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Abstract

We study the limit cycles of a wide class of second order differential equations, which
can be seen as a particular perturbation of the harmonic oscillator. In particular, by
choosing adequately the perturbed function we show, using the averaging theory, that it
is possible to obtain as many limit cycles as we want.
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1. Introduction and statement of the main results

The second order differential equations arise in many areas of science and technology
essentially, but in the last years many important applications in social science, economics
and business administration have raised, as well as plenty of applications in physics,
chemistry, biology and the engineries. Nevertheless, in general is impossible to determine
the solution of a second order differential equation in terms of explicit functions, so we
look for properties of these kind of equations which can be obtained without solving it.
The problem is more relevant in perturbation theory, where the periodic orbits play a
main role. For more information about the study of the periodic orbits of second order
differential equations see for instance the references [6, 7, 8, 14, 15], and the ones quoted
there.

It is well known that all solutions of the harmonic oscillator are periodic with the
same period, i.e. the origin of this system is an isochronous center. When we take a
perturbation of the harmonic oscillator, which periodic orbits persist? which periodic
orbits generate limit cycles? In this paper we ask these questions for a wide class of
second order differential equations, which are essentially a perturbation of the harmonic
oscillator. More precisely, we study equations of the form

ẍ = −(1 + εκ cos2 t)x+ εf(t, x, ẋ), (1)

where ε is a small parameter, κ is a real parameter and the function f(t, x, ẋ) is at least
of class C2 and 2π–periodic in the variable t in order to apply the averaging theory [9].
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Ernesto Pérez-Chavela, Phys. Lett. A, vol. 375, 1080–1083, 2011.
DOI: [10.1016/j.physleta.2011.01.011]

10.1016/j.physleta.2011.01.011


We would like to mention the Ermakov systems, which have a long history in sciences
and many important applications in Physics. In the last years many people have retook
their study, see for instance [2, 4, 5]. Since the classical Ermakov system has the form

ẍ = −ω2(t)x+
1

x3
G(x).

The class of second order differential equations (1) contains the subclas of Ermakov
systems given by the functions G(x) = εx3f(x) and ω2(t) = 1 + εκ cos2 t.

The first goal of this paper is provide a general result which, for ε sufficiently small,
allows to study the periodic orbits of the second differential equation (1) for an arbitrary
function f(t, x, ẋ), see the next Theorem 1. After, we shall compute explicitly the periodic
orbits of such second order differential equations for some explicit functions f(t, x, ẋ),
see the next Propositions, 2 and 3.

For stating our results we need some definitions. Thus we define the functions

h1(s, r, a) = κr cos s cos2(a+ s) sin(a+ s)−
f(a+ s, r cos s,−r sin s) sin(a+ s),

h2(s, r, a) = −κr cos s cos3(a+ s)+
f(a+ s, r cos s,−r sin s) cos(a+ s),

and

fj(r, a) =
1

2π

∫ 2π

0

hj(s, r, a)ds for j = 1, 2.

We say that (r0, a0) is a simple solution of system

f1(r, a) = 0, f2(r, a) = 0, (2)

if the determinant

(
∂(f1, f2)

∂(r, a)

)
(r0, a0) 6= 0.

We recall that a limit cycle of the second order differential equation (1) is a periodic
orbit isolated in the set of all periodic orbits of (1).

Now we can state the main result of this paper.

Theorem 1. Let (r0, a0) be a simple solution of system (2). Then for ε 6= 0 sufficiently
small the second order differential equation (1) has a limit cycle xε(t), such that when
ε → 0 it tends to the 2π–periodic solution r0 cos (a0 − t) of system (1) with ε = 0.

Theorem 1 will be proved in section 3.

This theorem allow to determine the existence of limit cycles of the second order
differential equation (1) with ε 6= 0 sufficiently small, and the periodic orbits of the
harmonic oscillator (1) with ε = 0 from which they bifurcate. To show the powerful
of Theorem 1 we give some applications of it, we obtain that by choosing conveniently
the perturbed function, equation (1) can have one, or as many limit cycles as we want.
The following propositions, whose proofs will be given in section 4, show these different
possibilities.
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Proposition 2. For ε 6= 0 sufficiently small and for all κ > 0 the second order differential
equation (1) with f(t, x, ẋ) = cos t has a unique limit cycle xε(t) such that xε(t) →
4

3κ
cos t as ε → 0.

