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Abstract. The averaging theory of first order is applied to study a

generalized Yang–Mills system with two parameters. Two main results

are proved. First, we provide sufficient conditions on the two parameters

of the generalized system to guarantee the existence of continuous fam-

ilies of isolated periodic orbits parameterized by the energy, and these

families are given up to first order in a small parameter. Second, we

prove that for the non–integrable classical Yang–Mills Hamiltonian sys-

tems, in the sense of Liouville–Arnold, which have the isolated periodic

orbits found with averaging theory, can not exist any second first inte-

gral of class C1. This is important because most of the results about

integrability deals with analytic or meromorphic integrals of motion.

1. Introduction

We study a generalized classical Yang–Mills Hamiltonian [25], which con-

sists of a harmonic oscillator plus a homogeneous potential of fourth degree

(1) H =
1

2
(p2
x + p2

y + x2 + y2) +
a

4
x4 +

b

2
x2y2,

with two real parameters a and b. When a = 0 we obtain the Contopoulos

Hamiltonian, studied by him and coworkers during many years, see for in-

stance [11, 12, 13]. The Contopoulos Hamiltonian describes the perturbed
1
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central part of an elliptical or barred galaxy without escapes. When in the

Contopoulos Hamiltonian the quadratic part (x2 + y2)/2 is not present we

have the mechanical Yang–Mills Hamiltonian HYM = (p2
x+p2

y)/2+b x2y2/4;

the term x2y2 characterize the Yang–Mills potential, which arises in con-

nection with the classical Yang–Mills field with gauge group SU(2) for a

homogeneous two–component field [18]. Quartic homogeneous potentials

(without quadratic terms) have been studied by several authors, see for

instance [2, 5, 16], and it is well known that the Hamiltonian HYM with

b 6= 0 is non–integrable and strongly chaotic. Generalizations of the me-

chanical Yang–Mills Hamiltonian, with three up to five quartic terms, have

been considered in [9, 15, 23, 25]. Maciejewski et. al. [25] studied gen-

eralized Yang–Mills Hamiltonian systems which have a quadratic potential

plus a homogeneous of fourth degree potential with five parameters, and

they proved the existence of connected branches of non–stationary periodic

trajectories emanating from the origin. Caranicolas et. al. [9] studied a

Hamiltonian with a quartic potential of three parameters plus a quadratic

harmonic potential with frequencies ω1 and ω2 being two extra parameters

of the form

(2) H =
1

2
(p2
x + p2

y + ω2
1x

2 + ω2
2y

2) + ε(a x4 + 2b x2y2 + c y4),

and they calculated numerically families of periodic orbits and its charac-

teristic curves. In section 3 by means of a rescaling transformation we show
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that Hamiltonians of type (2) with ε 6= 0 are topologically equivalent to a

similar one with ε = 1.

Here we study the generalization of the Yang–Mills potentials given in (1)

with two real parameters a and b, in order that the problem be tractable

in a two–dimensional parameter space, although these calculations can be

generalized to higher dimensional parameter spaces. The Hamiltonian dif-

ferential system, or simply the Hamiltonian system associated to (1) is given

by

(3)

ẋ = px,

ẏ = py,

ṗx = −x− ax3 − b xy2,

ṗy = −y − b x2y .

As usual the dot denotes derivative with respect to the independent vari-

able, the time t. In this paper we name (3) the generalized classical Yang–

Mills Hamiltonian system with two parameters, or simply the Yang–Mills

(YM) systems.

Our first aim is to compute up to first order in a small parameter periodic

orbits by using the averaging theory, more precisely through the Averagin

Theorem of section 2, and to find conditions on the two parameters a and

b for their existence. The periodic orbits here studied are isolated in every

energy level and they are of special interest because they are the most simple

non–trivial solutions of the system, and their stability determines the kind
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of motion in their neighborhood. Our second objective will be to show that

when these periodic orbits exist, either the non–integrability of the YM

Hamiltonian system in the sense of Liouville–Arnold takes place for any

second first integral of class C1, or the system is integrable but the two first

integrals are dependent along those periodic orbits.

We shall use the averaging theory as it was established by Buică et. al.

