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Abstract. We extend the study of the integrability done by Leach and Mir-
itzis (J. Nonlinear Math. Phys. 13 (2006), 535–548) on the classical model
of competition between three species studied by May and Leonard (SIAM J.
Appl. Math. 29 (1975), 243–256), to all real values of the parameters. Addi-
tionally our results provide all polynomial, rational and analytic first integrals
of this extended model. We also classify all the invariant algebraic surfaces of
these models.

1. Introduction and statement of the main results

Nonlinear ordinary differential equations appear in many branches of applied
mathematics and physics. For a 3–dimensional system the existence of two first
integrals whose gradients are linearly independent in R3 except perhaps in a zero
Lebesgue measure set, determine completely its phase portrait because the inter-
sections of the invariant levels of these two first integrals determine the trajectories
of the system. The knowledge of a unique first integral reduces the study of the
dynamics of the system from dimension 3 to dimension 2. So the study of the exis-
tence of first integrals is an important subject in the qualitative theory of differential
equations. Many different methods have been used for studying the existence of
first integrals of non–linear differential systems based on: Noether symmetries [6],
the Darboux theory of integrability [8, 17], the Lie symmetries [1, 23], the Painlevé
analysis [3], the use of Lax pairs [12], the direct method [9, 10], the linear com-
patibility analysis method [24], the Carlemann embedding procedure [7, 2], the
quasimonomial formalism [4], etc.

In this paper we use the Darboux theory of integrability to study the existence
of first integrals for the model used by May and Leonard [18] for studying the
competition among three species. This model is

Ẋ = X(1−X − aY − bZ),

Ẏ = Y (1− bX − Y − aZ),

Ż = Z(1− aX − bY − Z),

(1)
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where a, b ∈ R and the dot denotes derivative with respect to the time t. Note
that we are interested in the integrability of system (1) for all real values of its pa-
rameters, and not only for their positive values which are the ones which biological
meaning.

Doing the change of variables

x = Xe−t, y = Y e−t, z = Ze−t, s = et,

system (1) becomes

x′ = −x(x+ ay + bz),

y′ = −y(bx+ y + az),

z′ = −z(ax+ by + z),

(2)

where a, b ∈ R and here the prime denotes derivative with respect to the new time s.

Leach and Miritzis in [13] proved that system (2) has a first integral when either
a+ b = 2, or a = b, but in [13] it is unknown if for other values of the parameters
a and b, system (2) has or not other first integrals. As we shall show for the case
a + b = −1, system (2) has also a first integral. Additionally we also prove that
when a = b = −1 the system has two independent first integrals. We note that
the existence of first integrals for system (2) imply the existence of invariants for
system (1). Here an invariant is a first integral depending on the time.

We have computed the first integrals Hk = Hk(x, y, z) when either a+ b = 2, or
a = b and they are

H1 =
xyz

(x+ y + z)3
if a+ b = 2,

H2 = (xyz)2+a
(
(x− y)(x− z)(y − z)

)−(2a+1)
if a = b 6= 1,

H3 =
x

y
, H4 =

x

z
if a = b = 1,

H2, H5 = x2y2 − x2yz − xy2z + x2z2 − xyz2 + y2z2 if a = b = −1.

Let U ⊂ R3 be an open subset. We say that the non–constant function H : U →
R is a first integral of the polynomial vector field

(3) X = −x(x+ ay + bz)
∂

∂x
− y(bx+ y + az)

∂

∂y
− z(ax+ by + z)

∂

∂z
,

on U associated to system (2), if H(x(t), y(t), z(t)) = constant for all values of t
for which the solution (x(t), y(t), z(t)) of X is defined on U . Clearly H is a first
integral of X on U if and only if XH = 0 on U .

When H is a polynomial we say that H is a polynomial first integral. When H
is a rational function which is not a polynomial we say that H is a proper rational
first integral. Finally when H is an analytic function we say that H is an analytic
first integral.

Our main results on the integrability of system (2) are the following ones.

Theorem 1. The following statements hold.

(a) The unique polynomial first integrals of system (2) are:
(a.1) H2 when a = b and either −(2 + a)/(2a+ 1), or −(2a+ 1)/(2 + a) is

a nonnegative integer; and all the polynomial functions in the variable
H2.
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(a.2) H2 and H5 when a = b = −1; and all the polynomial functions in the
variables H2 and H5.

(a.3) H6 = xyz if a + b = −1; and all the polynomial functions in the
variable H6. Note that H6 = H2 when a = b = −1/2.

(b) The unique proper rational first integrals of system (2) are:
(b.1) H3 and H4 when a = b = 1; and all proper rational functions in the

variable H3 and H4.
(b.2) H1 when a+b = 2 and (a, b) 6= (1, 1); and all proper rational functions

in the variable H1.
(b.3) H2 when a = b and either (2+a)/(2a+1) ∈ Q, or (2a+1)/(2+a) ∈ Q

and a does not satisfy the conditions of statement (a.1); and all proper
rational functions in the variable H2.

(c) All the analytic first integrals are analytic functions in the variable H2 for
the values of a = b and a satisfying the conditions of statement (a.1); all
the analytic functions in the variables H2 and H5 when a = b = −1; and
all the analytic functions in the variable H6 when a+ b = −1.

We remark that since the polynomial differential system (2) is homogeneous,
knowing the homogeneous polynomial first integrals of the system, we can determine
easily all the polynomial and analytic first integrals of system (2). For more details
see Proposition 6. So statement (c) of Theorem 1 follows from statement (a) of the
same theorem.

For proving Theorem 1 we shall use the invariant algebraic surfaces of system
(2). This is the basis of the Darboux theory of integrability. In 1878 Darboux [8]
showed how can be constructed the first integrals of planar polynomial differential
systems possessing sufficient invariant algebraic curves. The Darboux theory of
integrability works for real or complex polynomial ordinary differential equations.
As it is explained for instance in [14] the study of complex invariant algebraic curves
is necessary for obtaining all the real first integrals of a real polynomial differential
equation.

The vector field X associated to system (2) is defined in (3). We say that
h = h(x, y, z) = 0 with h ∈ C[x, y, z]\C is an invariant algebraic curve of the vector
field X if it satisfies Xh = Kh for some polynomial K = K(x, y, z) ∈ C[x, y, z],
called the cofactor of h = 0. Note that K has degree at most 1. The polynomial
h is called a Darboux polynomial, and we also say that K is the cofactor of the
Darboux polynomial h.

In the next result we characterize all the irreducible Darboux polynomials of
system (2) with non–zero cofactor. Note that the Darboux polynomials with zero
cofactor are the polynomial first integrals, which have been characterized in The-
orem 1. See Proposition 3 for obtaining all the Darboux polynomials of system
(2).

