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Abstract. For a large class of quadratic–linear polynomial differential sys-
tems with a unique singular point at the origin having non-zero eigenvalues,
we classify the ones which have a Liouvillian first integral, and we provide the
explicit expression of them.

1. Introduction

For planar differential systems the notion of integrability is based on the existence
of a first integral. For such systems the existence of a first integral determines
completely its phase portrait. Then a natural question arises: Given a system of
ordinary differential equations in R2 depending on parameters, how to recognize the
values of such parameters for which the system has a first integral?

In particular the planar integrable systems which are not Hamiltonian, i.e. the
systems in R2 that cannot be written as x′ = −∂H/∂y, y′ = ∂H/∂x for some
function H : R2 → R of class C2, are in general very difficult to detect. Here the
prime denotes derivative with respect to the independent variable t.

A first step to detect those first integrals in different classes of functions, namely
polynomial, rational, elementary or Liouvillian, is to determine the algebraic in-
variant curves (i.e., the so-called Darboux polynomials).

Let P and Q be two real polynomials in the variables x and y, then the system

(1) x′ = P (x, y), y′ = Q(x, y),

is a quadratic polynomial differential system if the maximum of the degrees of the
polynomials P and Q is two.

Quadratic polynomial differential systems have been investigated for many au-
thors, and more than one thousand papers have been published about these systems
(see for instance [14] and [16]), but the problem of classifying all the integrable qua-
dratic polynomial differential systems remains open.

Let U ⊂ R2 be an open set. We say that the non–constant function H : U → R
is a first integral of the polynomial vector field X on U , if H(x(t), y(t)) = constant
for all values of t for which the solution (x(t), y(t)) of X is defined on U . Clearly
H is a first integral of X on U if and only if XH = 0 on U .

The study of the Liouvillian first integrals is a classical problem of the inte-
grability theory of the differential equations which goes back to Liouville, see for
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details again [15]. A Liouvillian first integral is a first integral H which is a Liou-
villian function, that is, roughly speaking which can be obtained “by quadratures”
of elementary functions. For a precise definition see [15].

As far as we know the Liouvillian first integral of some multi-parameter family
of planar polynomial differential systems has only been completed classified for the
planar Lotka-Volterra system of degree 2, see [3, 10, 11, 12, 13].

It was proved in [9] (see Proposition 3), that any quadratic–linear differential
system

(2) x′ = a00 + a10x+ a01y + a20x
2 + a11xy + a02y

2, y′ = A+Bx+ Cy,

with A2+B2+C2 6= 0 having a unique finite singular point with non-zero eigenval-
ues, through a linear change of variables and a rescaling of the time can be written
into the form

(3) x′ = P (x, y) = bx+ cy + dx2 + exy + fy2, y′ = Q(x, y),

where P (x, y) 6= bx+ cy and Q(x, y) is either x or y. Moreover

(S1) if Q(x, y) = y, then d = 0, b 6= 0 and e2 + f2 6= 0
(S2) if Q(x, y) = x, then f = 0, c 6= 0 and d2 + e2 6= 0.

We do not consider in (3) the case Q(x, y) = 0 because the possible singular
points have always a Jacobian matrix with zero eigenvalues. We do not consider
in (3) the case Q(x, y) = 1 since it has no singular points. When Q(x, y) = y then
d = 0 and b 6= 0. Indeed, the singular points of (3) satisfy in this case y = 0 and
P (x, y) = x(b + dx) = 0. Therefore, since we want the origin to be the unique
singular point we must have bd = 0 with b2 + d2 6= 0. If d 6= 0 then b = 0 and
in this case the Jacobian matrix at the origin has a zero eigenvalue, so we do not
consider this case. Therefore we must have d = 0 and b 6= 0. Furthermore, since
P (x, y) must be quadratic and d = 0, we must have e2 + f2 6= 0. Proceeding in
a similar way when Q(x, y) = x in order that it has only the origin as a singular
point with Jacobian having non-zero eigenvalues, we must have f = 0 and c 6= 0.
Furthermore in order that P (x, y) be quadratic we must have d2 + e2 6= 0.

Our first result is the following.

Theorem 1. System (3) satisfying (S1) is integrable.

(a) If e 6= 0 then the first integral is

(4) H = exp(−ey)y−b
(
ex+ fy + exp(ey)(ce+ (1− b)f)yEIb(ey)

)
,

where EIb(x) is the exponential integral function

EIb(x) =

∫ ∞

1

exp(−xt)

tb
dt = xb−1Γ(1− b, x) for any b ∈ R,

where Γ is the incomplete gamma function, for more details see [1].
(b) If e = 0 and (b− 1)(b− 2) 6= 0, then the first integral is

(5) H = y−b
(
(b− 1)(b− 2)x+ y((b− 2)c+ (b− 1)fy)

)
.

