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Abstract. In this paper we prove a criterion that provides an easy sufficient condition in order for
any nontrivial linear combination of n Abelian integrals to have at most n + k − 1 zeros counted with
multiplicities. This condition involves the functions in the integrand of the Abelian integrals and it can
be checked, in many cases, in a purely algebraic way.

1 Introduction and statement of the result

In a previous paper with M. Grau [12] we provided a sufficient condition in order for a collection of Abelian
integrals I0(h), I1(h), . . . , In−1(h) to form an extended complete Chebyshev system (for short, ECT-system).
This is a very good property that implies in particular that the number of real zeros of any nontrivial linear
combination

(1) α0I0(h) + α1I1(h) + . . .+ αn−1In−1(h)

counted with multiplicities is at most n− 1. However there are situations (see for instance [9, 10, 16, 18]) in
which the number of zeros of (1) is greater than n− 1. Then one talks about being a Chebyshev system with
accuracy k, meaning that this number is at most n+ k − 1. The present paper is addressed to the problem
of finding a bound for the number of zeros in this situation.

More precisely, let H(x, y) = A(x) +B(x)y2m be an analytic function in some open subset of the plane
that has a local minimum at the origin. Then there exists a punctured neighbourhood P of the origin
foliated by ovals γh ⊂ {H(x, y) = h}. We fix that H(0, 0) = 0 and then the set of ovals γh inside this, let us
say, period annulus, is parameterized by the energy levels h ∈ (0, h0) for some h0 ∈ (0,+∞]. The projection
of P on the x-axis is an interval (xℓ, xr) with xℓ < 0 < xr. The Abelian integrals that we shall consider in
this paper are

Ii(h) =

∫

γh

fi(x)y
2s−1dx, for h ∈ (0, h0),

where fi, for i = 0, 1, . . . , n− 1, are analytic functions on (xℓ, xr) and s ∈ N.
Under the above assumptions it is easy to verify that B(x) > 0 for all x ∈ (xℓ, xr) and that xA′(x) > 0

for all x ∈ (xℓ, xr) \ {0}. Then A has a zero of even multiplicity at x = 0 and so there exist an analytic
involution σ such that

A(x) = A
(
σ(x)

)
for all x ∈ (xℓ, xr).
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Recall that a mapping σ : I −→ I is an involution if σ2 = Id and σ 6= Id. Note that an involution is a
diffeomorphism with a unique fixed point. In our situation we have that 0 ∈ I and σ(0) = 0. In what
follows, given a function κ defined on I \ {0}, we denote its balance with respect to σ as

Bσ

(
κ
)
(x) =

κ(x) − κ
(
σ(x)

)

2
.

For example, if σ = −Id, then the balance of a function is its odd part.

Theorem A is our main result and in its statementW [ℓ0, . . . , ℓi] stands for the Wronskian determinant of
the functions ℓ0, . . . , ℓi (see Definition 2.2). Let us note that each ℓi is well defined and analytic on (0, xr).

Theorem A. Consider the Abelian integrals

Ii(h) =

∫

γh

fi(x)y
2s−1dx, i = 0, 1, . . . , n− 1,

where, for each h ∈ (0, h0), γh is the oval inside the level curve {A(x) + B(x)y2m = h}. Let σ be the
involution associated to A and define

ℓi = Bσ

(
fi

A′B
2s−1
2m

)
.

If the following conditions are verified:

(a) W [ℓ0, . . . , ℓi] is non-vanishing on (0, xr) for i = 0, 1, . . . , n− 2,

(b) W [ℓ0, . . . , ℓn−1] has k zeros on (0, xr) counted with multiplicities, and

(c) s > m(n+ k − 2),

then any nontrivial linear combination of I0, I1, . . . , In−1 has at most n+k− 1 zeros on (0, h0) counted with
multiplicities.

The problem of bounding the number of zeros of Abelians integrals is the subject of many recent papers
(see for instance [2, 4, 5, 9, 13, 23] and references there in). The techniques and arguments to tackle the
problem are usually very long and highly non-trivial. For instance, in some papers (e.g. [3, 15, 21]) the
authors study the geometrical properties of the so-called centroid curve using that it verifies a Riccati
equation (which is itself deduced from a Picard-Fuchs system). In other papers (e.g. [6, 7, 8]), the authors
use complex analysis and algebraic topology (analytic continuation, argument principle, monodromy, Picard-
Lefschetz formula, . . . ). Theorem A provides a criterion that, when it works, enables to extremely simplify
the solution of the mentioned problem.

Of course the second part of Hilbert’s 16th problem [14] is the general framework where this result is
addressed to. This longstanding problem asks about the maximum number and location of limit cycles of
a planar polynomial vector fields of degree d. Solving this problem, even in the case d = 2, seems to be
out of reach at the present state of knowledge (see Ilyashenko [19] for a survey of the recent results on the
subject). Our paper is concerned with a weaker version of this problem, the so-called infinitesimal Hilbert’s
16th problem, proposed by Arnold [1]. Zeros of Abelian integrals are related to limit cycles in the following
way. Consider a small deformation of a Hamiltonian vector field Xε = XH + εY, where

XH = −Hy∂x +Hx∂x and Y = P∂x +Q∂y.