[8], see section 2 for a summary of this tool. This method provides periodic

orbits of a perturbed periodic non–autonomous differential system depend-

ing on a small parameter ε. Such periodic orbits bifurcate from some of

the periodic orbits of an invariant manifold formed by periodic orbits of the

unperturbed system. Roughly speaking, the problem of finding periodic so-

lutions of the perturbed differential system is reduced to find zeros of some

convenient finite dimensional function. We check the conditions under which

the averaging theory guarantees the persistence of periodic orbits under the

perturbation of the harmonic oscillator, and we find them as a function of

the energy. In this way we can find analytically periodic orbits in any energy

level as function of the parameters a and b for the Yang–Mills systems (3).

We summarize our first main result on the periodic orbits as follows.

Theorem 1. At every energy level H = h with h 6= 0 the Yang–Mills

Hamiltonian system (3) has at least

(a) four periodic orbits if hb(b−a) > 0, h(b−a)(b−2a) > 0, hb(b−3a) > 0

and h(b− 6a)(b− 3a) > 0;
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(b) two periodic orbits if either hb(b− a) > 0 and h(b− a)(b− 2a) > 0,

or hb(b− 3a) > 0 and h(b− 6a)(b− 3a) > 0.

Theorem 1 is proved in section 3. Then, as a consequence of the existence

of these periodic orbits, we can show our second main result about the non–

integrability of the Yang–Mills systems (3) in the sense of Liouville–Arnold

for any second first integral of class C1.

Theorem 2. Assume that the Yang–Mills Hamiltonian systems (3) satisfies

the assumptions of one of the statements of Theorem 1, and denote by (x)

this statement. Then, under the assumption of the statement (x),

(a) either the Yang–Mills Hamiltonian system is not Liouville–Arnold

integrable with any second first integral C1,

(b) or the Yang–Mills Hamiltonian system is Liouville–Arnold integrable

and the gradients of the two constants of motion are linearly de-

pendent on almost all the points of the periodic orbits found in the

statement (x) of Theorem 1.

Theorem 2 is proved in section 4, where the definition of integrability in

the sense of Liouville–Arnold is also recalled. Similar results to Theorems

1 and 2 were obtained by the authors for the Henon–Heiles Hamiltonian

systems in [21], but there the results used from the averaging theory need

second order, and here with first order is sufficient.
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In short, in Theorem 2 we study the Hamiltonian systems (3), or (2) when

ω1 = ω2 and c = 0 (or equivalently the symmetric case a = 0). We use a

result due to Poincaré [3, 22, 28] for proving that the non Liouville–Arnold

integrability, based on the existence of periodic orbits of Theorem 1 having

multipliers of the monodromy matrix of the variational equations different

from 1, must be for any second first integral of class C1.

Integrable Hamiltonian systems in the sense of Liouville–Arnold are non–

generic, see [26]. The non–existence of any additional meromorphic first

integral in the classical Yang–Mills Hamiltonian HYM in any domain con-

taining the origin of coordinates was proved by Ziglin [32]. The integrability

of the more general Yang–Mills Hamiltonians (2) has been studied by sev-

eral authors. Of course, the case b = 0 is integrable because it is separable.

Bountis et. al. [7] showed that the Hamiltonian (2) has the Painlevé prop-

erty when a = c = 1 and b = 1, 3 (ω1, ω2 arbitrary), and that these cases

are integrable. Two other integrable cases have been found: 4ω1 = ω2 and

a = 1, b = 6, c = 16 [23, 14, 10], and ω1 = ω2 and a = 1, b = 3, c = 8,

[15, 19, 29]. These previous results are on the existence or non–existence

of analytic or meromorphic integrability in the sense of Liouville–Arnold.

Our results are on the non–integrability in the sense of Liouville–Arnold

for any second first integral of class C1. None of the above integrable cases

satisfy the hypothesis of Theorem 1. As far as we know, all the integrable
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cases have c 6= 0, and we are studying the Hamiltonian (1) with two real

parameters a, b, and c = 0.

2. The averaging theory

Some ingredients on averaging method are in Laplace’s study on Sun-

Jupiter-Saturn system. In his Mècanique Analytique, Lagrange uses aver-

aging in the study of the planetary motion and the perturbing planets and

he obtains an averaged secular equation. Poincaré [28] uses divergent series

by the introduction of asymptotic series and averaging methods. An impor-

tant development of the averaging theory in the XX century was made by

Fatou [17], Krylov and Bogoliubov [20], and Bogoliubov and Metropolsky

[6]. A general introduction to the averaging theory and more references can

be found in the books of Sanders, Verhults and Murdock [30] and Verhults

[31]. Now we recall the result on the averaging theory for finding periodic

solutions of perturbed nonlinear periodic differential systems that we shall

use here, more precisely see Theorems 1.1 and 1.2 of Buică et. al. in [8],

and sections 2 and 3 for details and proofs of those results. In that paper

the theory up to third order is explicitly presented, but in this work we only

need the first order averaging theory. Instead of using the Implicit Function

Theorem for proving the existence of periodic orbits, in [8] the authors used

the Brouwer degree theory which needs weakened assumptions.