Theorem 2. The unique irreducible Darboux polynomials with non–zero cofactor
of system (2) are:

(a) x, y, z with cofactors −(x+ ay + bz), −(bx+ y + az) and −(ax+ by + z)
respectively, for all a, b ∈ R.

(b) x+ y + z with cofactor −(x+ y + z) if a+ b = 2.
(c) x − z, y − z and z − x with cofactors −(x + ay + z), −(ax + y + z) and

−(x+ y + az) respectively, if b = a 6= 1.
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(d) All homogeneous polynomials of degree 1 if a = b = 1.

The integrability of other 3-dimensional Lotka-Volterra systems different to sys-
tem (2) has already been studied. See for instance [5, 11, 15, 19, 20, 21].

In Section 2 we state and prove preliminary results for our homogeneous poly-
nomial differential system (2). In Section 3 we prove some results of system (2)
restricted to either x = 0, or y = 0, or z = 0 that are important for proving The-
orem 1. In section 4 we start to compute the homogeneous Darboux polynomials
with non–zero cofactor. In Section 5 we start the study of the polynomial first
integrals. Finally in Section 6 we prove Theorems 1 and 2.

2. Preliminaries

Here we provide some general results on the Darboux theory of integrability that
we shall use, and some first elementary results on system (2).

Proposition 3. Let f be a polynomial and f =

s∏

j=1

f
αj

j its decomposition into

irreducible factors in C[x, y, z]. Then f is a Darboux polynomial of system (2) if
and only if all the fj are Darboux polynomials of system (2). Moreover, if K and

Kj are the cofactors of f and fj respectively, then K =

s∑

j=1

αjKj.

Proof. See [14]. ¤

The following result is well-known and it is proved easily using the Darboux
theory of integrability.

Proposition 4. System (2) has a proper rational first integral if and only if it has
two Darboux polynomials with the same non–zero cofactor.

Lemma 5. Any Darboux polynomial f 6= 0 of system (2) has a cofactor of the
form

(4) K = a1x+ a2y + a3z.

Proof. See [22] where the authors prove Lemma 5 in a more general context of
arbitrary homogeneous polynomial systems. ¤

The following result is well-known, see for instance Proposition 1 in [16].

Proposition 6. The following statements hold:

(a) Let f be a polynomial. We write f in sum of its homogeneous parts as
f = f1 + . . . + fn. Then f is a Darboux polynomial of system (2) with
cofactor K if and only if fj is a Darboux polynomial of system (2) with
cofactor K for all j = 1, . . . , n.

(b) Let f be a formal power series. We write f in sum of its homogeneous parts
as f =

∑
j≥1 fj, with fj being homogeneous polynomials of degree j. Then

f is a formal first integral of system (2) if and only if fj is a polynomial
first integral of system (2) for all j ≥ 1.

Proposition 7. The unique irreducible Darboux polynomials of degree 1 with non–
zero cofactor of system (2) are:
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(a) x, y, z with cofactors −(x+ ay + bz), −(bx+ y + az) and −(ax+ by + z)
respectively, for all a, b ∈ R.

(b) x+ y + z with cofactor −(x+ y + z) if a+ b = 2.
(c) x − z, y − z and z − x with cofactors −(x + ay + z), −(ax + y + z) and

−(x+ y + az) respectively, if b = a 6= 1.
(d) All homogeneous polynomials of degree 1 if a = b = 1.

Proof. It follows easily from the definition of Darboux polynomial. ¤

From statement (b.1) of Theorem 1 system (2) with b = a = 1, or b = a = −1 are
completely integrable (i.e. they have two first integrals whose gradients are linearly
independent in R3 except perhaps in a zero Lebesgue measure set), in what follows
we do not consider these particular systems.

Let σ : C[x, y, z] → C[x, y, z] be the automorphism

σ(x) = y, σ(y) = z, σ(z) = x.

Proposition 8. If g is an irreducible homogeneous Darboux polynomial of degree
> 1 for system (2) with cofactor K given by (4), then f = g · σ(g) · σ2(g) is a
homogeneous Darboux polynomial of system (2) invariant by σ with cofactor α(x+
y + z), where α = a1 + a2 + a3.

Proof. Since (2) is invariant under σ and σ2, so by Proposition 3 f = g·σg·σ2g is also
a Darboux polynomial of system (2) with cofactor K+σ(K)+σ2(K) = α(x+y+z),
where α = a1 + a2 + a3. ¤

3. System (2) restricted to x = 0, or y = 0, or z = 0.

We will consider in this section system (2) restricted to either x = 0, or y = 0, or
z = 0. Due to the invariance of system (2) with respect to σ and σ2 it is sufficient
to study system (2) restricted to z = 0, and after applying σ and σ2 to the results
obtained for z = 0 we get the results for system (2) restricted to x = 0 and y = 0,
respectively.

Let N be the set of positive integers. For n ∈ N we define

(5) Cn = {a, b ∈ R : a = 1−n1, b = 1−n2, n1n2 = n, n1 +n2 ≤ n, n1, n2 ∈ N}.
Theorem 9. For system (2) restricted to z = 0 the following statements hold.

(a) the unique homogeneous polynomial first integrals are

(6) H = x1−by1−a((b− 1)x+ (1− a)y)−1+ab

if (a, b) ∈ Cn (see (5)); and all homogeneous polynomials in the variable
H.

(b) All the irreducible Darboux polynomials with non–zero cofactor are x and y
for all a and b; and additionally (b− 1)x+ (1− a)y when a 6= 1 and b 6= 1.

Proof. We consider system (2) restricted to z = 0, i.e.,

(7) ẋ = −x(x+ ay), ẏ = −y(bx+ y).

It follows by direct computations that H as in (6) is a first integral of system (7).
Furthermore, it is a homogeneous polynomial of degree n ≥ 1 if and only if

1− a = n1, 1− b = n2, ab− 1 = n− n1 − n2, n1 + n2 ≤ n, n1, n2 ∈ N,



6 J. LLIBRE AND C. VALLS

that is if and only if

1− a = n1, 1− b = n2, n1n2 = n, n1 + n2 ≤ n, n1, n2 ∈ N,
which clearly implies that (a, b) ∈ Cn, n > 1, n1 6= 1 and n2 6= 1. Hence statement
(a) is proved.

It also follows by direct computations that the unique irreducible Darbox poly-
nomials of system (7) of degree one are x and y for all a, b. Moreover if a 6= 1 and
b 6= 1 the polynomial (b− 1)x+ (1− a)y is also an irreducible Darboux polynomial
of sytem (7).

Let f be an irreducible homogeneous Darboux polynomial of system (7) of degree
n ≥ 2. We will reach a contradiction and this will conclude the proof of the theorem.
Since f is a Darboux polynomial of system (7), it satisfies

(8) −x(x+ ay)
∂f

∂x
− y(bx+ y)

∂f

∂y
= (a1x+ a2y)f, a1, a2 ∈ C.