(c) If e = 0 and b = 1, then the first integral is

(6) H =
x

y
− fy − c log y.
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(d) If e = 0 and b = 2, then the first integral is

(7) H =
x+ cy

y2
− f log y.

The proof of Theorem 1 is given in Section 3.
Our second result is the following.

Theorem 2. The unique Liouvillian first integrals H = H(x, y) of system (3)
satisfying (S2) are:

(a) H = (c+ ex)c/e
2

exp
(
y2/2− x/e

)
if d = b = 0;

(b) H = exp(−2dy)
(
2cdy + c+ 2d2x2

)
if b = e = 0.

The proof of Theorem 2 is given in Section 6. For proving Theorem 2 we need
to characterize the Darboux polynomials and the exponential factors of system (3)
satisfying (S2). The analytic first integrals of system (3) satisfying either (S1), or
(S2) were classified in [9].

Note that the results of this paper are an important step towards the almost
impossible (by now) task of classifying all quadratic–linear polynomial differential
systems having a Liouvillian first integral.

The quadratic-linear differential systems (2) studied in this paper appears in
many different areas of the sciences, we shall select three of their applications.
Thus, for instance Birkhoff and Smith [2] in his study of the structure of the sur-
face transformations they need at some moment to consider the quadratic-linear
differential system

ẋ = y, ẏ = −x− αy − µx2 − y2,

with α, µ > 0.

The flow of a perfect gas with constant specific heats through a rotating chanel
of constant cross-sectional area, as used in certain helicopter propulsion systems
and wind-driven gas turbines, is described by an equation of the form

ẋ = 1 + δy + γx2, ẏ = y(αx+ βy),

where the real parameter γ may be zero, providing quadratic-linear differential
systems, see the work of Kestin and Zaremba [6].

The Falkner-Skan equation y′′′ + y′′y + λ(1 − y′2) = 0 appears related to the
study of boundary layer problems in fluid dynamics. A key point for understanding
the origin of his period orbits is played by the quadratic-linear differential system

ẏ = z, ż = 1− y2.

See for more details the paper of Llibre and Messias [8].

2. Preliminary results

As it is explained in [7] the study of complex invariant algebraic curves and of
complex exponential factors is necessary for obtaining all the real Liouvillian first
integrals of the real polynomial differential equations.

The vector field X associated to system (1) is defined by

X = P
∂

∂x
+Q

∂

∂y
.
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We say that h = h(x, y) = 0 with h(x, y) ∈ C[x, y] \ C is an invariant algebraic
curve of the vector field X if it satisfies

Xh = P
∂h

∂x
+Q

∂h

∂y
= Kh.

The polynomial K = K(x, y) ∈ C[x, y] is called the cofactor of h = 0 and has
degree at most m − 1. The polynomial h is called a Darboux polynomial, and we
also say that K is the cofactor of the Darboux polynomial h.

It was proved in [4] that h is a Darboux polynomial of system (1) with cofactor
Kh if and only if the factorization of h into irreducible factors in C[x, y], i.e.,
h = hn1

1 · · ·hnr
r satisfy that each hi is a Darboux polynomial for i = 1, . . . , r with

cofactor Khi
.

In [9] the authors proved that system (3) satisfying (S2) has no polynomial first
integrals, that is, it has no Darboux polynomials with zero cofactor.

Proposition 3. System (3) satisfying (S2) with b2+d2 6= 0, b2+e2 6= 0 and having
an irreducible invariant algebraic curve h = h(x, y) = 0 are the following:

(a) h = x+ c/e, if de 6= 0 and b = dc/e, with cofactor K = dx+ ey,
(b) h = x+ ey/d if de 6= 0 and b = dc/e− e/d, with cofactor K = d(c+ ex)/e.

Proposition 3 will be proved in Section 4.

We say that E = exp(g/h), with g, h ∈ C[x, y], (g, h) coprime and E 6∈ C, is an
exponential factor of the vector field X if it satisfies

XE = P
∂E

∂x
+Q

∂E

∂y
= KE, i.e. P

∂(g/h)

∂x
+Q

∂(g/h)

∂y
= K.

The polynomial K = K(x, y) ∈ C[x, y] is called the cofactor of E and has degree
at most m− 1.

Proposition 4. The following statements hold.

(a) If E = exp(g/h) is an exponential factor for the polynomial system (1) and
h is not a constant polynomial, then h = 0 is an invariant algebraic curve.

(b) Eventually exp(g) can be an exponential factor, coming from the multiplicity
of the infinite invariant straight line.

For a geometrical meaning of the exponential factors and a proof of Proposition
4 see [5].

Proposition 5. System (3) satisfying (S2) with b2+d2 6= 0, b2+e2 6= 0 and having
an exponential factor are the following:

(a) exp(y) and exp(−x/b+ y + ey2/(2b)) if d = 0 and b 6= 0, with cofactors x
and −cy/b, respectively.

