < 2. To do this we follow the theory presented in
Chapter 6 of [3].
Let γ > 0 and 0 < α1 < 2 be fixed and consider the Hamiltonian (6) which,

for the readers convenience, we rewrite below

H = −pθ + εα1+2

[
1

2

(
p2r +

p2θ
r2

)
− γ

rα1

]
+O

(
εmin{3α1+2,2α2−α1+2}

)
. (13)

Denote

H00 := −pθ, H01 :=
1

2

(
p2r +

p2θ
r2

)
− γ

rα1

and

εα1+2 := ε̃.

Then the Hamiltonian (13) becomes

H = H00(pθ) + ε̃H01(r, pr, pθ) + ε̃2H11(r, θ, pr, pθ; ε̃). (14)

The first approximation H00+ ε̃H01 is an integrable system, with first integrals
given by the energy

h = H00 (pθ(t)) + ε̃H01 (r(t), pr(t), pθ(t))

and the angular momentum

c = pθ(t).

Let h < 0. Now we write H in action-angle variables (Ir, Iθ, φr, φθ). Since
H0 := H00 + ε̃H01 is integrable and H00 = −pθ, we have

H00 = H00(Iθ)

where

Iθ = pθ .
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The Hamiltonian H01 describes a central force problem. Since 0 < α1 < 2 and
Iθ(t) = c = const. on the energy level h01 = H01 (r(t), pr(t), pθ(t)) < 0, the
motion is bounded, with r(t) varying in an annulus of minimum and maximum
radii rm(c, h01) and rM(c, h01), respectively (for details see Chapter 1 Section
3c of [14]). The action Ir is defined by

Ir =

√
2

π

rM (c,h01)∫

rm(c,h01)

√

h01 +
γ

rα1
− c2

2r2
dr . (15)

Note that rm(c, h01) and rM(c, h01) are the minimum and maximum values of

r, respectively, and that the integrant
√
h01 + γ/rα1 − I2θ/(2r

2) cancels for r
taking these extreme values. In general the integral (15) cannot be solved by
quadratures. A notable exception is α1 = 1 (the Kepler problem), in this case

Ir = −|Iθ|+ γ
√
−1/(2h01).

The Hamiltonian (14) can be written into the form

H = H00(Iθ) + ε̃ H01(Ir, Iθ) + ε̃2H11(Ir, Iθ, φr, φθ; ε̃).

Following the terminology of [3], Section 6.3.3, this Hamiltonian has a proper
degeneracy, and consequently the following stability result holds.

Theorem 3.5 (Arnol’d 1963; see [3]) If a Hamiltonian system with two
degrees of freedom having a proper degeneracy satisfies

dH00

dIθ
6= 0,

∂2H01

∂I2r
6= 0, (16)

then for all initial data the action variables remain forever near their initial
values.

In the context of our problem, if conditions (16) are verified, then the comet
elliptic periodic orbits are stable. The first condition (16) is immediate because

dH00

dIθ
=

d (−Iθ)

dIθ
= −1 6= 0.

To verify the second condition, consider Hamiltonian H01 = H01(Ir, Iθ) as it
is defined implicitly by

Ir = F (Iθ, H01(Ir, Iθ)) ,

with

F (Iθ, H01(Ir, Iθ)) =



√
2

π

rM (c,h01)∫

rm(c,h01)

√

h01 +
γ

rα1
− c2

2r2
dr




∣∣∣∣∣∣
h01=H01, c=Iθ

. (17)
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Using implicit differentiation with respect to Ir we have

1 =
∂F

∂Iθ

∂Iθ
∂Ir

+
∂F

∂H01

∂H01

∂Ir
=

∂F

∂H01

∂H01

∂Ir
, (18)

because Ir and Iθ are independent. Differentiating once more, we obtain

0 =
∂2F

∂H2
01

(
∂H01

∂Ir

)2

+
∂F

∂H01

∂2H01

∂I2r
.