The first step of the averaging theory is to replace the problem of finding

periodic orbits of a non–autonomous periodic differential system, to find
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the zeros of some finite dimensional function (the displacement function)

directly related with the differential system.

Averaging Theorem (first order). Consider the differential system

(4) ẋ(t) = εF1(t, x) + ε2R(t, x, ε),

where F1 : R × D → Rn, R : R × D × (−εf , εf ) → Rn are continuous

functions, T-periodic in the first variable, and D is an open subset of Rn.

We define f1 : D → Rn as

f1(z) =

∫ T

0
F1(s, z)ds ,

and assume that for a ∈ D with f1(a) = 0, there exist a neighborhood V ⊂ D

of a such that f1(z) 6= 0 for all z ∈ V̄ \ {a} and the Brouwer degree of the

function f1 at a is not zero, i.e. dB(f1 , V, a) 6= 0. εf defines a neighborhood

around the origin which depends on the function f = εf1 + ε2O(1). Then

for |ε| > 0 sufficiently small there exists a T–periodic solution ϕ(·, ε) of the

system (4) such that ϕ(0, ε)→ a when ε→ 0.

A sufficient condition for showing that the Brouwer degree of a function

f at a fixed point a is non–zero, is that the Jacobian of the function f at

a (if exists) be non–zero (see [24]). If the function f1 is identically zero, we

would need to proceed to second order, but this will not be the case in this

paper.
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Of course, the Hamiltonian differential system (3) is not into the normal

form (4) for applying the averaging theory. So we first introduce a rescaling

transformation with a factor
√
ε in order to have a small parameter ε in the

Hamiltonian system. Second, doing convenient changes of variables and tak-

ing as new independent variable an angle coordinate instead the time , we

obtain a 2π–periodic differential system. Third, fixing the energy level and

omitting a redundant variable in every energy level, we will get the differen-

tial system written in the normal form for applying the averaging theorem of

first order, and finally we shall prove the existence of some isolated periodic

orbits in every energy level.

3. Proof of Theorem 1

Periodic orbits of a Hamiltonian system of more than one degree of free-

dom are generically on cylinders filled with periodic orbits in the phase space

(for more details see [1]), then we will not be able to apply directly the Av-

eraging Theorem of section 2 to a Hamiltonian system because the Jacobian

of the corresponding function f1 at the fixed point a will be always zero, and

consequently the Brouwer degree can be zero. This problem will be solved

by fixing an energy level, where the periodic orbits generically are isolated.

We need to introduce a small parameter ε, so in the Hamiltonian sys-

tem (3) we do the following rescaling transformation from (x, y, px, py) to

(X,Y, PX , PY ) such that x =
√
εX, y =

√
εY , px =

√
εPX and py =

√
εPY .

In the new variables the Hamiltonian system (3) becomes
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(5)

Ẋ = PX ,

Ẏ = PY ,

ṖX = −X − ε(aX3 + bXY 2),

ṖY = −Y − ε bX2Y,

with Hamiltonian

(6) H =
1

2

(
P 2
X + P 2

Y +X2 + Y 2
)

+ ε

(
1

4
aX4 +

1

2
bX2Y 2

)
,

which is a harmonic oscillator perturbed by a quartic potential. As the

change to the new variables is only a rescaling transformation, the new

Hamiltonian system (5) for all ε 6= 0 is topologically equivalent to the Yang–

Mills system (3). Therefore studying the Hamiltonian system (5) for small

values of ε 6= 0, we are also studying the original Yang–Mills Hamiltonian

(3), i.e. system (3) with ε = 1.

Let R+ = [0,∞) and S1 the circle. We do the change of variables

(X,Y, PX , PY )→ (r, θ, s, α) ∈ R+ × S1 × R+ × S1 defined by

X = r cos θ, PX = r sin θ, Y = s cos(θ + α), PY = s sin(θ + α).