(b) exp(y) in any other case with cofactor x.

The proof of Proposition 5 is given in Section 5.

A non–constant complex function R : C2 → C is an integrating factor of the
polynomial vector field X on U , if one of the following three equivalent conditions
holds

∂(RP )

∂x
= −∂(RQ)

∂y
, div (RP,RQ) = 0, XR = −R div(P,Q),
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on U . As usual the divergence of the vector field X is given by

div (P,Q) =
∂P

∂x
+

∂Q

∂y
.

The next result summarizes the main results about the Darboux theory of inte-
grability that we shall use in this paper.

Theorem 6. Suppose that the polynomial vector field X of degree m defined in C2

admits p invariant algebraic curves fi = 0 with cofactors Ki, for i = 1, . . . , p and q
exponential factors Ej = exp(gj/hj) with cofactors Lj, for j = 1, . . . , q. Then the
following statements hold.

(a) There exist λi, µj ∈ C not all zero such that

(8)

p∑

i=1

λiKi +

q∑

j=1

µjLj = 0

if and only if the function

(9) fλ1
1 · · · fλp

p Eµ1

1 · · ·Eµq
q

is a first integral of X (a such function is called a Darboux function).
(b) There exist λi, µj ∈ C not all zero such that

(10)

p∑

i=1

λiKi +

q∑

j=1

µjLj = −div (P,Q),

if and only if the function of Darboux type (9) is an integrating factor of
X.

(c) If p + q = [m(m + 1)/2] + 1, then there exist λi, µj ∈ C not all zero such
that (8) holds. If p + q = m(m + 1)/2, then there exist λi, µj ∈ C not all
zero such that either (8), or (10) holds.

To prove the results related with Liouvillian first integrals we use the following
result proved in [15].

Theorem 7. The polynomial differential system (1) has a Liouvillian first integral
if and only if it has an integrating factor which is a Darboux function.

3. Proof of Theorem 1

System (3) satisfying (S1) can be written as the following linear differential
system

(11)
dx

dy
=

b+ ey

y
x+ c+ fy.

We consider different cases.

Case 1: e 6= 0. In this case the general solution of (11) is

x(y) =
−fy − e exp(ey)ybH − exp(ey)(ce+ (1− b)f)yEIb(ey)

e
,

where H is a first integral, since it is an integration constant. Hence system (3)
satisfying (S1) is integrable with first integral H as in (4).
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Case 2: e = 0 and (b− 1)(b− 2) 6= 0. Then the general solution of (11) is

x(y) =
cy

1− b
+

fy2

2− b
+ ybH,

where H is an integration constant. Hence system (3) satisfying (S1) is integrable
with first integral H as in (5).

Case 3: e = 0 and b = 1. Then the general solution of (11) is

x(y) = y(fy +H + c log y),

where H is again an integration constant. Hence system (3) satisfying (S1) is
integrable with first integral H as in (6).

Case 4: e = 0 and b = 2. Then the general solution of (11) is

x(y) = y(−c+ yH + fy log y).

Hence system (3) satisfying (S1) is integrable with first integral H as in (7). The
proof of Theorem 1 is now completed.

4. Darboux polymomials of system (3) satisfying (S2)

System (3) satisfying (S2) with d = 0 and b = 0 is

x′ = y(c+ ex), y′ = x,

which clearly is Liouvillian integrable with the first integral of Theorem 2(a). More-
over, system (3) satisfying (S2) with b = e = 0 is

x′ = cy + dx2, y′ = x,

and it is easy to check that it has the Liouvillian first integral given in Theorem
2(b). Hence, from now on we will assume that b2 + d2 6= 0, and b2 + e2 6= 0.

In view of the results of [9] we have that system (3) satisfying (S2) has no Dar-
boux polynomials with zero cofactor. Therefore we only need to study the Darboux
polynomials with non–zero cofactor. Proposition 3 follows from the following three
lemmas.

Lemma 8. System (3) satisfying (S2) with d = 0 and b 6= 0, or d 6= 0 and e = 0
has no Darboux polynomials with non-zero cofactor.

Proof. We consider two different cases.

Case 1: d = 0 and b 6= 0. System (3) is

(12) x′ = bx+ cy + exy, y′ = x,

with bce 6= 0. We will show that this system has no irreducible Darboux polynomial
with non–zero cofactor. We proceed by contradiction. Let h = h(x, y) be an
irreducible Darboux polynomial with non-zero cofactor. Then it satisfies

(13) (bx+ cy + exy)
∂h

∂x
+ x

∂h

∂y
= (α0 + α1x+ α2y)h.