From where, assuming ∂F/∂H01 6= 0, we get

∂2H01

∂I2r
= −

∂2F
∂H2

01

(
∂H01

∂Ir

)2

∂F
∂H01

. (19)

To calculate ∂F/∂H01 we differentiate under the integral sign the relation (17).
Taking into account that rm(c, h01) > 0 and rM(c, h01) > 0 are only values of r
for which the non-zero expression h01 + γ/rα1 − c2/(2r2) vanishes, we obtain

∂F

∂H01

=
1√
2π




rM (c,h01)∫

rm(c,h01)

(
h01 +

γ

rα1
− c2

2r2

)−1/2

dr




∣∣∣∣∣∣
h01=H01, c=Iθ

> 0. (20)

Furthermore

∂2F

∂H2
01

=
−1

2
√
2π




rM (c,h01)∫

rm(c,h01)

(
h01 +

γ

rα1
− I2θ

2r2

)−3/2

dr




∣∣∣∣∣∣
h01=H01, c=Iθ

< 0 . (21)

Using (20), from (18) it follows that

∂H01

∂Ir
=

1

1√
2π

(
rM (c,h01)∫
rm(c,h01)

(
h01 +

γ
rα1

− c2

2r2

)−1/2
dr

) ∣∣∣∣∣∣
h01=H01, c=Iθ

. (22)

Finally, substituting (20), (21) and (22) into (19) we obtain:

∂2H01

∂I2r
=

1
2
√
2π

(
rM (c,h01)∫
rm(c,h01)

(
h01 +

γ
rα1

− c2

2r2

)−3/2
dr

) ∣∣∣∣∣∣
h01=H01, c=Iθ

 1√
2π

(
rM (c,h01)∫
rm(c,h01)

(
h01 +

γ
rα1

− c2

2r2

)−1/2
dr

) ∣∣∣∣∣∣
h01=H01, c=Iθ




3 > 0,

and thus the second condition (16) in Theorem 3.5 is satisfied.
In summary taking into account Proposition 3.3, we have the following

result.
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Theorem 3.6 In the generalized restricted (N + 1)-body problem described
by the Hamiltonian (2) with quasi-homogenous potential (3), if the sum γ
of the coefficients of the long-range dominating terms is positive (i.e. if the
potential near infinity is attractive) and α1 6= 2, then there exist two-parameter
families of nearly circular large periodic solutions of motion near infinity. For
α1 < 2 these solution are elliptic and KAM stable, whereas for α1 > 2 they
are hyperbolic and unstable.

3.2 Applications

In this subsection we present some consequences of Theorem 3.6.

Corollary 3.7 In the restricted (N + 1)-body problem with Schwarzschild or
Manev potential, there exist nearly circular periodic orbits located far away
from the centre of mass of the primaries. These orbits are KAM stable.

Corollary 3.8 Consider a planetary system formed by N ≥ 2 bodies of homo-
geneous density. The planets are taken as spinning spheroids with revolution
axis perpendicular to the equatorial (ecliptic) plane. Then it can be proven
that the dynamics of this system decouples into the motion of the centres of
mass and the motion of each rigid body, where the interaction between any two
centres of mass is given by a potential of the form −a/r − b/r3 with a > 0
(for N = 3, see [9] and [29]). Assume that the system formed by the mass
centres is in a relative equilibrium. Then the motion of a small object (e.g.
an asteroid) includes KAM nearly circular stable periodic orbits located in the
ecliptic plane and far away from the planetary centre of mass.

Another immediate consequence is related with the molecular-type interac-
tions.

Corollary 3.9 In the restricted (N + 1)-body problem with molecular poten-
tials of the form (1), there exist nearly circular periodic orbits located far away
from the centre of mass of the primaries. These orbits are unstable.