Then, see [19] for details, the first approximation in ε of the displacement function of the Poincaré map of
Xε is given by I(h) =

∫
γh
Pdy−Qdx. Hence the number of isolated zeros of I(h), counted with multiplicities,

provides an upper bound for the number of ovals of H that generate limit cycles of Xε for ε ≈ 0. (In the
literature an Abelian integral is usually the integral of a rational 1-form over a continuous family of algebraic
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ovals. Throughout the paper, by an abuse of language, we use the name Abelian integral also in case the
functions are analytic.)

To illustrate the applicability of Theorem A in this context we will reobtain a result of Dumortier, Li and
Zhang [3]. In that long paper (48 pages) the authors give a complete study of the quadratic 3-parameter
unfoldings of an integrable system belonging to the class QR

3 . They obtain the bifurcation diagram and all
the global phase portraits, including the number and configuration of limit cycles. It is to proving that the
maximum number of limit cycles surrounding a single focus is equal to 3 where they need to study the zeros
of an Abelian integral. Altogether it takes 21 pages of very technical computations to show that the upper
bound for the number of zeros is 3. We shall prove this by applying Theorem A in Section 4.

The paper is organized in the following way. Section 2 is devoted to defining the different types of
Chebyshev property that we shall deal with and to proving some basic results about Wronskians. Theorem A
is proved in Section 3. The idea behind the proof is simple. Indeed, we show that there exist k additional
Abelian integrals, Ji =

∫
γh
hi(x)y

2s−1dx for i = 1, 2, . . . , k, such that (I0, . . . , In−2, J1, . . . , Jk, In−1) is an
ECT-system. The real work is to guarantee the existence of the functions hi because then we take advantage
of our previous result [12] that we mention at the beginning of the paper (see Theorem 3.8). The existence
of these functions follows from Theorem 3.2, which gives a (very) partial answer to the following embedding
problem: Given a finite dimensional space E of analytic functions on an interval I such that any f ∈ E has
at most m zeros on I counted with multiplicities, the problem consists in finding necessary and sufficient
conditions for the existence of an ECT-system of dimension m+ 1 whose linear span contains E . Finally in
Section 4 we give the example of application that we explain in the previous paragraph.

2 Definitions and basic results about wronskians

Definition 2.1 Let f0, f1, . . . , fn−1 be analytic functions on an open interval I of R.

(a) {f0, f1, . . . , fn−1} is a Chebyshev system on I if any nontrivial linear combination

α0f0(x) + α1f1(x) + . . .+ αn−1fn−1(x) = 0

has at most n− 1 isolated zeros on I.

(b) An ordered set of n functions (f0, f1, . . . , fn−1) is a complete Chebyshev system (in short, CT-system)
on I if {f0, f1, . . . , fk−1} is a Chebyshev system on I for all k = 1, 2, . . . , n.

(c) An ordered set of n functions (f0, f1, . . . , fn−1) is an extended complete Chebyshev system (in short,
ECT-system) on I if, for all k = 1, 2, . . . , n, any nontrivial linear combination

α0f0(x) + α1f1(x) + . . .+ αk−1fk−1(x) = 0

has at most k − 1 isolated zeros on I counted with multiplicities.

(Let us mention that in these abbreviations “T” stands for Tchebycheff, which in some sources is the
transcription of the Russian name Chebyshev.) �

Definition 2.2 Let f0, f1, . . . , fk−1 be analytic functions on an open interval L of R. The Wronskian of
(f0, f1, . . . , fk−1) at x ∈ I is

W
[
f0, f1, · · · , fk−1

]
(x) = det

(
f
(i)
j (x)

)
06i,j6k−1

=

∣∣∣∣∣∣∣∣∣

f0(x) · · · fk−1(x)
f ′
0(x) · · · f ′

k−1(x)
...

f
(k−1)
0 (x) · · · f

(k−1)
k−1 (x)

∣∣∣∣∣∣∣∣∣
.

�
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For the sake of shortness sometimes we will use the notation

W
[
f0, f1, . . . , fk−1

]
(x) =W

[
fk
]
(x).

The following two lemmas are known (see, respectively, [20] and [17, 22]).

Lemma 2.3. (f0, f1, . . . , fn−1) is an ECT-system on L if and only if, for each k = 1, 2, . . . , n,

W
[
fk
]
(x) 6= 0 for all x ∈ L.

Lemma 2.4. Let f0, f1, . . . , fn be analytic functions on a open interval I such that W [f0, . . . , fn−2, fn−1]
does not vanish on I. Then

(
W [f0, . . . , fn−2, fn]

W [f0, . . . , fn−2, fn−1]

)′
=
W [f0, . . . , fn]W [f0, . . . , fn−2]

(W [f0, . . . , fn−2, fn−1])2
.

Next three lemmas summarize some technical results that we will need to prove our result.

Lemma 2.5. Let f0, f1, . . . , fn−1 be analytic functions on I. Then the following statements hold:

(a) W [f0 ◦ ψ, . . . , fn−1 ◦ ψ](x) =
(
ψ′(x)

) (n−1)n
2 W [f0, . . . , fn−1]

(
ψ(x)

)
for any analytic diffeomorphism ψ.

(b) W [gf0, . . . , gfn−1](x) = g(x)nW [f0, . . . , fn−1](x) for any analytic function g.