We write h in sum of its homogeneous parts as h =
∑n

j=0 hj(x, y) where each

hj(x, y) is a homogenous polynomial in the variables x, y. Since h is not a constant
we must have hn 6= 0 and n > 0. Moreover hn satisfies

exy
∂hn

∂x
= (α1x+ α2y)hn that is hn = cn(y) exp(α1x/(ey))x

α2/e cn(y) 6= 0.
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Since hn must be a polymomial we get α1 = 0, α2 = me with 0 ≤ m ≤ n, and
hn = cny

n−mxm with cn ∈ C \ {0}.
Now computing the terms of degree n in (13) we obtain

exy
∂hn−1

∂x
+ (bx+ cy)cnmxm−1yn−m + xcnx

m(n−m)yn−m−1

= emyhn−1 + α0cnx
myn−m.

Hence

hn−1 = cn−1x
myn−m−1 +

cncm

e
xm−1yn−m +

cn(m− n)

e
xm+1yn−m−2+

cn
e
xmyn−m−1(α0 − bm) log x.

Since hn−1 must be a polynomial and cn 6= 0 we get that α0 = bm and

hn−1 = cn−1x
myn−m−1 +

cncm

e
xm−1yn−m +

cn(m− n)

e
xm+1yn−m−2.

Furthermore since hn−1 is a polynomial and cnc 6= 0 we must have m ≥ 1 and
n ≥ 1. If n = m + 1 since cn 6= 0 we would have m = n which is not possible. If
m = n then

cn−1 = 0 and hn−1 =
cncn

e
xn−1.

Now computing the terms of degree n− 1 in (13) we obtain

exy
∂hn−2

∂x
+ (bx+ cy)

∂hn−1

∂x
+ x

∂hn−1

∂y
= enyhn−2 + bnhn−1.

Solving it we get

hn−2 = cn−2x
ny−2 +

c2cn(n− 1)n

2e2
xn−2 − bccnn

e2
xn−1y−1.

Since hn−2 must be a polynomial and bccnne 6= 0 we reach a contradiction. Hence
n ≥ m+ 2 and in this case computing the terms of degree n− 1 in (13) we obtain

exy
∂hn−2

∂x
+ (bx+ cy)

∂hn−1

∂x
+ x

∂hn−1

∂y
= emyhn−2 + bmhn−1.

Solving it we get

hn−2 =
xm−2y−m+n−4

2e2
[
2cncx

2y2(n−m) log x+ cn(m− n)(2 +m− n)x4

+ 2(cn−1e(1 +m− n) + bcn(n−m))x3y + 2c(cn−1e− bcn)mxy3

+ c2cn(m− 1)my4
]
.

Since hn−2 must be a polynomial we must have cnc(n − m) = 0, a contradiction
with the fact that cnc 6= 0 and n ≥ m+ 2.

Case 2: d 6= 0 and e = 0. In this case system (3) satisfying (S2) becomes

x′ = bx+ cy + dx2, y′ = x.

We introduce the change of variables (X,Y ) with x = X and y = (Y − c −
2d2x2)/(2cd). Then we have that

(14) X ′ = − c

2d
+ bX +

Y

2d
, Y ′ = 2dXY + 4bd2X2.
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Doing the change of variables (X,Y, t) → (X,Z, s) with Z = Y + 2bdX + c and
t = 2ds, system (14) becomes

Ẋ = Z, Ż = 4d2(cX + bZ +XZ),

where the dot denotes derivative with respect to s. Now changing (X,Z) → (x, y)
with x = Z and y = X, we obtain system (12) for which we know from Case 1 that
it has no Darboux polynomials with non–zero cofactor. So the lemma is proved. ¤

Lemma 9. System (3) satisfying (S2) with de 6= 0 and b = dc/e + γ with γ ∈
{0,−e/d} has the following Darboux polynomials with non–zero cofactor:

(a) h = x+ c/e if γ = 0 with cofactor dx+ ey;
(b) h = x+ ey/d if γ = −e/d with cofactor d(c+ ex)/e.

Proof. We consider two different cases.

Case 1: γ = 0. It is easy to check that system (3) satisfying (S2) has h1 = x+ c/e
as the unique irreducible Darboux polynomial of degree one with non-zero cofactor
dx+ ey. We will see that it is the only one. We introduce the variables (X, y) with
X = h1. In these variables system (3) satisfying (S2) becomes

(15) X ′ = X
(
dX + ey − dc

e

)
, y′ = X − c

e
.

Let h = h(X, y) be an irreducible Darboux polynomial of system (17) with non-zero
cofactor. Then it satisfies

(16) X
(
dX + ey − dc

e

) ∂h

∂X
+

(
X − c

e

)∂h
∂y

= (α0 + α1X + α2y)h.