As noted in Remark 3.1, it is interesting to observe that the dynamics in
our class of restricted (N + 1)-body problems depends on the sign of the
accumulative effect of the long-range dominating terms. Thus there might
be situations, for example in problems with masses charged, in which the
infinitesimal mass may be repelled by some of the primaries and attracted
by other, and allowing the existence of nearly circular periodic orbits close to
infinity.
For instance, consider the primaries as given by three point masses, say P1,

P2 and P3, with charge. In [1] it is shown that, under certain conditions, such
systems permit the existence of planar relative equilibria. Imagine a situation
in which the infinitesimal mass is repelled by P1, P2 and attracted by P3.
Denote the interaction potentials between the infinitesimal mass and P1, P2
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and P3 by Vi = ai/r, i = 1, 2, 3, where a1 > 0, a2 > 0 and a3 < 0. If

a1 + a2 + a3 < 0,

then there exist close to infinity nearly circular periodic orbits which are KAM
stable. It is easy to imagine other applications of Theorem 3.3 in the context
of charged restricted (N + 1)-body problems.

4 Hill periodic orbits

We assume now that the infinitesimal mass is close to one of the primaries,
which without loosing generality, we choose to be mN . Let L be the position
vector of mN with respect to the centre of mass ON−1 of the N − 1 primaries
m1,m2, . . . ,mN−1. The primaries form a rigid configuration that rotates with
uniform circular velocity around their centre of mass O. In particular, in the
rotating system, the vector L appears as fixed and of constant length, with
one end at the centre of mass ON−1 of m1,m2, . . . ,mN−1 and and the other
one at mN .
Without loosing generality, in the rotating system we choose coordinates

with the x1 axis along L, and take ‖L‖ to be the unit length. We further
assume that the total mass is normalized to one, i.e. m1+m2+ . . .+mN = 1,
and denote

µ := m1 +m2 + . . .+mN−1 .

Consequently mN = 1− µ,
−−−−→
ON−1O = 1− µ and

−−−→
OmN = −µ.

Under the above assumptions the Hamiltonian (2) becomes

H(x, y) =
y2

2
− (x1y2 − x2y1) +

N−1∑

j=1

V (‖x− q0j‖) + VN

(√
(x1 − µ)2 + x2

2

)
,

where VN describes the potential between P and mN . We take now the origin
of coordinates at the primary mN (see [21]). More precisely, we change x1 −µ
by x1 and y2 by y2 + µ. Also, each q0jx is translated by µ and so q0j is replaced
by q̃0j := q0j − (µ, 0). We have

H(x, y) =
y2

2
−(x1y2 − x2y1) +

N−1∑
j=1

V (‖x− q̃0j‖)+

VN

(√
x2
1 + x2

2

)
− µx1 − 1

2
µ2 .

(23)

We then apply the scaling

x → ε2x̄, y → ε−αn ȳ ,

which is a symplectic transformation of multiplier εαn−2 (see [21]). Ignoring
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the constant term, the Hamiltonian (23) becomes

H =
ε−2αn ȳ2

2
− ε2−αn(x̄1ȳ2 − x̄2ȳ1)− ε2µx̄1+

N−1∑

j=1

V
(
‖ε2x̄− q̃0j‖

)
+ VN

(
ε2
√
x̄2
1 + x̄2

2

)
,

which, after rescaling H → ε2αnH̄ and dropping the bars, reads

H =
y2

2
− εαn+2(x1y2 − x2y1)− ε2αn+2µx1+

ε2αn

(
N−1∑
j=1

V
(
‖ε2x− q̃0j‖

)
+ VN (ε2‖x‖)

)
.

(24)

We have

VN

(
ε2‖x‖

)
=

n∑

k=1

a
(N)
k

ε2αk‖x‖αk
=

a
(N)
1

ε2α1‖x‖α1
+ . . .+

a(N)
n

ε2αn‖x‖αn

and

V (‖ε2x− q̃0j‖) =
n∑

k=1

a
(j)
k

‖ε2x− q̃0j‖αk

=
a
(j)
1

‖ε2x− q̃0j‖α2
+ . . .+

a(j)n

‖ε2x− q̃0j‖αn

=
n∑

k=1

a
(j)
k

‖q̃0j‖αk
+O(ε2α1) .