We assume that either a1 6= 0 or a2 6= 0. If we restrict equation (23) to x = 0 and
denote by f the restriction of f to x = 0, we get that f = f(y) 6= 0 (otherwise
f would be reducible) is a homogeneous polynomial of degree n, that is f = α0y

n

with α0 ∈ C. On the other hand f is a homogeneous Darboux polynomial of degree
n of system (7) restricted to x = 0, that is it satisfies

−y2
df

dy
= a2yf i.e. f = α0y

−a2 , α0 ∈ C.

Therefore equating the two expressions for f we get a2 = −n. In a similar way
restricting to y = 0 we get that a1 = −n. Thus K = −n(x+ y) and (23) becomes

(9) −x(x+ ay)
∂f

∂x
− y(bx+ y)

∂f

∂y
= −n(x+ y)f.

Now we consider three different cases.

Case 1: b 6= 1 and a 6= 1. In this case we introduce the change of variables
(X,Y ) = ((b− 1)x+ (1− a)y, y). In these new variables system (7) becomes

X ′ =
X

1− b
(X + (a+ b− 2)Y ), Y ′ =

Y

1− b
(bX + (ab− 1)Y ).

We denote f̃ = f̃(X,Y ) = f(x, y). We have that f̃ satisfies
(10)

X

1− b
(X+(a+b−2)Y )

∂f̃

∂X
+

Y

1− b
(bX+(ab−1)Y )

∂f̃

∂Y
=

n

1− b
(X+(b+a−2)Y )f̃ .

Now we denote by f̂ the restriction of f̃ to X = 0. Since f is an irreducible

polynomial we get that f̂ 6= 0 and it satisfies (10) restricted to X = 0, that is

(ab− 1)Y 2

1− b

df̂

dY
=

n

1− b
(b+ a− 2)Y f̂ .

Solving this linear differential equation we deduce that f̂ = α0y
n(2−a−b)/(1−ab), with

α0 ∈ C. Since f̂ has degree n, we must impose 2− a− b = 1− ab, or equivalently
(a− 1)(b− 1) = 0. That is a = 1 or b = 1, a contradiction.

Case 2: a = 1. In this case we have b 6= 1. Then (9) becomes

−x(x+ y)
∂f

∂x
− y(bx+ y)

∂f

∂y
= −n(x+ y)f.
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Solving this partial differential equation in f we get that

f(x, y) = xng
(y
x
− log

(xb

y

))
,

where g is a function in the variable y/x−log(xb/y). Since f must be a homogeneous
polynomial of degree n we must have that g = cn with cn ∈ C. Then f(x, y) = cnx

n,
a contradiction with the fact that f is irreducible and n > 1.

Case 3: b = 1. In this case we have a 6= 1. Then (9) becomes

(11) −x(x+ ay)
∂f

∂x
− y(x+ y)

∂f

∂y
= −n(x+ y)f.

From this equation we get that x+ y must divide ∂f/∂x, and since f is a homoge-
neous polynomial of degree n, we obtain that f = f0(y) + (x + y)2g, where f0(y)
is a homogeneous polynomial in the variable y of degree n, i.e., f0(y) = α0y

n with
α0 ∈ C and g is a homogeneous polynomial in x, y of degree n − 2. We will show
that g = 0 and we will reach a contradiction with the fact that f is irreducible of
degree n ≥ 2. We consider two subcases.

Subcase 3.1: g is not divisible by (x+ y). Substituting f in (11) we obtain

− 2(x+ y)(x2 + (1 + a)xy + y2)g − x(x+ ay)(x+ y)2
∂g

∂x
− y(x+ y)3

∂g

∂y

= −n(x+ y)3g.

Now simplifying by x+ y, the above equation becomes

−x(x+ ay)(x+ y)
∂g

∂x
− y(x+ y)2

∂g

∂y
= [2x(x+ ay) + 2y(x+ y)− n(x+ y)2]g.

Since 2x(x + ay) + 2y(x + y) − n(x + y)2 is not divisible by x + y we have that g
must be divisible by x+ y, a contradiction.

Subcase 3.2: g is divisible by x+ y. In this case we have that f = α0y
n+(x+ y)mḡ

where m ≥ 3, α0 ∈ C and ḡ is a homogeneous polynomial in x and y of degree
n−m. Furthermore, ḡ is not divisible by x+ y. Then ḡ satisfies, after simplifying
by (x+ y)m−1

(12) −x(x+ay)(x+y)
∂ḡ

∂x
−y(x+y)2

∂ḡ

∂y
= [mx(x+ay)+my(x+y)−n(x+y)2]ḡ.

If m = n then ḡ is a constant and thus it follows from (12) that it must be the
constant zero. Otherwise if m < n, then since mx(x+ ay) +my(x+ y)− n(x+ y)2

is not divisible by x+y it follows again from (12) that ḡ must be divisible by x+y,
a contradiction. ¤

4. Homogeneous Darboux polynomials with non–zero cofactor
invariant by σ

In this section we study the homogeneous Darboux polymomials of system (2)
invariants by σ and with non–zero cofactor.

Theorem 10. System (2) has no homogeneous Darboux polynomials invariant by
σ with cofactor K = α(x + y + z), α ∈ C \ {0} that are irreducible and of degree
n ≥ 2.
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Proof. If we denote by f̃ = f̃(x, y) the restriction of f to z = 0, then f̃ 6= 0
because f is irreducible and it is a homogeneous Darboux polynomial of degree
n of system (7) with cofactor α(x + y). Then from Theorem 9 we obtain that

f̃ = cxm1ym2((b − 1)x+ (1 − a)y)n−m1−m2 for some integers 0 ≤ m1,m2 ≤ n and

c ∈ C \ {0}. Then, the cofactor of f̃ is ((1 − b)n2 − n)x + ((1 − a)n1 − n)y. This
implies that α = −n+(1− a)m1 and (1− a)m1 = (1− b)m2. We consider different
cases.

Case 1: a = 1, b 6= 1. Now it follows from (1− a)m1 = (1− b)m2 that m2 = 0 and

α = −n. Then f̃ = cxn, c ∈ C \ {0}. Since f is invariant by σ and σ2, applying σ
and σ2 to f we get that f can be written in the following three forms

f = cxn + zg = cyn + xσ(g) = czn + yσ2(g).

Evaluating cxn + zg = czn + yσ2(g) on z = y = 0 we get c = 0, in contradiction
with the fact that c 6= 0. This concludes the proof of the theorem in this case.