This change of variables is well defined when r > 0 and s > 0. Note that

it is not canonical, so we lost the Hamiltonian structure of the differential
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equations. The differential system in the new variables become

(7)

ṙ = −ε r sin(2θ)
(
2ar2 cos2 θ + bs2 cos2(θ + α)

)
,

θ̇ = −1− 2ε cos2 θ
(
bs2 cos2(θ + α) + 2ar2 cos2 θ

)
,

ṡ = −ε b r2s cos2 θ sin(2(θ + α)),

α̇ = 2 ε cos2 θ
(
b
(
s2 − r2

)
cos2(θ + α) + 2ar2 cos2 θ

)
,

having the first integral

(8) H =
1

2

(
r2 + s2

)
+ ε r2 cos2 θ

(
1

2
bs2 cos2(θ + α) +

1

4
ar2 cos2 θ

)
.

In order that the left hand side of the differential system (7) be periodic

with respect to the independent variable, we change the old independent

variable t by the new independent variable θ, for obtaining the periodic-

ity necessary for applying the averaging theory. Dividing system (7) by θ̇

omitting the θ̇ equation, system (7) goes over to

(9)

r′ = ε r sin(2θ)
(
bs2 cos2(θ + α) + 2ar2 cos2 θ

)
+O(ε2),

s′ = ε b r2s cos2 θ sin(2(θ + α)) +O(ε2),

α′ = −2ε cos2 θ
(
b
(
s2 − r2

)
cos2(θ + α) + 2ar2 cos2 θ

)
+O(ε2),

where the prime denotes the derivative with respect to the new independent

variable θ. System (9) is 2π–periodic in the variable θ. However as the

differential system (9) comes from a Hamiltonian system, as we mentioned

before, its periodic orbits are not isolated in the set of all periodic orbits of

system (9). Consequently, in order to use the averaging theory for studying
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its periodic orbits, we restrict the differential system (9) to every fixed energy

level H(r, θ, s, α) = h. Then in such energy levels, we can put s as a function

of h, θ, r and α and substitute s in (9), and will be able to apply the

Averaging Theorem. For s we get

(10) s =

√
h− r2/2− ε a r4 cos4 θ√

1/2 + ε b r2 cos2 θ cos2(θ + α)
.

Notice that

(11) s→
√

2h− r2 when ε→ 0.

As we will apply averaging to first order, we can substitute this zero order

approximation of s in equation (9), which becomes

r′ =
εr sin(2θ)

(
b cos2(θ + α)

(
2h− r2 + ε2ar4 cos4 θ

)
+ 2ar2 cos2 θ

)

1 + ε2br2 cos2 θ cos2(θ + α)
+O(ε2),

α′ = −2ε cos2 θ

(
b cos2(θ + α)

(
2h− r2 − εar4 cos4 θ

1 + ε2br2 cos2 θ cos2(θ + α)
− r2

)
+

2ar2 cos2 θ
)

+O(ε2).

If we write the previous system as a Taylor series of first order in ε we get

(12)

r′ = εr sin(2θ)
(
b
(
2h− r2

)
cos2(θ + α) + 2ar2 cos2 θ

)
+O(ε2)

= εF11 +O(ε2),

α′ = −ε4 cos2 θ
(
b
(
h− r2

)
cos2(θ + α) + ar2 cos2 θ

)
+O(ε2)

= εF12 +O(ε2).

We see that system (12) has the canonical form (4) for applying the

averaging theory and satisfies the assumptions of the Averaging Theorem
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for |ε| > 0 sufficiently small, with T = 2π and F1 = (F11, F12) which are

analytical functions.

Averaging the function F1 with respect to the variable θ we obtain

(13) f1(r, α) = (f11(r, α), f12(r, α)) =

∫ 2π

0
(F11, F12) dθ ,

where

(14)
f11 =

1

2
b r sinα cosα

(
r2 − 2h

)
,

f12 = −1

2

(
b(cos(2a) + 2)

(
h− r2

)
+ 3ar2

)
.

We have to find the zeros (r∗, α∗) of f1(r, α), and to check that the Jaco-

bian determinant at these points is not zero, i.e.

(15) det

(
∂(f11, f12)

∂(r, α)

∣∣∣∣
(r,α)=(r∗,α∗)

)
6= 0.