Substituting the above into (24), we have

H =
y2

2
− εαn+2(x1y2 − x2y1)− ε2αn+2µx1+

ε2αn


 a

(N)
1

ε2α1‖x‖α1
+ . . .+

a(N)
n

ε2αn‖x‖αn
+

N−1∑

j=1

n∑

k=1

a
(j)
k

‖q̃0j‖αk
+O(ε2α1)




and so

H =
y2

2
+

a(N)
n

‖x‖αn
+ ε2(αn−αn−1)

a
(N)
n−1

‖x‖αn−1
+ . . .+ ε2(αn−α1)

a
(N)
1

‖x‖α1
−

εαn+2(x1y2 − x2y1)− ε2αn+2µx1 + ε2αn




N−1∑

j=1

n∑

k=1

a
(j)
k

‖q̃0j‖αk


+O

(
ε2(αn+α1)

)
.

Dropping the constant term and writing the Hamiltonian in polar coordinates,
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up to O (ε2αn+2) the Hamiltonian becomes

H =
1

2

(
p2r +

p2θ
r2

)
+

a(N)
n

rαn
+ ε2(αn−αn−1)

a
(N)
n−1

rαn−1
+ . . .+ ε2(αn−α1)

a
(N)
1

rα1
−

εαn+2pθ +O
(
ε2(αn+1)

)
.

Denote

U(r, ε) :=
a(N)
n

rαn
+ ε2(αn−αn−1)U1(r, ε) ,

where
U1(r, ε) :=





0 if αn + 2 < 2(αn − αn−1) ,

ε2(αn−αn−1) a
(N)
n−1

rαn−1 + . . .+ ε2(αn−αn−k)
a
(N)
n−k

rαn−k if 2(αn − αn−k) ≤ αn + 2 < 2(αn − αn−k−1),

for some k = 1, . . . , n− 1,

ε2(αn−αn−1) a
(N)
n−1

rαn−1 + . . .+ ε2(αn−α1) a
(N)
1

rα1
if 2(αn − α1) ≤ αn + 2 .

Note that U1(x, ε) is an analytic function for r 6= 0. Also denote

δ :=





2(αn − αn−1) if αn + 2 < 2(αn − αn−1) ,

2(αn − αn−k−1) if 2(αn − αn−k) ≤ αn + 2 < 2(αn − αn−k−1) ,

for some k = 1, . . . , n− 1,

2(αn + 1) if 2(αn − α1) ≤ αn + 2 .

The Hamiltonian now reads

H =
1

2

(
p2r +

p2θ
r2

)
+ U(r, ε)− εαn+2pθ +O

(
εδ
)
, (25)

and the equations of motion are

ṙ = pr +O
(
εδ
)
,

ṗr =
p2θ
r3

− U ′(r, ε) +O
(
εδ
)
,

θ̇ =
pθ
r2

− εαn+2 +O
(
εδ
)
,

ṗθ = O
(
εδ
)
.
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From the last equation above we have

pθ = c+O
(
εδ
)
,

so, up to order εδ, the Hamiltonian is

H =
1

2
p2r +

c2

2r2
+ U(r, ε) , (26)

where we dropped the constant term εαn+2 c.

Proposition 4.1 Let a(N)
n < 0 and αn 6= 2. Then, for ε small enough, there

exist circular periodic orbits in the dynamics of the first approximation Hamil-
tonian (26).

Proof Circular periodic orbits appear as the critical points of the augmented
potential

Uc(r, ε) :=
c2

2r2
+ U(r, ε) =

c2

2r2
+

a(N)
n

rαn
+ ε2(αn−αn−1)U1(r, ε),

where c 6= 0.

Case U1(r, ε) = 0. We have

Uc(r, ε) =
c2

2r2
+

a(N)
n

rαn
.