Proof. In order to prove (a) we first note that, given any analytic function f, we have

(2) (f ◦ ψ)(k)(x) = f (k)
(
ψ(x)

)(
ψ′(x)

)k
+ f (k−1)

(
ψ(x)

)
Rk,2(x) + . . .+ f ′(ψ(x)

)
Rk,k(x),

where Rk,i is a product of the derivatives of ψ until order i. This can be proved easily by induction and it
is left to the reader. For the sake of convenience let us fix that W

[
fn ◦ ψ

]
(x) = det(M1) where M1 = (ai,j)

with ai,j =
(
fj ◦ ψ

)(i)
(x), and that W

[
fn
](
ψ(x)

)
= det(Mn) where Mn = (âi,j) with âi,j = f

(i)
j

(
ψ(x)

)
.

Clearly the first row of M1 and Mn are equal by definition. In addition, for i > 2, from (2) it follows

that the i-th row of M1 is equal to the i-th row of Mn multiplied by
(
ψ′(x)

)i−1
plus a linear combination

of its first i − 1 rows. For i = 2, 3, . . . , n − 1, let us define Mi as the matrix that we obtain from M1 by
replacing, respectively, its first i rows by the first i rows of Mn. Taking this into account we have that

det(Mi) =
(
ψ′(x)

)i
det(Mi+1). Accordingly,

det(M1) = ψ′(x) det(M2) =
(
ψ′(x)

)1+2
det(M3) = . . . =

(
ψ′(x)

)1+2+...+n−1
det(Mn).

Since 1 + 2 + . . .+ n− 1 = n(n−1)
2 , (a) follows. Part (b) can be found in [22].

From Definition 2.1 (or, alternatively, by Lemmas 2.3 and 2.5) it easily follows the next result:

Lemma 2.6. Let f0, f1, . . . , fn−1 be analytic functions such that (f0, f1, . . . fn−1) is an ECT-system on I.
Then the following statements hold:

(a) If ψ : J −→ I is a diffeomorphism, then (f0 ◦ ψ, f1 ◦ ψ, . . . fn−1 ◦ ψ) is an ECT-system on J.

(b) If g is a non-vanishing analytic function on I, then (gf0, gf1, . . . gfn−1) is an ECT-system on I.

By applying (b) in Lemma 2.5 with ψ = −Id and taking well known properties about determinants into
account one can easily obtain the following result:

Lemma 2.7. Let f0, f1, . . . , fn−1 be analytic functions on I. Then the following holds:

(a) If f0, f1, . . . , fn−1 are odd, then W
[
fn
]
(−x) = (−1)

n(n+1)
2 W

[
fn
]
(x).

(b) If f0, f1, . . . , fn−2 are odd and fn−1 is even, then W
[
fn
]
(−x) = (−1)

n(n+1)
2 +1W

[
fn
]
(x).
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3 Proof of the main result

Lemma 3.1. Let f be an analytic function on an open interval I.

(a) If f has exactly n zeros on I counted with multiplicities, then there exist g0, g1, . . . , gn−1 analytic func-
tions on I such that (g0, g1, . . . , gn−1, f) is an ECT-system on I.

(b) If f is an odd (respectively, even) function on I = (−a, a) with exactly n zeros on (0, a) counted with
multiplicities, then there exist g0, g1, . . . , gn−1 analytic odd (respectively, even) functions on I such that
(g0, g1, . . . , gn−1, f) is an ECT-system on (0, a).

Proof. In order to show (a) let us assume that f has exactly n zeros counted with multiplicities on I, say
a1 6 a2 . . . 6 an. Define

gi(x) =
f(x)∏n

j=i+1(x− aj)
for i = 0, 1, . . . , n− 1,

so that gi has exactly i zeros on I counted with multiplicities. It is clear that by construction

(
g0
g0
, . . . ,

gn−1

g0
,
f

g0

)
=

(
1, x− a1, (x− a1)(x − a2), . . . ,

n∏

i=1

(x − ai)

)
,

and this shows, by (b) in Lemma 2.6, that (g0, . . . , gn−1, f) is an ECT-system on I.

Suppose next that f is odd (respectively, even) and that it has exactly n zeros on (0, a) counted with
multiplicities, say a1 6 a2 . . . 6 an. Then f(−ai) = 0 for all i = 1, 2, . . . , n. Define now

gi(x) =
f(x)∏n

j=i+1(x
2 − a2j)

for i = 0, 1, . . . , n− 1.

Clearly each gi is an analytic odd (respectively, even) function on I. Then, since one can easily verify that(
1, x2 − a21, . . . ,

∏n
i=1(x

2 − a2i )
)
is an ECT-system on (0, a), exactly as before we can conclude that so it is

(g0, . . . , gn−1, f).

Theorem 3.2. Let f0, f1, . . . , fn−1 be analytic functions such that W [f0, f1, . . . , fk] is non-vanishing on I
for k = 0, 1, . . . , n− 1 (i.e., such that (f0, f1, . . . , fn−1) is an ECT-system on I). Assume moreover that h
is an analytic function such that W [f0, . . . , fn−1, h] has ℓ zeros on I counted with multiplicities. Consider ℓ

functions l̃1, l̃2, . . . , l̃ℓ verifying that
(
l̃1, . . . , l̃ℓ,

W [f0, . . . , fn−1, h]

W [f0, . . . , fn−1]

)

is an ECT-system on I. For each k = 1, 2, . . . , ℓ, let lk be an analytic function on I satisfying

(3)
W [f0, . . . , fn−1, lk]

W [f0, . . . , fn−1]
= l̃k.