From f11 = 0 we obtain that either α = 0,±π/2, π, or r2 = 2h. This last

case is not a good solution, since from (11) we get s = 0 when ε → 0, and

the Jacobian determinant of f1 will be always zero. Then we only consider

the first four solutions for f11 = 0, and we now look for the solutions of

f12 = 0 at these solutions. We obtain four possible solutions (r∗, α∗) with

r∗ > 0, namely

(16)(√
h b

b− a, 0
)
,

(√
h b

b− a, π
)
,

(√
h b

b− 3a
, π/2

)
,

(√
h b

b− 3a
,−π/2

)
,

with the corresponding values of s given by (11)

(17)

√
h (b− 2a)

b− a ,

√
h (b− 2a)

b− a ,

√
h (b− 6a)

b− 3a
,

√
h (b− 6a)

b− 3a
,
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respectively.

Finally we calculate the Jacobian determinant (15), i.e.

∣∣∣∣∣∣∣∣

1
4b
(
3r2 − 2h

)
sin(2α) 1

2br
(
r2 − 2h

)
cos(2α)

r(−3a+ 2b+ b cos(2α)) b
(
h− r2

)
sin(2α)

∣∣∣∣∣∣∣∣

at the four solutions (r∗, α∗) given in (16). The determinants are respectively

given by

(18)
3b2h2(2a− b)

2(a− b) ,
3b2h2(2a− b)

2(a− b) , −b
2h2(b− 6a)

2(b− 3a)
, −b

2h2(b− 6a)

2(b− 3a)
,

and for h 6= 0 they are defined and non–zero only when

(19) b(b− 2a)(b− a) 6= 0,

for the first two solutions, and when

(20) b(b− 6a)(b− 3a) 6= 0,

for the last two solutions.

Summarizing, from the Averaging Theorem of section 2, the two first

solutions (r∗, α∗) of f1 = 0 provide two periodic orbits of system (12) (and

consequently of the Hamiltonian system (5) on the level h 6= 0) if hb(b−a) >

0 and h(b − 2a)(b − a) > 0, where the Jacobian condition (19) is included.

These conditions imply that b(b− 2a) > 0.

Similarly, the last two solutions provide two periodic orbits of system (12)

if hb(b − 3a) > 0 and h(b − 6a)(b − 3a) > 0, where the Jacobian condition
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(20) is included. These conditions imply that b(b− 6a) > 0. This completes

the proof of Theorem 1.

4. Periodic orbits and the Liouville–Arnold integrability

In this section we summarize some facts on the Liouville–Arnold integra-

bility of the Hamiltonian systems, and on the theory of the periodic orbits

of the differential equations, see [1, 4] and the subsection 7.1.2 of [4]. We

present these results for Hamiltonian systems of two degrees of freedom, but

these results work for an arbitrary number of degrees of freedom.

We recall that a Hamiltonian system with Hamiltonian H of two degrees

of freedom is integrable in the sense of Liouville–Arnold if it has a first

integral C independent with H (i.e. the gradient vectors of H and C are

independent in all the points of the phase space except perhaps in a set of

zero Lebesgue measure), and in involution with H (i.e. the parenthesis of

Poisson of H and C is zero). For Hamiltonian systems with two degrees of

freedom the involution condition is redundant, because the fact that C is a

first integral of the Hamiltonian system, implies that the mentioned Poisson

parenthesis is always zero. A flow defined on a subspace of the phase space

is complete if its solutions are defined for all time.

Now we shall state the Liouville–Arnold Theorem [1, 4] restricted to

Hamiltonian systems of two degrees of freedom.
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Liouville-Arnold Theorem. Suppose that a Hamiltonian system with two

degrees of freedom defined on the phase space M has its Hamiltonian H and

the function C as two independent first integrals in involution. If Ihc =

{p ∈ M : H(p) = h and C(p) = c} 6= ∅ and (h, c) is a regular value of the

differentiable map (H,C), then the following statements hold.

(a) Ihc is a two dimensional submanifold of M invariant under the flow

of the Hamiltonian system.

(b) If the flow on a connected component I∗hc of Ihc is complete, then I∗hc

is diffeomorphic either to the torus S1×S1, or to the cylinder S1×R,

or to the plane R2. If I∗hc is compact, then the flow on it is always

complete and I∗hc ≈ S1 × S1.

(c) Under the hypothesis (b) the flow on I∗hc is conjugated to a linear

flow on S1 × S1, on S1 × R, or on R2.