In this case the augmented potential does not depend on ε. The critical points
of Uc(r, ε) are given by the values r0 which are solutions of U ′

c(r, ε) = 0, that
is, solutions r0 of

c2

r3
= −a(N)

n αn

rαn+1
. (27)

that is c2rαn−2 = −a(N)
n . Since a(N)

n < 0, this equation has one real positive
root.

Case U1(r, ε) 6= 0. For ε = 0 the critical points of Uc(r, 0) are given by the
values r0 which are solutions of U ′

c(r, 0) = 0, that is, solutions of (27) above.
Since

U ′′
c (r0, 0) = − a(N)

n αn

rαn+2
0

(αn − 2) 6= 0 ,

by the Implicit Function Theorem we have that for ε small enough there is a
smooth function r0(ε) such that U ′

c (r0(ε), ε) = 0. �
Corollary 4.2 Under the assumptions of Proposition 4.1, the circular peri-
odic orbits in the dynamics of the first approximation Hamiltonian (26) are
stable if αn < 2 and unstable if αn > 2.

Proof We use the notation introduced in the proof of Proposition 4.1. Since
the dynamics in radial direction r of the circular periodic orbits is described
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by the one-degree of freedom of the form kinetic plus augmented potential,
i.e. by the Hamiltonian (26), the stability is decided by the sign of the second
derivative of the potential (see [2]). The circular orbits are stable if U ′′

c (r, ε) > 0
and unstable if U ′′

c (r, ε) < 0.

We prove the stable case; the proof is analogous for the unstable one. For
αn < 2, since U ′′

c (r0, 0) > 0, the circular orbit at ε = 0 is stable. For ε small
enough

U ′′
c (r, ε) =

∂2Uc(r, ε)

∂r2

∣∣∣∣∣∣
r0(ε)

> 0

as well, and the conclusion follows. �
Remark 4.3 If U1(r, ε) 6= 0 then the zeros r0 of U ′

c(r, ε) are of the form

r0(ε) = r0(0) +O(ε2(αn−αn−1)) ,

where r0(0) is the solution of U ′
c(r; 0) = 0.

We prove now that the circular periodic orbits of (26) persist as periodic
orbits in the motion of the full Hamiltonian (25) by applying the Poincaré’s
continuation method.
Consider the Hamiltonian obtained from (25) by dropping the terms of order

εδ and higher:

H =
1

2

(
p2r +

p2θ
r2

)
+ U(r, ε)− εαn+2pθ =

p2r
2

+ Uc(r, ε) .

The associated equations of motion are

ṙ = pr,

ṗr = −∂Uc(r, ε)

∂r
,

θ̇ =
c

r2
− εαn+2,

ṗθ = 0,

(28)

where we have substituted pθ by c. The circular orbits are given by (r0(ε), 0)
with period

T = 2π/

(
c

r20(ε)
∓ εαn+2

)
.

Linearizing the r and pr equations about these solutions, we have

ṙ = pr , ṗr =


−∂2Uc(r, ε)

∂r2

∣∣∣∣∣∣
r0(ε)


 r.
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Let

ω2(ε) :=



∂2Uc(r, ε)

∂r2

∣∣∣∣∣∣
r0(ε)


 .

The linearized dynamics can be written as

r̈ + ω2(ε)r = 0 .

For αn > 2, since ω2(ε) < 0, the non-trivial multipliers of the circular orbits
(r0(ε), 0) are given by

exp


±2π

(
ω(ε)r20(ε)

c

)
 1

1∓ εαn+2 r
2
0(ε)

c




 .

Since the multipliers are not unity, these orbits may be continued. Moreover,
the continued orbits are unstable.

For αn < 2, the non-trivial multipliers of the circular orbits (r0(ε), 0) are

exp


±2πi

(
ω(ε)r20(ε)

c

)
 1

1∓ εαn+2 r
2
0(ε)

c






= exp

[
±2πi

(
ω(ε) r20(ε)

c

)(
1± εαn+2

(
r40(ε)

c2

)
+O

(
ε2(αn+2)

))]
.

We distinguish two cases:

(1) If

(
ω(ε) r20(ε)

c

)
/∈ Z then the non-trivial multipliers are not unity and the

circular orbits may be continued.