Then (f0, . . . , fn−1, l1, . . . , lℓ, h) is an ECT-system on I.

It is worthwhile making some remarks about Theorem 3.2. The assumptions on f0, f1, . . . , fn−1 and h
imply that any function in the linear span E of them has at most n+ℓ zeros on I counted with multiplicities.
The result shows that there exists an ECT-system of dimension n+ ℓ+1 whose linear span contains E . Let
us also note that the existence of l̃1, l̃2, . . . , l̃ℓ is not an assumption but a consequence of Lemma 3.1. Note
finally that (3) defines a n-th order linear differential equation for lk. Since W [f0, . . . , fn−1] does not vanish

on I, the coefficients of l
(i)
k for i = 0, 1, . . . , n are analytic functions on I. In particular, the coefficient of l

(n)
k

is ±1. (To show this develop the determinant W [f0, . . . , fn−1, lk] with respect to the last column and note

that the minor associated to l
(n)
k is precisely W [f0, . . . , fn−1].) Accordingly the equality in (3) is verified by

a well defined analytic function lk on I.
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Proof of Theorem 3.2. For the sake of convenience, let us define lℓ+1 := h and l̃ℓ+1 :=
W [f0,...,fn−1,lℓ+1]

W [f0,...,fn−1]
.

We claim that, for all j = 0, 1, . . . , ℓ and i = 1, . . . , ℓ+ 1, we have

W [f0, . . . , fn−1, l1, . . . , lj, li] =W [l̃1, . . . , l̃j , l̃i]W [f0, . . . , fn−1].

We prove the claim by induction on j. From (3) it follows thatW [f0, . . . , fn−1, li] =W [l̃i]W [f0, . . . , fn−1]
and this shows the claim for j = 0. Let us show next that if the claim is true for j 6 m− 1, then so it is for
j = m. To this end note that

W [f0, . . . , fn−1, l1, . . . , lm, li] =

(
W [f0, . . . , fn−1, l1, . . . , lm−1, li]

W [f0, . . . , fn−1, l1, . . . , lm]

)′
(W [f0, . . . , fn−1, l1, . . . , lm])2

W [f0, . . . , fn−1, l1, . . . , lm−1]

=

(
W [l̃1, . . . , l̃m−1, l̃i]W [f0, . . . , fn−1]

W [l̃1, . . . , l̃m]W [f0, . . . , fn−1]

)′
(W [f0, . . . , fn−1, l1, . . . , lm])2

W [f0, . . . , fn−1, l1, . . . , lm−1]

=
W [l̃1, . . . , l̃m, l̃i]W [l̃1, . . . l̃m−1]

(W [l̃1, . . . , l̃m])2

(W [f0, . . . , fn−1, l1, . . . , lm])2

W [f0, . . . , fn−1, l1, . . . , lm−1]

=
W [l̃1, . . . , l̃m, l̃i]W [l̃1, . . . l̃m−1]

(W [l̃1, . . . , l̃m])2

(W [l̃1, . . . , l̃m]W [f0, . . . , fn−1])
2

W [l̃1, . . . , l̃m−1]W [f0, . . . , fn−1]

=W [l̃1, . . . , l̃m, l̃i]W [f0, . . . , fn−1],

where in the first equality we apply Lemma 2.4, in the second one the induction hypothesis for j = m−1, in
the third one we apply Lemma 2.4 again, and finally in the fourth one we use the induction hypothesis for
j = m− 1 and j = m− 2. Accordingly the claim is proved. (Let us note that the denominators in the above

equalities do not vanish due to the fact that (l̃1, l̃2, . . . , l̃ℓ+1) is an ECT-system and W [f0, . . . , fn−1] 6= 0.)

Now, by applying the claim with i = j + 1 we have that

(4) W [f0, . . . , fn−1, l1, . . . , lj+1] =W [l̃1, . . . , l̃j+1]W [f0, . . . , fn−1] for all j = 0, 1, . . . , ℓ.

Since (l̃1, l̃2, . . . , l̃ℓ+1) is an ECT-system, W [l̃1, . . . , l̃j+1] is non-vanishing on I for all j = 0, 1, . . . , ℓ. On the
other hand, since by assumption this is also the case of (f0, f1, . . . , fn−1), the equality in (4) shows that
(f0, . . . , fn−1, l1, . . . , lℓ+1) is an ECT-system as desired.

The following result was proved by Gavrilov and Iliev for n = 2 (see [11, Proposition 2]). We include its
generalization for completeness.

Corollary 3.3. Consider the n-th order linear differential equation

(5) y(n) + a1(x)y
(n−1) + . . .+ an−1(x)y

′ + an(x)y = b(x),

where ai, for i = 1, 2, . . . , n, and b are analytic functions on I. Suppose that the corresponding homogeneous
differential equation, i.e., (5) taking b ≡ 0, has a fundamental set of solutions {ϕ0, ϕ1, . . . , ϕn−1} such that
(ϕ0, ϕ1, . . . , ϕn−1) is an ECT-system on I. Then, if b has k zeros on I counted with multiplicities, any
solution of (5) has at most n+ k zeros on I counted with multiplicities.

Proof. Note that (5) can be written as

W [ϕ0, . . . , ϕn−1, y]

W [ϕ0, . . . , ϕn−1]
(x) = b(x).