We denote by h̄ = h̄(y) the restriction of h to X = 0. Then h̄ 6= 0 and satisfies

− c

e

dh̄

dy
= (α0 + α2y)h̄ that is h̄ = K exp

(−ey(2α0 + α2y)

2c

)
K ∈ C \ {0}.

Since h̄ must be a polynomial we have α0 = α2 = 0 and h̄ = K. Note that α1 6= 0
since otherwise the cofactor of h would be zero. Therefore h = K +Xg for some
g ∈ C[X, y]. Then introducing h in (16) with α0 = α2 = 0 and removing the
common factor X we obtain

(
dX + ey − dc

e

)(
g +X

∂g

∂X

)
+

(
X − c

e

)∂g
∂y

= α1(K +Xg).

Let ḡ = ḡ(y) be the restriction of g to X = 0. Then it satisfies

− c

e

dḡ

dy
+

(
ey − dc

e

)
ḡ = α1K,

that is

ḡ = K1 exp
(
− dy +

e2y2

2c

)
+

α1K√
c

√
π

2
exp

(cd2
2e2

− dy +
e2y2

2c

)
erf

(cd− e2y√
2ce

)
,

where erf (z) is the integral of the Gaussian distribution given by the entire function√
πerf (z) = 2

∫ z

0
e−t2 dt, for more details see [1]. Since ḡ must be a polynomial we

must have α1K = 0, a contradiction.

Case 2: γ = −e/d. In this case system (3) satisfying (S2) has h1 = x+ ey/d as
the unique irreducible Darboux polynomial of degree one with non-zero cofactor.
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We will see that this is in fact the only irreducible Darboux polynomial with non-
zero cofactor. We introduce the variables (X, y) with X = h1. In these variables
system (3) satisfying (S2) becomes

(17) X ′ = X
(
dX − ey +

dc

e

)
, y′ = X − e

d
y.

Let h = h(X, y) be an irreducible Darboux polynomial of system (17) with non-zero
cofactor. Then it satisfies

(18) X
(
dX − ey +

dc

e

) ∂h

∂X
+

(
X − e

d
y
)∂h
∂y

= (α0 + α1X + α2y)h.

We denote by h̄ = h̄(y) the restriction of h to X = 0. Then h̄ 6= 0 and satisfies

− e

d
y
dh̄

dy
= (α0 + α2y)h̄ that is h̄ = Ky−α0d/e exp(−α2dy/e) K ∈ C \ {0}.

Since h̄ must be a polynomial we have α2 = 0 and α0 = −le/d for some non–
negative integer l.

Now we write h in sum of its homogeneous parts as h =
∑n

j=0 hj(X, y) where
each hj is a homogeneous polynomial of degree j. We note that hn 6= 0 and n > 0.
Computing the terms of degree n+ 1 in (18) we have that

X(dX − ey)
∂hn

∂X
= α1Xhn that is hn = K(y)(dX − ey)α1/d,

where K(y) is a function in y which is not zero. Since hn must be a polynomial
we get α1/d = m for some non–negative integer m ∈ N and K(y) = cny

n−m with
cn ∈ C \ {0} and 0 ≤ m ≤ n. Therefore

hn = cn(dX − ey)myn−m, cn ∈ C \ {0}.
Now if we compute the terms of degree n in (18) we get

X(dX − ey)
∂hn−1

∂X
+

dc

e
X

∂hn

∂X
+

(
X − e

d
y
)∂hn

∂y
= dmXhn−1 −

le

d
hn.

Solving it we obtain

hn−1 = cn−1y
n−m−1(dX − ey)m − cn

de
y−m+n−1(dX − ey)m

(
− cd2my

dX − ey
+

e(l −m) log(dX − ey)− e(l − n) log(dX)

)
.

Since hn−1 must be a polynomial and e 6= 0 we have that l = m = n with n ≥ 1.
Then

hn = cn(dX − ey)n and hn−1 =
cncdn

e
(dX − ey)n−1.

Now if we compute the terms of degree n− 1 in (18) we have

X(dX − ey)
∂hn−2

∂X
+

dc

e
X

∂hn−1

∂X
+

(
X − e

d
y
)∂hn−1

∂y
= dnXhn−2 −

ne

d
hn−1.

Solving it we get

hn−2 =
cncn

2e2y2
(dX − ey)n

(
y(2deX − 2e2y + cd2(n− 1)y)

(dX − ey)2
+ 2 log

dX − ey

dX

)
.

Since hn−2 must be a polynomial we must have cncn = 0, a contradiction. This
concludes the proof of the lemma. ¤
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Lemma 10. System (3) satisfying (S2) with de 6= 0 and b = cd/e + γ with γ 6∈
{0,−e/d} has no Darboux polynomials with non–zero cofactor.

Proof. We write b = dc/e+ γ and system (3) satisfying (S2) becomes

(19) x′ =
(dc
e

+ γ
)
x+ cy + dx2 + exy, y′ = x.