Case 2: b = 1, a 6= 1. It follows from (1−a)m1 = (1−b)m2 and α = −n+(1−a)m1

that m1 = 0 and α = −n. Then f̃ = cyn, c ∈ C \ {0}. Since f is invariant by σ
and σ2, we obtain

f = cyn + zg = czn + xσ(g) = cxn + yσ2(g).

Evaluating it on z = y = 0 we get c = 0, in contradiction with the fact that c 6= 0.

Case 3: a + b = 2 with (a, b) 6= (1, 1). In this case it follows from (1 − a)m1 =

(1 − b)m2 that m1 = m2 = 0. Then α = −n and f̃ = c(x + y)n, c ∈ C \ {0}. On
the other hand, the Darboux polynomial f satisfies the equation

−x(x+ay+(2−a)z)
∂f

∂x
−y((2−a)x+y+az)

∂f

∂y
−z(ax+(2−a)y+z)

∂f

∂z
= −n(x+y+z)f.

We introduce the change of variables (X,Y, Z) = (x, y, z + x + y). In these new
variables system (2) with a+ b = 2 becomes

X ′ = −X((a− 1)X + 2(a− 1)Y + (2− a)Z),

Y ′ = Y (2(a− 1)X + (a− 1)Y − aZ),

Z ′ = −Z2.

(13)

We denote f∗ = f∗(X,Y, Z) = f(x, y, z). We have that f∗ satisfies

−X((a− 1)X + 2(a− 1)Y + (2− a)Z)
∂f∗

∂X
+ Y (2(a− 1)X + (a− 1)Y − aZ)

∂f∗

∂Y

− Z2 ∂f
∗

∂Z
= −nZf∗.

Now we denote by f the restriction of f∗ to Z = 0. We obtain that f satisfies

−(a− 1)X(X + 2Y )
∂f

∂X
+ (a− 1)Y (2X + Y )

∂f

∂Y
= 0.

Since XY (X+Y ) is a first integral of system (23) restricted to Z = 0, we have that
f = f(XY (X + Y )) and it must be a homogeneous polynomial of degree n. Then
f = α0(XY (X + Y ))m for some α0 ∈ C \ {0}, m a positive integer and n = 3m.
We note that α0 6= 0 since otherwise we get a contradiction with the fact that f is
irreducible. Therefore

f = α0X
mY m(X + Y )m2 + Zg
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for some polynomial g = g(X,Y, Z) of degree n− 1. Imposing that f is a Darboux
polynomial of equation (23) with cofactor −nZ we obtain, after simplifying by Z
that

α0X
mY m(X + Y )m−1

(
((a− 4)m+ n)X − ((a+ 2)m− n)Y

)
+ (n− 1)Zg

= X((a− 1)X + 2(a− 1)Y + (2− a)Z)
∂g

∂X
− Y (2(a− 1)X + (a− 1)Y − aZ)

∂g

∂Y

+ Z2 ∂g

∂Z
.

Setting ḡ(X,Y ) = g(X,Y, 0), we obtain that ḡ satisfies

α0X
mY m(X + Y )m−1

(
((a− 4)m+ n)X − ((a+ 2)m− n)Y

)

= X((a− 1)X + 2(a− 1)Y )
∂ḡ

∂X
− Y (2(a− 1)X + (a− 1)Y )

∂ḡ

∂Y
.

(14)

We note that ḡ cannot be zero since otherwise α0 = 0, a contradiction. We now
show that

(15) ḡ = Gm−1h, G = XY (X + Y ), h = b0X
2 + b1XY + b3Y

2, b0, b1, b2 ∈ C.
To prove (15) we assume that either ḡ is not divisible by G, or G divides g but
Gm−1 does not divide ḡ and we shall arrive to contradiction.

Subcase 3.1: ḡ is not divisible by G. We first denote by g1 the restriction of ḡ to
X = 0. Then g1 is either 0 or a homogeneous polynomial of degree 3m − 1 that
satisfies (14) restricted to X = 0. In this last case we have

(a− 1)Y 2 dg1
dY

= 0, that is g1 = 0.

Then ḡ = Xh1 for some homogeneous polynomial h1 = h1(X,Y ) of degree 3m− 2.

Now we denote by g2 the restriction of ḡ to Y = 0. Proceeding as for g1 we obtain
that g2 = 0 and hence ḡ = Y h2 for some homogeneous polynomial h2 = h2(X,Y )
of degree 3m− 2.

Finally if we denote by g3 the restriction of g to Y = −X. Then g3 is a ho-
mogeneous polynomial of degree 3m − 1 that satisfies (14) restricted to Y = −X,
i.e.,

(1− a)X2 dg3
dX

= 0 that is g3 = 0,

and ḡ = (X + Y )h3 for some homogeneous polynomial h3 = h3(X,Y ) of degree
3m− 2. Therefore,

g = XY (X + Y )h4 = Gh4

for some homogeneous polynomial h4 = h4(X,Y, Z) of degree 3m− 4, a contradic-
tion with the fact that ḡ is not divisible by G.

Subcase 3.2: ḡ is divisible by G but not by Gm−1. We have ḡ = Glh with 1 ≤ l ≤
m−2 and h = h(X,Y ) is a homogenous polynomial of degree 3(m− l) not divisible
by G. We note that since G is a first integral of system (23) restricted to Z = 0,
then h satisfies after simplifying by Gl,

α0X
m−lY m−l(X + Y )m−1−l

(
((a− 4)m+ n)X − ((a+ 2)m− n)Y

)

= (a− 1)X(X + 2Y )
∂h

∂X
− (a− 1)Y (2X + Y )

∂h

∂Y
.

(16)
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Now proceeding for h as in Case 1 we get that h must be divisible by G, a contra-
diction.

Thus ḡ = Gm−1h for some homogeneous polynomial h = h(X,Y ) of degree two
that we write as h = b0X

2 + b1XY + b2Y
2. This proves (15). From (15) and (16)

(with l = m− 1) we get, after simplifying by Gm−1 that

α0XY
(
((a− 4)m+ n)X − ((a+ 2)m− n)Y

)

= (a− 1)X(X + 2Y )(2b0X + b1Y )− (a− 1)Y (2X + Y )(b1X + 2b2Y ).

The unique solution of this equality is b0 = b1 = b2 = 0 and α0 = 0, in contradiction
with α0 6= 0.

Case 4: b = a 6= ±1. In this case it follows from (1 − a)m1 = (1 − b)m2 that

m1 = m2 = m. Then α = −n+ (1− a)m and f̃ = cxmym(x− y)n−2m, c ∈ C \ {0}.
We first show that α = −n. Indeed, if we denote by f∗ = f∗(z) the restriction of
f to x = y = 0 we get that either f∗ = 0 or f∗ is a homogeneous polynomial of
degree n.