Accordingly, if h is a solution of (5), then W [ϕ0, . . . , ϕn−1, h] has k zeros on I counted with multiplicities.
Then, by Theorem 3.2, the function h belongs to an ECT-system on I of dimension n + k + 1, and so the
result follows.
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At this point we introduce the following definition.

Definition 3.4 Let σ be an involution on I with σ(0) = 0. We say that a function f defined on I \ {0} is
σ-odd (respectively, σ-even) if f ◦ σ = −f (respectively, f ◦ σ = f). Accordingly, f is σ-odd (respectively,
σ-even) if, and only if, Bσ(f) = f (respectively, Bσ(f) = 0). �

Lemma 3.5. Consider I = (a, b) with a < 0 < b and let σ be an analytic involution on I such that σ(0) = 0.

Define ϕ(x) = x−σ(x)
2 , i.e., ϕ = Bσ(Id). Then ϕ is a diffeomorphism from I to (a−b

2 , b−a
2 ). Moreover an

analytic function f on I is σ-odd if, and only if, f ◦ ϕ−1 is odd.

Proof. That ϕ is a diffeomorphism follows from the fact that an involution is monotonous decreasing. Due
to σ2 = Id, note that ϕ(σ(x)) = −ϕ(x), so that ϕ(σ(ϕ−1(x))) = −x. Thus, σ(ϕ−1(x)) = ϕ−1(−x). Hence,
if f is σ-odd, then

(
f ◦ ϕ−1

)
(−x) = f

(
ϕ−1(−x)

)
= f

(
σ(ϕ−1(x))

)
= −

(
f ◦ ϕ−1

)
(x)

and this shows that f ◦ ϕ−1 is an odd function. Reciprocally, if f ◦ ϕ−1 is odd, then

Bσ

(
f
)
(x) =

f(x)− f
(
σ(x)

)

2
=
f(x)− f

(
ϕ−1(−ϕ(x))

)

2
= f(x),

where in the second equality we use that σ(x) = ϕ−1
(
−ϕ(x)

)
and in the third one that f ◦ϕ−1 is odd. This

proves that f is σ-odd.

Proposition 3.6. Let σ be an analytic involution on I = (a, b) with a < 0 < b and σ(0) = 0. Suppose
that f0, f1, . . . , fn are σ-odd (respectively, σ-even) analytic functions on I verifying that

(
f0, . . . , fn−1

)
is an

ECT-system on (0, b) and that W [f0, . . . , fn] has k zeros on (0, b) counted with multiplicities. Then there
exist g1, g2, . . . , gk analytic σ-odd (respectively, σ-even) functions on I such that

(
f0, . . . , fn−1, g1, . . . , gk, fn

)

is an ECT-system on (0, b).

Proof. Let us consider the σ-odd case first. To this end, for the sake of convenience, we suppose first that
σ = −Id, so that f0, f1, . . . , fn are odd functions in the classical sense. Then, by Lemma 2.7

l̃k+1 :=
W [f0, . . . , fn−1, fn]

W [f0, . . . , fn−1]

is either odd or even depending on n. If l̃k+1 is odd (respectively, even), then by applying Lemma 3.1 there

exist l̃1, l̃2, . . . , l̃k analytic odd (respectively, even) functions on I such that
(
l̃1, . . . , l̃k, l̃k+1

)
is an ECT-

system on (0, b). Now, by Theorem 3.2, we know that if for each i = 1, 2, . . . , k the function li is chosen
verifying that

W [f0, . . . , fn−1, li]

W [f0, . . . , fn−1]
= l̃i,

then
(
f0, . . . , fn−1, l1, . . . , lk, fn

)
is an ECT-system on (0, b). Accordingly it only remains to check that

each li is an odd function. To this end, let Pi and Si be respectively the even and odd parts of li. Thus,
since li = Pi + Si, we get

(6)
W [f0, . . . , fn−1, Pi]

W [f0, . . . , fn−1]
+
W [f0, . . . , fn−1, Si]

W [f0, . . . , fn−1]
= l̃i.

Then, from Lemma 2.7 again, W [f0,...,fn−1,Si]
W [f0,...,fn−1]

has the same parity as W [f0,...,fn−1,fn]
W [f0,...,fn−1]

= l̃k+1, which has the

same parity as l̃i, while the parity of W [f0,...,fn−1,Pi]
W [f0,...,fn−1]

is just the opposite one. Since the decomposition of a
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function as a sum of its even and odd parts is unique, from (6) we conclude that W [f0, . . . , fn−1, Pi] = 0.
We claim that this implies Pi = 0. To show the claim consider W [f0, . . . , fn−1, Pi] = 0 as a n-th order
homogeneous linear differential equation for Pi. Note that the functions f0, f1, . . . , fn−1 form a fundamental
set of solutions, so that Pi = α0f0 + α1f1 + . . . + αn−1fn−1 for some constants αj . Since fj are all odd
functions and Pi is even, this implies that Pi = 0. This proves the claim and shows that li is odd, as desired.