Note that h satisfies

(20)

((dc
e

+ γ
)
x+ cy + dx2 + exy

)
∂h

∂x
+ x

∂h

∂y
= (α0 + α1x+ α2y)h.

We write h in sum of its homogeneous parts as h =
∑n

j=0 hj(x, y) where each hj

is a homogeneous polynomial of degree j and hn 6= 0 with n > 0. Computing the
terms of degree n+ 1 in (20) we get

(dx2 + exy)
∂hn

∂x
= (α1x+ α2y)hn that is hn = K(y)xα2/e(dx+ ey)α1/d−α2/e

which yields α2 = me for some non–negative integer m and α1/d = l+m for some
non–negative integer l. Then hn = cny

n−l−mxm(dx+ ey)l with cn ∈ C \ {0}.
Now computing the terms of degree n in (20) we get that

(dx2+exy)
∂hn−1

∂x
+

[(
γ+

cd

e

)
x+cy

]
∂hn

∂x
+x

∂hn

∂y
= (d(l+m)x+emy)hn−1+α0hn,

which yields

hn−1 = cn−1x
m(dx+ ey)lyn−m−l−1 − cn

e
xm(dx+ ey)lyn−m−l−1

[
− cmy

x

− e(e+ dγ)ly

d(dx+ ey)
+

1

e
(−α0e+ cdl + eγm) log x

+
1

de

(
α0de− cd2l − e(dγm+ e(l +m− n))

)
log(dx+ ey)

]
.

Since hn−1 must be a homogeneous polynomial of degree n− 1 we must have

l = n−m, α0 = mγ + (n−m)
cd

e
and cn−1 = 0,

which yields

hn = cnx
m(dx+ ey)n−m,

and

hn−1 =
cn
de

xm−1(dx+ ey)n−m−1(−e(e+ dγ)(m− n)x+ cdm(dx+ ey)).

Now computing the terms of degree n− 1 in (20) we obtain

(dx2 + exy)
∂hn−2

∂x
+

[(
γ +

cd

e

)
x+ cy

]
∂hn−1

∂x
+ x

∂hn−1

∂y

= (dnx+ emy)hn−2 +
(
mγ + (n−m)

cd

e

)
hn−1.
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Solving it we get

hn−2 = cn−2x
m(dx+ ey)n−my−2

+
cn

2de2y2
xm(dx+ ey)n−m

(
2cm(dγ(n−m− 1) + e(n−m))y

x

+
c2d(m− 1)my2

x2
+

e2(e+ dγ)2(m− n)(1 +m− n)y2

d(dx+ ey)2

+
2cd(e+ dγ)(m− 1)(m− n)y

dx+ ey
+

2cd(dγ(n− 2m) + e(n−m)) log x

e

+
2cd((e+ 2dγ)m− (e+ dγ)n) log(dx+ ey)

e

)
.

Since hn−2 must be a homogenous polynomial of degree n−2, cnγ(dγ+e) 6= 0 we get
that either m = n = 0, which is not possible, or m = 1 and n = (e+ 2dγ)/(e+ dγ)
(in the cases in which (e + 2dγ)/(e + dγ) ≥ 1 is an integer). In this last case we
obtain

hn = cnx(dx+ ey)dγ/(e+dγ), hn−1 =
cn
e
(dx+ ey)−e/(e+dγ)(cdx+ eγx+ cey),

and

hn−2 = −eγcn
2d

x(dx+ ey)−1−e/(e+dγ),

where we are also assuming that −e/(e + dγ) > 1 is an integer. Now computing
the terms of degree n− 2 in (20) we obtain

(dx2 + exy)
∂hn−3

∂x
+

[(
γ +

cd

e

)
x+ cy

]
∂hn−2

∂x
+ x

∂hn−2

∂y

= (dnx+ emy)hn−3 +
(
mγ + (n−m)

cd

e

)
hn−2.

Solving it we get

hn−3 =
cnγ

6d2e3y3
(dx+ ey)−(3e+2dγ)/(e+dγ)

[
ey(e3(2e+ dγ)xy2

− 3cd(dx+ ey)(4d2x2 + 6dexy + e2y2))− 12cd2x(dx+ ey)3 log
x

dx+ ey

]
.

Since hn−3 must be a homogenous polynomial of degree n−3, we must have 2cnγc =
0, a contradiction. This concludes the proof of the theorem in this case. ¤

5. Exponential factors of system (3) satisfying (S2)

Let E = exp(g/h) be an exponential factor of system (3) satisfying (S2) with
b2 + d2 6= 0 and b2 + e2 6= 0, having the cofactor L = β0 + β1x+ β2y where βi ∈ C
for i = 1, 2, 3. In view of Propositions 3 and 4 E must be of the form:

(E1) If either d = 0 and b 6= 0, or d 6= 0 and e = 0, or de 6= 0 and b = cd/e + γ
with γ 6∈ {0,−e/d}, then E = exp(g).