(2) If

(
ω(ε) r20(ε)

c

)
= m ∈ Z, then the non-trivial multipliers receive the form

1± εαn+2 2πi

(
r40(ε)

c2

)
+O

(
ε2(αn+2)

)
.

Taking into account Remark 4.3, the multipliers can be written as

1± εαn+2 2πi

(
r40(0)

c2

)
+O (εη) ,

where

η =





2αn + 2 if G1(r, ε) = 0,

(αn + 2) + 2(αn − αn−1) if G1(r, ε) 6= 0 .

The continuation of the periodic orbits is achieved by applying essentially the
argument presented in Section 9.4. of [21]. Indeed, consider the period map in
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an energy level of the Hamiltonian about the circular orbit, and let u be the
coordinate on this energy level, with u = 0 corresponding to the circular orbit
when ε = 0. The period map is of the form P (u) = u + εαn+2p(u) + O(εη),
where p(0) = 0 and p′(0) is nonsingular, its eigenvalues being ±2πi r40(0)/c

2.
Let G(u, ε) := (P (u)− u) /εαn+2 = p(u) +O(εη−αn−2). We have G(0, 0) = 0.
Since ∂G(0, 0)/∂u = p′(0) is nonsingular, by the Implicit Function Theorem,
there is a smooth function ū(ε) such that G (ū(ε), ε) = 0 for ε small enough.
Thus the circular orbit can be continued from the truncated equations (28) to
the full equations.

So we have proved:

Theorem 4.4 In the generalized restricted (N + 1)-body problem described
by the Hamiltonian (2) with quasi-homogenous potential (3), if a(N)

n < 0 and
αn 6= 2, then there exist two one-parameter families of nearly circular periodic
solutions that encircle primary mN . These orbits are unstable if αn > 2.

4.1 Applications

Corollary 4.5 There exist nearly circular periodic orbits close to a primary
in the restricted (N +1)-body problem with Manev or Schwarzschild potential.

Corollary 4.6 Consider a planetary system formed by N ≥ 2 bodies of homo-
geneous density. The planets are taken as spinning spheroids with revolution
axis perpendicular to the equatorial (ecliptic) plane. Then it can be proven that
the dynamics of this system decouples into the motion of the centres of mass
and the motion of each rigid body, where the interaction between any two cen-
tres of mass is given by a potential of the form −a/r − b/r3 with a > 0 (for
N = 3, see [9] and [29]). Assume that the system formed by the mass centres
is in a relative equilibrium. Then the motion of a small object (e.g. a satellite)
includes nearly circular periodic orbits located close to a primary.

Corollary 4.7 In the restricted (N + 1)-body problem with molecular poten-
tials of the form (1), there exist nearly circular periodic orbits close to a pri-
mary. These orbits are unstable.
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5 Appendix

For readers convenience we state the averaging theorem that we apply in
Section 3; for proof and details, see [31] and [11].

Theorem 5.1 Consider a differential system in the form

ẋ = εF (t,x(t)) + ε2R (t,x(t), ε) , (29)

with x ∈ U ⊂ Rn, U a bounded domain and t ≥ 0 and F (t,x) and R (t,x, ε)
periodic functions in t of period T. Consider the averaged system

ẏ = εf(y)

where

f(y) =
1

T

T∫

0

F (s,y) ds,

and assume that the vector functions F,R,DxF,D
2
xF and DxR and continuous

and uniformly bounded by a constant M in [0,∞)×U for ε in a neighborhood
of zero. Then
(1) If a ∈ U is a singular point of the averaged system with detDxF (a) 6= 0,

then for ε > 0 sufficiently small there exists a unique T -periodic solution
xε(t) of system (29) such that xε(0) → a as ε → 0.

(2) If the singular point a of the averaged system is hyperbolic then, for |ε| > 0
sufficiently small, the corresponding solution xε(t) of (29) is hyperbolic
and has the same stability as a.
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