Next we shall obtain the result for an arbitrary involution σ using that it is true for σ = −Id. So let
us assume that f0, f1, . . . , fn are σ-odd functions. By applying Lemma 3.5 we have that fi ◦ ϕ−1 is an odd
analytic function on

(
a−b
2 , b−a

2

)
for all i = 0, 1, . . . , n. Moreover, by (a) in Lemma 2.5 it follows that

(
f0 ◦ ϕ−1, . . . , fn−1 ◦ ϕ−1

)

is an ECT-system on
(
0, b−a

2

)
and that W [f0 ◦ ϕ−1, . . . , fn ◦ ϕ−1] has k zeros on

(
0, b−a

2

)
counted with

multiplicities. Now, since the claim is true when σ = −Id, we can assert that there exist l1, l2, . . . , lk
analytic odd functions on

(
a−b
2 , b−a

2

)
such that

(
f0 ◦ ϕ−1, . . . , fn−1 ◦ ϕ−1, l1, . . . , lk, fn ◦ ϕ−1

)

is an ECT system on
(
0, b−a

2

)
. Consequently, by applying (a) in Lemma 2.6,

(
f0, . . . , fn−1, l1 ◦ ϕ, . . . , lk ◦ ϕ, fn

)

is an ECT-system on (0, b). Finally, since each li is an odd function, by Lemma 3.5 we get that gi := li ◦ ϕ
is σ-odd for all i = 1, 2, . . . , k. This concludes the proof of the result in the σ-odd case.

Finally we shall obtain the proof for the σ-even case using that the result is true for σ-odd functions.
Thus, assume that f0, f1, . . . , fn are σ-even functions on I. Let κ be any σ-odd analytic function on I
vanishing only at x = 0 with multiplicity one. For instance we can choose κ(x) = x − σ(x). Notice then

that f̂i := κfi is a σ-odd analytic function for i = 0, 1, . . . , n. Moreover, on account of (b) in Lemma 2.5,(
f̂0, . . . , f̂n−1

)
is an ECT-system on (0, b) andW [f̂0, . . . , f̂n] has k zeros on (0, b) counted with multiplicities.

Accordingly, since the result is true for the σ-odd case, there exist ĝ1, ĝ2, . . . , ĝk σ-odd analytic functions
on I such that

(
f̂0, . . . , f̂n−1, ĝ1, . . . , ĝk, f̂n

)
is an ECT-system on (0, b). Therefore, since κ does not vanish

on (0, b), by (b) in Lemma 2.6 we can assert that

(
f0, . . . , fn−1, ĝ1/κ, . . . , ĝk/κ, fn

)

is an ECT-system on (0, b). It only remains to check that gi := ĝi/κ is a σ-even analytic function on I. The
analyticity is clear because, since ĝi is σ-odd, it vanishes at x = 0. The fact that gi is σ-even is also clear
because it is the quotient between two σ-odd functions. This concludes the proof of the result.

Corollary 3.7. Let σ be an analytic involution on I = (a, b) with a < 0 < b and σ(0) = 0. Suppose that
f0, f1, . . . , fn are σ-odd functions on I verifying that:

(a) There exists s ∈ N such that x 7−→ x2s−1fi(x) is analytic on I for all i = 0, 1, . . . , n,

(b)
(
f0, . . . , fn−1

)
is an ECT-system on (0, b) and

(c) W [f0, . . . , fn] has k zeros on (0, b) counted with multiplicities.

Then there exist g1, g2, . . . , gk σ-odd functions on I such that
(
f0, . . . , fn−1, g1, . . . , gk, fn

)
is an ECT-system

on (0, b). In addition x 7−→ x2s−1gi(x) is analytic on I for all i = 1, 2, . . . , k.

Proof. Take any σ-odd analytic function κ vanishing only at x = 0 with multiplicity 2s−1.We can take for
instance κ(x) = x2s−1 − σ(x)2s−1. Define f̂i := κfi. Then f̂0, f̂1, . . . , f̂n are σ-even analytic functions on I.

Moreover, on account of (b) in Lemma 2.5,
(
f̂0, . . . , f̂n−1

)
is an ECT-system on (0, b) and W [f̂0, . . . , f̂n]
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has k zeros on (0, b) counted with multiplicities. Thus, by applying Proposition 3.6, there exist ĝ1, ĝ2, . . . , ĝk
σ-even analytic functions on I such that

(
f̂0, . . . , f̂n−1, ĝ1, . . . , ĝk, f̂n

)
is an ECT-system on (0, b). We define

gi = ĝi/κ for i = 1, 2, . . . , k. Therefore each gi is a σ-odd function verifying that x2s−1gi(x) is analytic on I
and, from (b) in Lemma 2.6,

(
f0, . . . , fn−1, g1, . . . , gk, fn

)
is an ECT-system on (0, b).

Finally, the following result (see [12, Theorem B]) constitutes the fundamental tool to prove Theorem A.

Theorem 3.8. Consider the Abelian integrals

Ii(h) =

∫

γh

fi(x)y
2s−1dx, i = 0, 1, . . . , n− 1,

where, for each h ∈ (0, h0), γh is the oval inside the level curve {A(x) + B(x)y2m = h}. Let σ be the
involution associated to A and define

ℓi = Bσ

(
fi

A′B
2s−1
2m

)
.

If the following conditions are verified:

(a)
(
ℓ0, ℓ1, . . . , ℓn−1

)
is a CT-system on (0, xr), and

(b) s > m(n− 2),

then (I0, I1, . . . , In−1) is an ECT-system on (0, h0).

We are now in position to show the main result of the paper.