Proposition 3. For ε 6= 0 sufficiently small and κ ∈ [0, 1], the second order differential
equation (1) with f(t, x, ẋ) = sinx can have as many limit cycles as we want.

2. A basic result from averaging theory

In order to have a self contained paper, in this section we present the basic results
from the averaging theory that are necessary for proving the main result of this paper,
i.e Theorem 1.

We considerer a differential system of the form

ẋ(t) = F0(t,x) + εF1(t,x) + ε2F2(t,x, ε), (3)

where the functions F0, F1 : R × Ω → Rn and F2 : R × Ω × (−ε0, ε0) → Rn are of class
C2 in Ω and T–periodic in the variable t, Ω is an open subset of Rn. When ε = 0 we get
the unperturbed system

ẋ(t) = F0(t,x), (4)

we assume that the above unperturbed system has an open subset of Ω fulfilled of periodic
solutions. For ε sufficiently small is possible obtain periodic solutions of system (3) by
using the averaging theory.

Let x(t, z, ε) be the solution of system (3) such that x(0, z, ε) = z. The variational
equation of the unperturbed system (4) along the periodic solution x(t, z, 0) is

y′ = DxF0(t,x(t, z, 0))y. (5)

where y is a n× n matrix. Let Mz(t) be a fundamental matrix of the linear differential
system (5). We assume that Ω contains an open subset W formed only by periodic orbits,
all of them having the same period T , i.e. W is an isochronous set of system (3). Then
we have the following result.

Theorem 4. Assume that Ω contains an open and bounded set W such that Cl(W ) ⊂ Ω
and for each z ∈ Cl(W ), the solution x(t, z, 0) is T–periodic. Let F : W → R2 be the
function defined by

F(z) =
1

T

∫ T

0

M−1
z (t)F1(t,x(t, z, 0))dt. (6)

If there exist p ∈ W with F(p) = 0 and the determinant of (dF/dz)(p) 6= 0, then there
exists a T–periodic solution φ(t, ε) of system (3) such that φ(0, ε) → p as ε → 0.

For a shorter proof of Theorem 4 see Corollary 1 of [3]. In fact this result goes back
to Malkin [12] and Roseau [13]. For an application of Theorem 4 to Hamiltonian systems
in a more general context you can see [10].
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3. Proof of Theorem 1

For proving Theorem 1 we shall use Theorem 4. In what follows we will use the
notation introduced in section 2.

Proof of Theorem 1. The second order differential equation (1) can be written as the
first order differential system

ẋ = v,
v̇ = −x+ ε(−κx cos2 t+ f(t, x, v)) = −x+ εf1(t, x, v).

(7)

This system can be written in the vectorial form

ẋ = F0(t, x, v) + εF1(t, x, v), (8)

where

x =

(
x
v

)
, F0(t, x, v) =

(
v
−x

)
and F1(t, x, v) =

(
0

f1(t, x, v)

)
.

The unperturbed part of system (7) is

ẋ = v,
v̇ = −x,

(9)

it corresponds to the simple harmonic oscillator whose solution is

x(t) = x0 cos t+ v0 sin t,

v(t) = −x0 sin t+ v0 cos t.

We observe that for any initial condition (x0, v0) ∈ R2 \ {(0, 0)}, the corresponding
solution is 2π–periodic and can be write as

x(t) = r cos (a− t), v(t) = r sin (a− t), (10)

where r > 0 and a are constants which can be written in terms of the initial conditions
(x0, v0). We say that the origin of system (9) is an isochronous center.

Let x(t, z, ε) be the solution of system (7) such that x(0, z, ε) = z = (r, a). The
variational equation of the unperturbed system (9) along the periodic solution x(t, z, 0)
is

y′ = DxF0(t,x(t, z, 0))y, (11)

where y is a 2 × 2 matrix. Let M(t) be a fundamental matrix of the linear differential
system (11), it takes the simple form

M(t) =

(
cos t sin t
− sin t cos t

)
.

Now, evaluating the function f1(t, x, v) along the solution (10) of the unperturbed
system we obtain the function

h(t, r, a) = −κr cos (a− t) cos2 t+ f(t, r cos (a− t), r sin (a− t)).
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Then we have

M−1(t)F1(t,x(t, z))) =

(
−h(t, r, a) sin t
h(t, r, a) cos t

)
.