In the first case we can write f as f = xf1 + yf2 for some homogeneous poly-
nomials f1 = f1(x, y, z) and f2 of degree n − 1. Without loss of generality we can
assume that f2 does not depend on x. Since f is invariant by σ we get that it can
be written as

f = xf1 + yf2 = yσ(f1) + zσ(f2) = zσ2(f1) + xσ2(f2),

where f2 = f2(y, z), σ(f2) = σ(f2)(z, x) and σ2(f2) = σ2(f2)(x, y). Doing x = y =
0 in xf1 + yf2(y, z) = yσ(f1) + zσ(f2)(z, x) we get σ(f2)(z, 0) = 0. Consequently
σ(f2)(z, x) = xh(z, x). So f2(y, z) = zh(y, z). Now we have f = xf1 + yzh(y, z).

Since f̃ = f(x, y, 0) = xf1(x, y, 0) = cxmym(x − y)n−2m, we get that if m 6= 0
then f = cxmym(x − y)n−2m + yzh(y, z), a contradiction with the fact that f is
irreducible. Then m = 0 and from the definition of α we get that α = −n.

Now we assume f∗ 6= 0. Then f∗ is a homogeneous polynomial of degree n, i.e.,
f∗ = α0z

n, with α0 ∈ C\{0}. Moreover f∗ is also a Darboux polynomial of system
(2) restricted to x = y = 0 and we get

−z2
df∗

dz
= αzf∗ that is f∗ = α0z

−α, α0 ∈ C,

which obviously implies that α = −n.

In short we have proved that α = −n. Then f̃ = c(x−y)n and f = c(x−y)n+zg
for some homogeneous polynomial g of degree n− 1 and satisfies

−x(x+ ay + az)
∂f

∂x
− y(ax+ y + az)

∂f

∂y
− z(ax+ ay + z)

∂f

∂z
= −n(x+ y + z)f.

We note that in this case x − y is an invariant of system (2). We introduce the
change of variables (X,Y, Z) = (x, x−y, z). In these new variables system (2) with
b = a 6= 1 becomes

X ′ = −X((1 + a)X − aY + aZ),

Y ′ = −Y (2X − Y + aZ),

Z ′ = −Z(2aX − aY + Z).

(17)
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We denote f = f(X,Y, Z) = f(x, y, z). We have that f satisfies

(18) −X((1 + a)X + aZ)
∂f

∂X
− Z(2aX + Z)

∂f

∂Z
= −n(2X + Z)f.

We note that since f is irreducible we have that f 6= 0. Furthermore from the
discussion above we have that it is divisible by Z. We write it as

f = Zmg, g =

n−m∑

j=0

gj(X)Zj , gj is a homogeneous polynomial of degree n−m− j.

Then g0 6= 0, is a homogeneous polynomial of degree n−m and it follows from (18)
after simplifying by zm and then restricting to z = 0, that it satisfies

−(1 + a)X2 dg0
dX

= 2(am− n)Xg0, that is g0 = α0X
2(am−n)/(a+1), α0 ∈ C.

Therefore since a 6= 1 to have that g0 is a polynomial of degree n−m we must have
m = −n, which is not possible. Then g0 = 0, a contradiction.

Case 5: a 6= 1, b 6= 1, a + b 6= 2 and b 6= a. In this case we have that α =
−n + (1 − a)m1 with (1 − a)m1 = (1 − b)m2. Then and f̃ = cxm1ym2((b − 1)x +
(1 − a)y)n−m1−m2 , c ∈ C \ {0}. We first show that α = −n. Indeed, if we denote
by f∗ = f∗(z) the restriction of f to x = y = 0 we get that either f∗ = 0 or f∗ is
a homogeneous polynomial of degree n.

Assume f∗ 6= 0. Proceeding as in the first paragraph of Case 4 we get that f
can be written as f = xf1 + yzf2(y, z) for some homogeneous polynomials f1 =

f1(x, y, z) and f2 = f2(y, z) of degrees n − 1 and n − 2, respectively. Since f̃ =
f(x, y, 0) = xf1, we get that ifm2 6= 0 then f = cxm1ym2(x−y)n−m1−m2+yzh(y, z),
a contradiction with the fact that f is irreducible. Then m2 = 0 and since a 6= 1
we have m1 = 0 and α = −n.

Assume that f∗ 6= 0. Proceeding as in the first paragraph of the proof of Case
4 we get that α = −n.

In short f satisfies

−x(x+ ay + bz)
∂f

∂x
− y(bx+ y + az)

∂f

∂y
− z(ax+ by + z)

∂f

∂z
= −n(x+ y + z)f.

We denote by f̃ = f̃(x, y) the restriction of f to z = 0. Since α = −n it follows

from the discussion above that f̃ = c((b − 1)x + (1 − a)y)n and f = c((b − 1)x +
(1− a)y)n + zg, where g = g(x, y, z) is a homogenous polynomial of degree n− 1.
Since f is invariant by σ and σ2, we obtain

f = α0((b− 1)x+ (1− a)y)n + zg = α0((b− 1)y + (1− a)z)n + xσ(g),

= α0((b− 1)z + (1− a)x)n + yσ2(g).

Evaluating it on x = z = 0 we get

α0(1− a)nyn = α0(b− 1)nyn, that is (1− a)n = (b− 1)n,

in contradiction with the fact that a + b 6= 2 and b 6= a. This concludes the proof
of the theorem. ¤



12 J. LLIBRE AND C. VALLS

5. Polynomial first integrals

The main result in this section is:

Theorem 11. System (2) has no homogeneous polynomial first integrals invariant
by σ that are not divisible by a Darboux polynomial of degree one with non–zero
cofactor.

Before proving Theorem 11 we show the following preliminary result.

Proposition 12. Let n1, n2 ∈ Z with n1 6= n2, n1, n2 ≥ 2 and let g = g(x, y) be a
homogeneous polynomial of degree n1n2 − 1 satisfying

− x(x+ (1− n1)y)
∂g

∂x
− y((1− n2)x+ y)

∂g

∂y
− ((1− n1)x+ (1− n2)y)g

+ n1n2α0x
n2yn1(−n2x+ n1y)

n1n2−n1−n2−1F (x, y) = 0,

(19)

for some α0 ∈ C with

(20) F (x, y) = (2n2 − n2
2 − n1)x+ (−2n1 + n2

1 + n2)y.

Then α0 = 0.

Proof. We can assume that α0 6= 0 (otherwise there is nothing to prove) and we
will arrive to a contradiction. We first show that

(21) g = (−n2x+ n1y)
n1n2−n1−n2−2h0,

with n1n2−n1−n2−2 > 0 and where h0 = h0(x, y) is a homogeneous polynomial of
degree n1+n2−1. To do it we assume that either g is not divisible by −n2x+n1y,
or −n2x+ n1y divides g but (−n2x+ n1y)

n1n2−n1−n2−2 does not divide g and we
shall arrive to contradiction

We introduce the change of variables

(22) (X,Y ) = (x,−n2x+ n1y).