Proof of Theorem A. Clearly the function ℓi = Bσ

(
fi

A′B
2s−1
2m

)
is σ-odd. Recall on the other hand that B

does not vanish on (xℓ, xr) and that A′ vanishes only at x = 0 (with odd multiplicity, say 2r−1). Thus, since
the order of a pole at x = 0 does not change after computing its balance, we have that x 7−→ x2r−1ℓi(x) is
analytic on (xℓ, xr) for all i = 0, 1, . . . , n. Hence, by Corollary 3.7, there exist g1, g2, . . . , gk σ-odd functions
verifying that (

ℓ0, . . . , ℓn−2, g1, . . . , gk, ℓn
)

is an ECT-system on (0, xr) and that x 7−→ x2r−1gi(x) is analytic on (xℓ, xr) for all i = 1, 2, . . . , k. Define

hi := giA
′B

2s−1
2m . Then hi is an analytic function on (xℓ, xr) such that

Bσ

(
hi

A′B
2s−1
2m

)
= Bσ(gi) = gi.

Thus, setting Ji :=

∫

γh

hi(x)y
2s−1dx for i = 1, 2, . . . , k, by applying Theorem 3.8 we can assert that

(
I0, . . . , In−2, J1, . . . , Jk, In−1

)

is an ECT-system on (0, h0). Here we use, recall Definition 2.1, that an ECT-system is in particular a CT-
system and that, by assumption, s > m(n+k−2). This shows that any linear combination of I0, I1, . . . , In−1

has at most n+ k − 1 zeros on (0, h0) counted with multiplicities, as desired.

4 An example of application

As a toy example of application of our criterion we focus on the results obtained by Dumortier, Li and
Zhang in [3]. In that paper the authors consider the family of quadratic systems

(7)

{
ẋ = y − 3x2 + y2 + ε(ν1x+ ν2xy),

ẏ = x(1− 2y) + εν3x
2,
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where ν = (ν1, ν2, ν3) ∈ R3 \{0}. This family is a versal unfolding of the quadratic system with ε = 0 among
all 3-parameter unfoldings which are transversal to the stratum QR

3 . It turns out (see [3, Lemma 2.2]) that
the limit cycles that bifurcate for ε ≈ 0 from the period annulus of the center at the origin correspond to
zeros of the function

I(h) = αI0(h) + βI1(h) + γI2(h) for h ∈ (0, 43 ),

where

Ii(h) =

∫

γh

xiydx with H(x, y) = (x+ 2)y2 +
x2(x+ 6)

12
for i = 0, 1, 2.

(Here α, β and γ are in linear bijective correspondence with ν1, ν2 and ν3.) In this Section we will prove
by applying Theorem A that any linear combination of I0, I1, I2 has at most 3 zeros on h ∈ (0, 43 ) counted
with multiplicities. The proof of this fact in [3] takes 21 pages of very technical and highly non-trivial
computations.

Following the notation in Theorem A, note that m = 1, n = 3, s = 1,

A(x) =
x2(x + 6)

12
and B(x) = x+ 2.

In this example k = 1, so that the condition s > m(n+ k− 2) is not fulfilled. To overcome this problem we
shall use the next result (see [12, Lemma 4.1]) to increase the power of y in the 1-form associated to I(h).

Lemma 4.1. Let γh be an oval inside the level curve {A(x)+B(x)y2 = h} and consider a function F such
that F/A′ is analytic at x = 0. Then, for any k ∈ N,

∫

γh

F (x)yk−2dx =

∫

γh

G(x)ykdx

where G(x) = 2
k

(
BF
A′
)′
(x)−

(
B′F
A′
)
(x).

Note that I(h) =

∫

γh

F1(x)ydx with F1(x) := α+βx+γx2. Since F1(0) 6= 0, we can not apply Lemma 4.1

directly. To bypass this we note that

I(h) =
1

h2

∫

γh

H(x, y)2F1(x)ydx =
1

h2

∫

γh

(
A2F1y + 2ABF1y

3 +B2F1y
5
)
dx.

Thus, we first apply Lemma 4.1 with k = 3 and F2 := A2F1 to obtain1

I(h) =
1

h2

∫

γh

(
(G2 + 2ABF1)y

3 +B2F1y
5
)
dx.

Next, since one can verify that F3 := G2+2ABF1 vanishes at x = 0, we can apply Lemma 4.1 once again to

obtain I(h) =
1

h2

∫
(G3 +B2F1)y

5dx, where G3 depends on F1, A and B and their derivatives until third

order. More concretely, some computation show that

I(h) =
1

h2

∫

γh

(
αf0(x) + βf1(x) + γf2(x)

)
y5dx

1We remark that the computations were done with a symbolic manipulator (Maple). We include only those expressions
that are essential to the exposition.
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with

f0(x) =
8

135

x2
(
35 x6 + 732 x5 + 6354 x4 + 55296 + 100512 x+ 74752 x2 + 29208 x3

)

(x+ 4)
4 ,

f1(x) =
8

135

5134 x5 + 27 x7 + 27648 + 90336 x+ 110640 x2 + 69512 x3 + 24842 x4 + 574 x6

(x+ 4)4
,

f2(x) =
16

135

1673 x4 + 10 x6 + 200 x5 + 13824 + 25008 x+ 18744 x2 + 7468 x3

(x+ 4)
4 .