(E2) If de 6= 0 and b = cd/e, then E = exp(g/(x+ c/e)n) with n ∈ N ∪ {0}.
(E3) If de 6= 0 and b = cd/e−e/d, then E = exp(g/(x+ey/d)n) with n ∈ N∪{0}.
Proposition 5 will follow from the following two lemmas.
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Lemma 11. System (3) satisfying (S2) with d = 0 and b 6= 0 has the exponential
factors exp(y) and exp(−x/b+y+ey2/(2b)) with cofactors x and −cy/b, respectively.
Furthermore if either d 6= 0 and e = 0, or de 6= 0 and b = cd/e + γ with γ 6∈
{0,−e/d}, then exp(y) is the unique exponential factor with cofactor x.

Proof. From (E1) we have that any exponential factor must be of the form E =
exp(g) with g ∈ C[x, y] \ C and cofactor L = β0 + β1x+ β2y. Now we define

G = E exp(−β1y).

We claim that G = exp(T ) with T ∈ C[x, y] is an exponential factor of system (3)
satisfying (S2) with cofactor

L1 = β2y, β2 ∈ C.
Now we prove the claim. We have that

P (x, y)
∂G

∂x
+ x

∂G

∂y
= P (x, y)

∂E

∂x
exp(−β1y) + x

∂E

∂y
exp(−β1y)− β1xE exp(−β1y)

= (L− β1x)E exp(−β1y) = (β0 + β2y)G.

Therefore, since G is an exponential factor of system (3) satisfying (S2) with cofac-
tor β0 + β2y we obtain that

(21) P (x, y)
∂T

∂x
+ x

∂T

∂y
= β0 + β2y.

Evaluating (21) at x = y = 0 since system (3) satisfying (S2) has a unique fixed
point at the origin, we get that β0 = 0, and consequently L1 = β2y. This proves
the claim. We now consider two different cases.

Case 1: d = 0 and b 6= 0. Then system (3) satisfying (S2) becomes

x′ = bx+ cy + exy, y′ = x,

with ce 6= 0. Let T = T (x, y) be a polynomial satisfying (21), then

(22) (bx+ cy + exy)
∂T

∂x
+ x

∂T

∂y
= β2y.

We write T as a polynomial in the variable y as T =

n∑

j=0

Tj(x)y
j . Assume n ≥ 3.

Computing the coefficient of yn+1 in (22) we get

(c+ ex)
dTn

dx
= 0, that is Tn = cn ∈ C.

Computing the coefficient of yn in (22) we get

(c+ ex)
dTn−1

dx
= 0, that is Tn−1 = cn−1 ∈ C.

Furthermore, computing the coefficient of yn−1 in (22) and since n ≥ 3 we get

(c+ ex)
dTn−2

dx
+ ncnx = 0,

that is

Tn−2 = cn−2 − ncn

(x
e
− c

e2
log(c+ ex)

)
, cn−2 ∈ C.
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Since Tn−2 must be a polynomial we get that ncnc = 0. Since nce 6= 0 we must
have cn = 0 and then Tn = 0. Therefore, we have proved that

T = T0(x) + c1y + c2y
2.

From (22) we get

T0(x) = c0 +
1

(b+ ey)2
(
− x(c1 + 2c2y)(b+ ey)

+ y(bβ2 + cc1 + (2cc2 + β2e)y) log(bx+ cy + exy)
)
.

Since T0(x) must be a polynomial, we obtain

c2 =
ec1
2b

, β2 = −cc1
b

and T0(x) = c0 −
c1
b
x.

Therefore

T (x) = c0 −
c1
b
x+ c1y +

ec1
2b

y2, L = −cc1
b
y, c0, c1 ∈ C,

which proves the lemma in this case.

Case 2: d 6= 0 and e = 0, or de 6= 0 and b = cd/e + γ with γ 6∈ {0,−e/d}.
Therefore system (3) satisfying (S2) can be written as

(23) x′ = bx+ cy + dx2 + exy, y′ = x.

Let T = T (x, y) be a polynomial satisfying (21). We write it as a polynomial in

the variable x as T (x, y) =

n∑

j=0

Tj(y)x
j . Then computing the coefficient of xn+1 in

(21) with n ≥ 1 we get

dnTn +
dTn

dy
= 0 that is Tn = cn exp(−dny), cn ∈ C.