In these new variables system (2) restricted to z = 0 becomes

X ′ = −X

n1
((n1 + n2 − n1n2)X + (1− n1)Y ),

Y ′ = − Y

n1
((n1 + n2)X + Y ).

(23)

We denote g∗ = g∗(X,Y ) = ḡ(x, y). We have that g∗ satisfies

− X

n1
((n1 + n2 − n1n2)X + (1− n1)Y )

∂g∗

∂X
− Y

n1
((n1 + n2)X + Y )

∂g∗

∂Y

−
(
(1− n1)X + (1− n2)

n2X + Y

n1

)
g∗

+ n1n2α0X
n2

(n2X + Y

n1

)n1

Y n1n2−n1−n2−1F ∗(X,Y ) = 0,

(24)

where

F ∗(X,Y ) = (2n2 − n2
2 − n1)X + (−2n1 + n2

1 + n2)
Y + n2X

n1
.
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Case 1: g∗ is not divisible by Y . Now let g̃ = g̃(X) be the restriction of g∗ to Y = 0.
We have that g̃ 6= 0. Then g̃ is a homogeneous polynomial of degree n1n2 − 1 and
satisfies

−n1 + n2 − n1n2

n1
X2 dg̃

dX
− X

n1
(n1 − n2

1 + n2 − n2
2)g̃ = 0

that is g̃ = α2X
(n2

1+n2
2−n1−n2)/(n1+n2−n1n2) with α2 ∈ C \ {0}. Since g̃ is a poly-

nomial and n2
1 + n2

2 − n1 − n2 > 0 and n1 + n2 − n1n2 < 0 we get g̃ = 0, a
contradiction.

Case 2: g∗ is divisible by Y , but not by Y n1n2−n1−n2−2; i.e., g∗ = Y mg1 with
1 ≤ m < n1n2 − n1 − n2 − 2 and g1 = g1(X,Y ) a homogeneous polynomial of
degree n1n2 − 2 − m which is not divisible by Y . It follows from (24) that after
simplifying by Y m, g1 satisfies

− X

n1
((n1 + n2 − n1n2)X + (1− n1)Y )

∂g1
∂X

− Y

n1
((n1 + n2)X + Y )

∂g1
∂Y

−
(
(1− n1 +m)X + (1− n2 +m)

n2X + Y

n1

)
g1

+ n1n2α0X
n2−m

(n2X + Y

n1

)n1

Y n1n2−n1−n2−m−1F ∗(X,Y ) = 0.

(25)

Let g̃1 be the restriction of g1 = g1(X) to Y = 0, we have that g̃1 6= 0. Then g̃1 is
a homogeneous polynomial of degree n1n2 − 2−m and satisfies

(26) −X2

n1
(n1 + n2 − n1n2)

dg̃1
dx

+
X

n1
(n1(n1 − 1−m) + n2(n2 − 1−m))g̃1 = 0.

Hence g̃1 = α2x
(n1(n1−1−m)+n2(n2−1−m))/(n1+n2−n1n2) with α2 ∈ C \ {0}. Since g̃1

is a polynomial of degree n1n2 − 1−m we must have

(n1(n1 − 1−m) + n2(n2 − 1−m)) = (n1 + n2 − n1n2)(n1n2 −m− 2).

That is

Tn1,n2 = n2
1 + n1 − n1n2 −mn1n2 − n2

1n2 + n2
2 + n2 − n1n

2
2 + n2

1n
2
2 = 0.

Using thatm < n1n2−n1−n2−2 we get that 0 = Tn1,n2 > n2
1+n2

2+n1+n2+n1n2 >
0, a contradiction. Hence (21) is proved.

It follows from (19) and (21) after simplifying by (−n2x+ n1y)
n1n2−n1−n2−2 we

get that h0 satisfies

− x(x+ (1− n1)y)
∂h0

∂x
− y((1− n2)x+ y)

∂h0

∂y

+
(
(1 + 2n1 + n2 − n1n2)x+ (1 + 2n2 + n1 − n1n2)y

)
h0

+ n1n2α0x
n2yn1(−n2x+ n1y)F (x, y) = 0.

(27)

We can rewrite (27) in the following way

dh0

dt
+

(
(1 + 2n1 + n2 − n1n2)x+ (1 + 2n2 + n1 − n1n2)y

)
h0

+ n1n2α0x
n2yn1(−n2x+ n1y)F (x, y) = 0,

(28)

where the derivatives are evaluated along a solution of system

(29) x′ = −x(x+ (1− n1)y), y′ = −y((1− n2)x+ y).
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We denote (xn1,n2
(t), yn1,n2

(t)) the solution of system (29) where n1, n2 are param-
eters. Then since (29) is invariant by the change τ(x, y, n1, n2) = (y, x, n2, n1) we
have that if we denote by h0,n1,n2(t) = h0(xn1,n2(t), yn1,n2(t)) the solution of (28),
then τ(h0,n1,n2

(t)) defined as h0(yn2,n1
(t), xn2,n1

(t)) also satisfies (28). Therefore
h0,n1,n2

(t) and τ(h0,n1,n2
(t)) are solutions of the same differential equation.

We shall prove that every solution h0,n1,n2
(t) of system (28) is divisible by xn2(t)

(respectively yn1(t)). Hence since system (28) is invariant under τ , we get that
every solution h0,n1,n2

(t) will be also divisible by yn1(t) (respectively xn2(t)). The
strategy will be the following. We will first show that any solution h0,n1,n2(t) of
(28) must be divisible by −n2x + n1y. Then we will consider two cases: n1 > n2

and n1 < n2 (recall that n1 6= n2). In the first case we will show that h0,n1,n2
(t)

must be divisible by xn2 and thus by the explanation above also by yn1 , and in the
second case we will show that it must be divisible by yn1 and consequently by xn2 .
In short we will have proved that any solution h0,n1,n2(t) of (27) must be of the
form

h0,n1,n2
(t) = cxn2yn1(−n2x+ n1y), c ∈ C,

and thus

g = cxn2yn1(−n2x+ n1y)
n1n2−n1−n2−1, c ∈ C.

Then it follows from (19) after simplifying by xn2yn1(−n2x + n1y)
n1n2−n1−n2−1

that

0 = c(n1x+ n2y) + n1n2α0F (x, y)

= c(n1x+ n2y) + n1n2α0((2n2 − n2
2 − n1)x+ (−2n1 + n2

1 + n2)y).

The unique solutions of this equation are

c = n1 = 0; c = n2 = 0; n1 = n2 = 0; c = α0 = 0;

c = n2(2 + (n2 − 3)n2), n1 = 2− n2;

c =
n2
2α0

2
(2n2 − 3∓

√
3i), n1 =

n2

2
(1∓

√
3i).