Doing the change of variable t → a+ s the above expression becomes
(

κr cos s cos2(a+ s) sin(a+ s)− f(a+ s, r cos s,−r sin s) sin(a+ s)
−κr cos s cos3(a+ s) + f(a+ s, r cos s,−r sin s) cos(a+ s)

)
.

We observe that the first part in the two previous expressions does not depend of the
function f(a+ s, r cos s,−r sin s).

Let

F(z) =

(
f1(r, a)
f2(r, a)

)
=

1

2π

∫ 2π

0

M−1(t)F1(t,x(t, z)))dt. (12)

Let W 6= ∅ be an open and bounded subset of R2, formed only by periodic orbits, all
of them having the same period 2π, that is W is a isochronous set for system (9).

Let (r0, a0) ∈ W a simple solution of the system

f1(r, a) = 0, f2(r, a) = 0, (13)

that is determinant

(
∂(f1, f2)

∂(r, a)

)
(r0, a0) 6= 0.

With all the above we have verified the hypotheses of Theorem 4, then the proof of
Theorem 1 follows from it.

4. Proof of the propositions

In this section we present the proof of the propositions stated in section 1, showing
that depending on the function f(t, x, ẋ) in (1), it is possible to obtain as many limit
cycles as we want. Again we will use the notations introduced in section 2 and in the
proof of Theorem 1 of section 3.

Proof of Proposition 2. Taking f(t, x, v) = cos t, the second order differential equation
(1) becomes

ẍ = −(1 + κε cos2 t)x+ ε cos t. (14)

By straightforward computations the value of the integral (12) for the above f(t, x, v) at
the initial condition (r, a) is

F(r, a) =

(
κr sin a/8

(4− 3κr cos a)/8

)
,

which has a unique zero for r > 0 given by (r, a) = (4/(3κ), 0) with κ > 0. The

determinant of (dF/dz) (4/(3κ), 0) =
1

16κ
6= 0. Then applying Theorem 1, for κ > 0 we

can assure the existence of a unique 2π–periodic solution xε(t) of system (14) such that

xε(t) →
4

3κ
cos t as ε → 0.

So Proposition 2 is proved.
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Figure 1: Graphs of the functions κr − J1(r) sin a
∗ for (a) κ = 0.1; (b) κ = 0.01; (c) κ = 0.001

and (d) κ = 0.0001.

Proof of Proposition 3. In this case the function f(t, x, v) = sinx depends only on x. So
we must analyze the differential system

ẋ = v,

v̇ = −(1 + εκ cos2 t)x+ ε sinx.

Evaluating the function f1(t, x, v) = −xκ cos2 t+sinx along the 2π–periodic solutions
(10) of the unperturbed system, we obtain

h(t, r, a) = −κr cos (a− t) cos2 t+ sin (r cos (a− t)),

therefore M−1(t)F1(t,x(t, (r, a))) becomes
(

− sin t
(
−κr cos (a− t) cos2 t+ sin (r cos (a− t))

)

cos t
(
−κr cos (a− t) cos2 t+ sin (r cos (a− t))

)
)
.

Now doing the change of variable t → a+ s we have
(

κr cos s cos2 (a+ s) sin (a+ s)− sin (a+ s) sin (r cos s)
−κr cos s cos3 (a+ s) + cos (a+ s) sin (r cos s),

)

Finally integrating these expressions with respect to the variable s from 0 to 2π, dividing
by 2π and assuming that r > 0, we obtain

(
f1(r, a)
f2(r, a)

)
=

1

8

(
κr − J1(r) sin a

−3κr + 8J1(r) cos a,

)
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where J1(r) is the Bessel function of the first kind, for a precise definition see [1].

The system f1(r, a) = f2(r, a) = 0 is equivalent to the system

8 cos a = 3 sin a, κr − J1(r) sin a = 0.

Taking a = a∗ one of the values of arctan(8/3), the previous system reduces to the unique
equation

κr − J1(r) sin a
∗ = 0. (15)

Then the simple solutions of the system f1(r, a) = f2(r, a) = 0 correspond to the simple
solutions of equation (15), which depend on the value of the parameter κ. For instance,
for κ = 1 the above system has exactly one simple zero at r = 0, for κ = 0 it corresponds
to the Bessel function which has infinitely many simple zeroes. It is not difficult to verify
that for κ ∈ (0, 1), we can have as many simple solutions as we want. In Figure 1 we
have plot the graphs of some functions κr − J1(r) sin a

∗ changing the value of κ. The
proof of Proposition 3 is complete.
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