Since Tn must be a polynomial we have that cn = 0, and then Tn = 0 for n ≥ 1.
Therefore T = T0(y), and in view of (21) it satisfies

x
dT0

dy
= β2y,

which yields β2 = 0 and T0 ∈ C. Then the unique exponential factor in this case is
exp(y). This concludes the proof of the lemma. ¤
Lemma 12. The unique exponential factor for system (3) satisfying (S2) with
de 6= 0, and b = cd/e+ γ with γ ∈ {0,−e/d} is exp(y) with cofactor x.

Proof. We consider two different cases.

Case 1: γ = 0. Under the assumptions of Lemma 12 and introducing the change of
variables (X,Y ) = (x + c/e, y) we obtain that system (3) satisfying (S2) becomes
(15). From (E2) we have E = exp(g/Xn) with n ∈ N∪{0}. It satisfies the equation
(24)

X
(
dX+eY − dc

e

) ∂g

∂X
+
(
X− c

e

) ∂g

∂Y
−n

(
dX+eY − dc

e

)
g = (β0+β1X+β2Y )Xn.

We consider two different cases.

Case 1.1: n > 0. In this case evaluating (24) on X = 0 and denoting by ḡ = ḡ(Y ) =
g(0, Y ) we get that

− c

e

dḡ

dY
− n

(
eY − dc

e

)
ḡ = 0, that is ḡ = K exp

(
dny − e2ny2

2c

)
, K ∈ C.
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Since ḡ must be a polynomial we conclude that K = 0 and then ḡ = 0 a contradic-
tion with the fact that g is coprime with Xn. Therefore this case is not possible.

Case 1.2: n = 0. In this case we can write system (3) satisfying (S2) as in (23)
with b = cd/e. Then proceeding as in the proof of Case 2 in Lemma 11 we get that
the unique exponential factor is exp(y) with cofactor x.

Case 2: γ = −e/d. Under the assumptions of Lemma 12 and introducing the
change of variables (X,Y ) = (x + ey/d, y) we obtain that system (3) satisfying
(S2) becomes (17). In view of (E3) we have E = exp(g/Xn) with n ∈ N ∪ {0}. It
satisfies the equation
(25)

X
(
dX−eY +

dc

e

) ∂g

∂X
+
(
X− e

d
Y
) ∂g

∂Y
−n

(
dX−eY +

dc

e

)
g = (β0+β1X+β2Y )Xn.

We consider two different cases.

Case 2.1: n > 0. In this case evaluating (25) on X = 0 and denoting by ḡ = ḡ(Y ) =
g(0, Y ) we get

− e

d
Y

dḡ

dY
− n

(
− eY +

dc

e

)
ḡ = 0, that is ḡ = KY −cd2n/e2 exp

(
dnY ), K ∈ C.

Since ḡ must be a polynomial we conclude that K = 0, and then ḡ = 0 a con-
tradiction with the fact that g is coprime with Xn. Therefore this case is not
possible.

Case 2.2: n = 0. In this case we can write system (3) satisfying (S2) as in (23)
with b = cd/e − e/d. Then proceeding as in the proof of Case 2 in Lemma 11 we
get that the unique exponential factor is exp(y) with cofactor x. This concludes
the proof of the lemma. ¤

6. Proof of Theorem 2

We have proved that if d = b = 0 or b = e = 0, then we have the first integrals
of the statements of Theorem 2. Now it remains to show that when b2 + d2 6= 0
or b2 + e2 6= 0 there are no Liouvillian first integrals. By Theorem 7 in order that
system (3) satisfying (S2) has a Liouvillian first integral, it must have an integrating
factor given by a Darboux function (see (9)). We consider four different cases.

Case 1: d = 0 and b 6= 0. Then from Propositions 3 and 5 and Theorem 6(b)
system (3) satisfying (S2) has an integrating factor which is a Darboux function if
and only if

µ1x− µ2c

b
y = −b− ey,

which is not possible since b 6= 0.

Case 2: d 6= 0, e = 0 and b 6= 0, or de 6= 0 and b = cd/e + γ with γ 6∈ {0,−e/d}.
Therefore from Propositions 3 and 5 and Theorem 6(b) system (3) satisfying (S2)
has an integrating factor which is a Darboux function if and only if

µ1x = −b− 2dx− ey,

which is not possible since e2 + b2 6= 0.

Case 3: de 6= 0 and and b = cd/e. In this case from Propositions 3 and 5 and The-
orem 6(b) system (3) satisfying (S2) has an integrating factor which is a Darboux
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function if and only if

µ1x+ µ2(dx+ ey) = −cd

e
− 2dx− ey,

which is impossible since cd/e 6= 0.

Case 4: de 6= 0 and b = cd/e− e/d. From Propositions 3 and 5 and Theorem 6(b)
system (3) satisfying (S2) has an integrating factor which is a Darboux function if
and only if

µ1x+
µ2d

e
(c+ ex) = −cd

e
+

e

d
− 2dx− ey,

which is impossible since e 6= 0. This concludes the proof of the theorem.
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