Note that all these solutions are in contradiction with the fact that α0 6= 0 and
n1, n2 ≥ 2 are integers. So the proposition is proved.

To complete the proof we are left with showing first that h0,n1,n2(t) is divisible
by −n2x+ n1y and xn2yn1 by considering the two cases mentioned above.

Now we assume that h0,n1,n2(t) is not divisible by −n2x+ n1y. Introducing the
variables (X,Y ) given in (22) and proceeding as in Case 2 with m = n1n2 − n1 −
n2 − 2 and setting h∗

0 = h∗
0(X,Y ) = h0(x, y) and h̃0 = h̃0(X) = h∗

0(X, 0) we get

that h̃0 6= 0 and satisfies

−X2

n1
(n1+n2−n1n2)

dh̃0

dx
+

X

n1
(2n2

1+2n2
2+3n1n2−n2

1n2−n1n
2
2+n1+n2)h̃0 = 0,

i.e. the equation (26) with the corresponding value of m. Hence

h̃0 = α2x
(2n2

1+2n2
2+3n1n2−n2

1n2−n1n
2
2+n1+n2)/(n1+n2−n1n2),

with α2 ∈ C \ {0}. Since h̃0 is a homogeneous polynomial of degree n1 + n2 + 1 we
must have

2n2
1 + 2n2

2 + 3n1n2 − n2
1n2 − n1n

2
2 + n1 + n2 = (n1 + n2 − n1n2)(n1 + n2 + 1).
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That is 0 > Tn1,n2
= (n1 + n2)

2 = 0, a contradiction. Hence h0,n1,n2
(t) is divisible

by −n2x+ n1y.

Now we assume that n1 > n2 and we will prove that h0,n1,n2(t) is divisible by
xn2 . The case n1 < n2 can be studied interchanging x by y and n1 by n2.

Assume n1 > n2 and we consider two cases.

Case a: h0,n1,n2(t) is not divisible by x. Now let h1 = h1(y) be the restriction of
h0,n1,n2

(t) to x = 0. We have that h1 6= 0. Then h1 is a homogeneous polynomial
of degree n1 + n2 + 1 and from (27) we get

−y2
dh1

dy
+(1+2n2+n1−n1n2)yh1 = 0 i.e., h1 = α2y

2n2+n1+1−n1n2 , α2 ∈ C\{0}.

Therefore 2n2 + n1 + 1 − n1n2 = n1 + n2 + 1, a contradiction with the fact that
n1, n2 ≥ 2.

Case b: h0,n1,n2(t) is divisible by x, but not by xn2 , i.e., h0,n1,n2(t) = xmh1 with
1 ≤ m < n2 and h1 = h1(x, y) a homogeneous polynomial of degree n1+n2+1−m
that is not divisible by x. It follows from (27) that after simplifying by xm, h1

satisfies

− x(x+ (1− n1)y)
∂h1

∂x
− y((1− n2)x+ y)

∂h1

∂y

+
(
(1 + 2n1 + n2 − n1n2 −m)x+ (1 + 2n2 + n1 − n1n2 −m(1− n1))y

)
h1

+ n1n2α0x
n2−myn1(−n2x+ n1y)F (x, y) = 0.

Let h1 be the restriction of h1 to x = 0. Then h1 satisfies

−y2
dh1

dy
+ (1 + 2n2 + n1 − n1n2 −m(1− n1))yh1 = 0

that is

h1 = α2y
2n2+n1−n1n2+1−m(1−n1), α2 ∈ C \ {0}.

Since h1 is a homogeneous polynomial of degree n1 + n2 + 1−m we must have

2n2 + n1 + 1− n1n2 −m(1− n1) = n1 + n2 + 1−m that is m = n2 −
n2

n1
,

a contradiction with the fact that m is an integer and n2 < n1. This completes the
proof of the proposition. ¤

Proof of Theorem 11. We proceed by contradiction. Let f be a homogeneous poly-
nomial first integral of system (2) invariant by σ and that it is not divisible by
a Darboux polynomial of degree one with non–zero cofactor of system (2). We
consider three cases.

Case 1: (a, b) 6∈ Cn, where Cn is defined in (5). Let f be the restriction of f to z = 0.
Then f is a homogeneous polynomial and in view of Theorem 9 (see (6)) we have
that f = 0 and thus f = zf1 for some homogeneous polynomial f1 = f1(x, y, z), a
contradiction because z is a Darboux polynomial with non–zero cofactor.

Case 2: (a, b) ∈ Cn and b 6= a. We have that a = 1− n1, b = 1− n2 with n1 6= n2,
n = n1n2 and n1, n2 ≥ 2. By means of Proposition 7 and Theorem 10 we have that
the unique irreducible Darboux polynomials of system (2) in this case are x, y and
z.
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We denote by f the restriction of f to z = 0. In view of Theorem 9 we have that

f = α0x
n2yn1(−n2x+ n1y)

n1n2−n1−n2 , α0 ∈ C.

Note that if f = 0, then since f is invariant by σ, f is divisible by xyz and we are
done. So we can assume that α0 ∈ C \ {0}. Then

f = α0x
n2yn1(−n2x+ n1y)

n1n2−n1−n2 + zg,

where g = g(x, y, z) is a homogeneous polynomial of degree n1n2 − 1. Then g
satisfies

− x(x+ (1− n1)y + (1− n2)z)
∂g

∂x
− y((1− n2)x+ y + (1− n1)z)

∂g

∂y

− z((1− n1)x+ (1− n2)y + z)
∂g

∂z
− ((1− n1)x+ (1− n2)y + z)g

+ n1n2α0x
n2yn1(−n2x+ n1y)

n1n2−n1−n2−1F (x, y) = 0,

with F (x, y) as in (20). If we set ḡ = g(x, y, 0), taking z = 0 in the equation above
we have

− x(x+ (1− n1)y)
∂ḡ

∂x
− y((1− n2)x+ y)

∂ḡ

∂y
− ((1− n1)x+ (1− n2)y)ḡ

+ n1n2α0x
n2yn1(−n2x+ n1y)

n1n2−n1−n2−1F (x, y) = 0.

By Proposition 12 we get that α0 = 0, a contradiction.

Case 3: (a, b) ∈ Cn and b = a 6= ±1. Then n2 = n1 and b = a = 1 − n1. We
introduce the change of variables (X,Y, Z) = (x, y, z−x). In these variables system
(2) becomes

X ′ = −X((2− n1)X + (1− n1)Y + (1− n1)Z),

Y ′ = −Y (2(1− n1)X + Y + (1− n1)Z),

Z ′ = −Z(2X + (1− n1)Y + Z).