The main result of this theorem is that the connected components of the

invariant sets associated with the two independent first integrals in involu-

tion are generically diffeomorphic to 2–dimensional tori, cylinders or planes

inside the phase space, and if the flow on them is complete then the flow

restricted to these surfaces is conjugated to a linear flow.

Using the notation of the Liouville-Arnold Theorem, when a connected

component I∗hc is diffeomorphic to a torus, either all orbits on this torus

are periodic if the rotation number associated to this torus is rational, or
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they are quasi–periodic (i.e. every orbit is dense in the torus) if the rotation

number associated to this torus is not rational.

We consider the autonomous differential system

(21) ẋ = f(x),

where f : U → Rn is C2, U is an open subset of Rn and the dot denotes

the derivative with respect to the time t. We write its general solution as

φ(t, x0) with φ(0, x0) = x0 ∈ U and t belonging to its maximal interval of

definition.

We say that φ(t, x0) is T–periodic with T > 0 if and only if φ(T, x0) = x0

and φ(t, x0) 6= x0 for t ∈ (0, T ). The periodic orbit associated to the peri-

odic solution φ(t, x0) is γ = {φ(t, x0), t ∈ [0, T ]}. The variational equation

associated to the T–periodic solution φ(t, x0) is

(22) Ṁ =

(
∂f(x)

∂x

∣∣∣
x=φ(t,x0)

)
M,

where M is an n × n matrix. The monodromy matrix associated to the

T–periodic solution φ(t, x0) is the solution M(T, x0) of (22) satisfying that

M(0, x0) is the identity matrix. The eigenvalues λ of the monodromy matrix

associated to the periodic solution φ(t, x0) are called the multipliers of the

periodic orbit.

For an autonomous differential system one of the multipliers is always 1,

the corresponding eigenvector is tangent to the periodic orbit.
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A periodic solution of an autonomous Hamiltonian system always has

two multipliers equal to one. One multiplier is 1 because the Hamiltonian

system is autonomous, and another is 1 due to the existence of the first

integral given by the Hamiltonian.

Poincaré Theorem. If a Hamiltonian system with two degrees of freedom

and Hamiltonian H is Liouville–Arnold integrable, and C is a second first

integral such that the differentials of H and C are linearly independent at

each point of a periodic orbit of the system, then all the multipliers of this

periodic orbit are equal to 1.

This theorem is due to Poincaré [28]. It gives us a method for proving that

the non Liouville–Arnold integrability, based on the existence of periodic

orbits of Theorem 1, must be for any second first integral of class C1. The

main problem is to find periodic orbits having multipliers different from 1.

Proof of Theorem 2. We assume that we are under the assumptions of The-

orem 1 and some of the periodic orbits (16) exist, with their respective values

of s given by (17). Moreover their associated Jacobians (18) are different

from 0. Then playing with the energy level h since these Jacobians are the

product of the multipliers of these periodic orbits, all the multipliers cannot

be equal to 1 when we change the value of h. Hence under the assumptions

of Theorem 1, by the Poincaré Theorem, either the Yang–Mills Hamiltonian
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systems cannot be Liouville–Arnold integrable with any second first inte-

gral C, or the system is Liouville–Arnold integrable and the differentials of

H and C are linearly dependent at almost all the points of these periodic

orbits. Therefore the theorem is proved. �

5. Conclusions

We have used two tools. First the averaging method for studying the pe-

riodic orbits of the Hamiltonian systems in their fixed energy levels, and sec-

ond the Poincaré Theorem which allows to prove that the non–integrability

in the sense of Liouville–Arnold of the Hamiltonian systems, is for any second

first integral of class C1. We applied both tools to the generalized Yang–Mills

Hamiltonian system (5) with two degrees of freedom, obtaining Theorems

1 and 2. We remark that these two tools can be applied to Hamiltonian

systems with an arbitrary number of degrees of freedom.

An important remark is that these two tools are based on the study of the

periodic orbits via the averaging method, which needs a small parameter,

and this can be easily introduced if we study Hamiltonian systems near

Liouville–Arnold integrable ones, in our case near the harmonic oscillator.

However, the two Hamiltonian systems (3) and (5) have qualitatively the

same phase portrait, since the scale transformation introduced in the section

3 does not change the topology of the system and these results are valid for

the original problem (3) with ε = 1.
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propety, Phys. Rev. A, 25 (1982), 1257–1264.
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