We denote f∗(X,Y, Z) = f(x, y, z) and f = f(X,Y ) = f∗(X,Y, 0). Then f satisfies

−X((2− n1)X + (1− n1)Y )
∂f

∂X
− Y (2(1− n1)X + Y )

∂f

∂Y
= 0.

Solving it we get that f = f(G) where

G =
Y n1−2(Y −X)3−2n1

X
.

Since G (or the inverse of G) must be a polynomial of degree n ≥ 1 we must have

n1 ≤ 2, n1 ≥ 3

2
that is n1 = 2.

Therefore n1 = 2 and b = a = −1, and this case is not considered. This completes
the proof of the theorem. ¤
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6. Proof of Theorems 1 and 2

In this section we prove the two main results of this paper, Theorems 1 and 2.

Proof of Theorem 1. When a = b = ±1 direct computations prove statements (a.2)
and (b.1).

Let f be a first integral. Now taking into account that we can always assume
that the first integrals are invariant by σ (otherwise we consider f · σ(f) · σ2(f)),
that we can restrict the polynomial first integrals to homogeneous polynomials, and
that by Proposition 3 any Darboux polynomial factorizes in irreducible Darboux
polynomials, by Propositions 4 and 7 and Theorem 11 any first integral (either a
polynomial or a proper rational function) must be of the form
(30)

f =





xm1ym2zm3(x+ y + z)m4 if a+ b = 2,

xm1ym2zm3(x− y)m4(x− z)m5(y − z)m6 if a = b 6= ±1,

xm1ym2zm3 for any other (a, b) 6= ±(1, 1),

where m1,m2,m3,m4,m5,m6 are integers. We consider three different cases.

Case 1: a+b = 2. In this case we have that f is as in (30), i.e., f = xm1ym2zm3(x+
y+ z)m4 for some integers m1,m2,m3 and m4 with m1+m2+m3+m4 6= 0. Since
f is invariant by σ, we have that f is equal to

xm1ym2zm3(x+ y + z)m4 = ym1zm2xm3(x+ y + z)m4 = zm1xm2ym3(x+ y + z)m4 .

Therefore equating the three relations we get

(31) m1 = m2 = m3 = m.

Thus f must be of the form f = (xyz)m(x + y + z)m4 . Imposing that f is a first
integral we get 0 = −(m4+3m)(xyz)m(x+y+z)m4+1. Then m4 = −3m, and thus

f =
xyz

(x+ y + z)3
.

This completes the proof of statement (b.2).

Case 2: a = b 6= ±1. In this case we have that f is a polynomial or a proper
rational first integral if and only if f = xm1ym2zm3(x−y)m4(x−z)m5(z−y)m6 , for
some integers m1,m2,m3,m4,m5 and m6. Since f is invariant by σ, we have that

f = xm1ym2zm3(x− y)m4(x− z)m5(z − y)m6

= ym1zm2xm3(y − z)m4(y − x)m5(x− z)m6

= zm1xm2ym3(z − x)m4(z − y)m5(y − x)m6 ,

that is

(32) m1 = m2 = m3 = m, m4 = m5 = m6 = l.

Thus f must be of the form f = (xyz)m
(
(x− y)(x− z)(y − z)

)l
. Imposing that f

is a first integral we get

0 =
(
(2a+ 1)m+ (2 + a)l)(xyz)m

(
(x− y)(x− z)(y − z)

)l
(x+ y + z).

Then (2a+1)m+(2+a)l = 0. If (2a+1)/(2+a) 6∈ Q or (2+a)/(2a+1) 6∈ Q, then
system (2) has no first integrals that are either a polynomial or a proper rational
function. Otherwise it has a first integral of the form

H(x, y, z) = (xyz)2+a
(
(x− y)(x− z)(y − z)

)−(2a+1)
.
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Note thatH is a polynomial if and only if either−(2+a)/(2a+1), or−(2a+1)/(2+a)
is a nonnegative integer. Otherwise it is a proper rational function. So statements
(a.1) and (b.3) are proved.

Case 3: a + b 6= 2, a 6= b. In this case we have that f = xm1ym2zm3 , for some
integers m1,m2 and m3. Since f is invariant by σ, we have that

f = xm1ym2zm3 = ym1zm2xm3 = zm1xm2ym3 ,

that is

(33) m1 = m2 = m3 = m.

Without loss of generality we can take m = 1. Imposing that f is a first integral
we get

0 = (1 + a+ b)xyz(x+ y + z), that is a+ b = −1.

Therefore, if a+b 6= −1, system (2) has no first integrals that are either a polynomial
or a proper rational function. If a+ b = −1 then it has the first integral

H(x, y, z) = xyz

that is a polynomial. This shows statement (a.3) and concludes the proof of the
theorem. ¤

Proof of Theorem 2. If g is an irreducible homogeneous Darboux polynomial of
degree 1 with non–zero cofactor, then Theorem 2 follows from Proposition 7.

Now we assume that g is an irreducible homogeneous Darboux polynomial of
degree n > 1 for system (2) with non–zero cofactor K of the form (4). We consider
two cases.

Case 1: g is invariant by σ. In this case it has cofactor K = α(x + y + z) with
α ∈ C \ {0}. By Theorem 10 this is not possible.

Case 2: g is not invariant by σ. Then from Proposition 8 we can assume that
f = g · σ(g) · σ2(g) is a homogeneous Darboux polynomial invariant by σ, with
degree 3n and cofactor K = α(x+ y + z) with α ∈ C \ {0}. By Proposition 7 and
Theorem 10 f has the form as in (30). We consider different subcases.

Subcase 2.1: a + b = 2. In this case using that f is invariant by σ, we get the
relations of (31). Furthermore, since the degree of f is 3n we get that 3m+ l = 3n,
i.e., l = 3(n−m). Hence proceeding as in the case 1 of the proof of Theorem 1, f =
(xyz)m(x+y+z)3(n−m). Therefore g = xm(x+y+z)n−m, or g = ym(x+y+z)n−m,
or g = zm(x+y+z)n−m, a contradiction with the fact that g is irreducible of degree
greater than or equal to 2.

Subcase 2.2: a = b 6= ±1. Using that f is invariant by σ, we get the relations
of (32). Furthermore, since the degree of f is 3n we get that l = n − m. Hence

f = (xyz)m
(
(x − y)(x − z)(y − z)

)n−m
. Therefore proceeding as in subcase 2.1

we get a contradiction with the fact that g is irreducible of degree greater than or
equal to 2.

Subcase 2.3: a + b 6= 2, a 6= b. Now using that f is invariant by σ, we get the
relations of (33). Furthermore, since the degree of f is 3n we get that m = n.
Hence f = (xyz)n. Therefore, proceeding as in subcase 2.1 we get a contradiction
with the fact that g is irreducible of degree greater than or equal to 2. ¤
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