It is clear that any linear combination of I0, I1, I2 has at most 3 zeros on (0, 43 ) counted with multiplicities

if, and only if, so it occurs with Î0, Î1, Î2, where Îi(h) =

∫

γh

fi(x)y
5dx for i = 0, 1, 2. Note that we can apply

Theorem A to prove this equivalent result because now s = 3 (and still m = 1, n = 3 and k = 1), so that
s > m(n + k − 2) holds. This is the assumption (c) in the statement of Theorem A. Next we shall prove
that the assumptions (a) and (b) are verified as well. To this end let us define

(8) ti(x) := Bσ

(
fi

A′B
5
2

)
(x) =

1

2

(
fi

A′B
5
2

)
(x) − 1

2

(
fi

A′B
5
2

)(
σ(x)

)
.

It is easy to show that the projection on the x-axis of the period annulus at the origin associated to H = h
is the interval (xℓ, xr) with xℓ = −2 and xr = 2(

√
3− 1).

Note that, due to ti◦ σ = −ti, from (a) in Lemma 2.5 it follows that

W
[
ti
](
σ(x)

)
=

1

σ′(x)
(i−1)i

2

W
[
ti◦ σ

]
(x) =

(−1)i−1

σ′(x)
(i−1)i

2

W
[
ti
]
(x) for all x ∈ (xℓ, xr).

Accordingly, since σ is a diffeomorphism with σ
(
(0, xr)

)
= (xℓ, 0), in order to verify the assumptions on

the Wronskians we can take the interval (xℓ, 0) instead of (0, xr). We will do it for the sake of convenience.
Thus our goal is to show that W

[
t1
]
and W

[
t2
]
do not vanish on (−2, 0), and that W

[
t3
]
has exactly one

zero on (−2, 0).

The involution σ is the unique analytic function with σ(0) = 0 and σ′(0) = −1 such that A(x) = A
(
σ(x)

)

for all x ∈ (xℓ, xr). One can verify that A(x)−A(z) = 1
12 (x− z) p(x, z) with

p(x, z) = x2 + zx+ 6 x+ z2 + 6 z.

It is clear then that σ verifies p
(
x, σ(x)

)
= 0 for all x ∈ (0, xr). Hence, setting z = σ(x),

(9) σ′(x) =
px(x, z)

pz(x, z)
=

2 x+ z + 6

x+ 2 z + 6
.

Taking (8) into account, this shows in particular thatW
[
ti
]
(x) = ωi(x, σ(x)) with ωi(x, z) being an algebraic

function. It is clear that if ωi

(
x0, σ(x0)

)
= 0 for x0 ∈ (−2, 0), then p(x, z) = 0 and ωi(x, z) = 0 have a

common root, (x0, z0) with z0 = σ(x0). This is the reason why we shall next study the common roots of
p(x, z) and ωi(x, z). Let us stress however that the existence of a common (real) root is only a necessary
condition for the vanishing of W

[
ti
]
.

Let us start by studying the third order Wronskian. Some computations show that

(10) ω3(x, z) =
A(x, z)

√
x+ 2−A(z, x)

√
z + 2

(x + 2z + 6)3
,

where A is a rational function. Clearly, if ω3(x, z) = 0, then r3(x, z) := A(x, z)2(x+2)−A(z, x)2(z+2) = 0.
Note that if the resultant with respect to z between p(x, z) and the numerator of r3(x, z) vanishes exactly
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once on (−2, 0), then W
[
t3
]
has at most one zero on (−2, 0), as desired. By applying Sturm’s theorem

it follows however that it vanishes twice on (−2, 0), numerically at x̄2 ≈ −1.1331 and x̄2 ≈ −1.9991.
Fortunately the latter is not a zero of ω3

(
x, σ(x)

)
. To prove this we first apply Sturm’s theorem to check

that the resultant vanishes exactly once on (−1.9, 0). Then we verify that ω3

(
x, σ(x)

)
is negative at x = −2

and decreasing on (−2,−1.9). This latter fact can be once again proved algebraically. Indeed, we derivate
implicitly using (9) and we get a rational function on x, z,

√
x+ 2 and

√
z + 2 as in (10) We evaluate it

at x = −2 and z = σ(−2) = 2(
√
3 − 1) to verify that it is negative. The fact that it does not vanish on

(−2,−1.9) can be done by applying Sturm’s theorem exactly as before. This shows that the assumption (b)
in Theorem A holds.

Let us consider next the assumption in (a). We begin by studying the second order Wronskian. Un-
fortunately it turns out that W

[
t1
]
= W [t0, t1] vanishes once on (−2, 0). Accordingly we can not apply

Theorem A directly to Î0, Î1, Î2, at least in this order. Alternatively, we could try with Î0, Î2, Î1 or Î1, Î2, Î0.
However these two options lead to a dead end as well because W [t0, t2] and W [t1, t2] both have a zero on
(−2, 0). After several attempts with other linear combinations, we found out numerically that W [t2, t0+ t1]
does not vanish on (−2, 0). To prove it algebraically we first note that W [t2, t0+ t1](x) = ω̃2

(
x, σ(x)

)
where

ω̃2(x, z) = A(x, z)
√
x+ 2

√
z + 2 +B(x, z),

with A and B rational functions. Hence it suffices to show that A(x, z)2(x+2)(z+2)−B(x, z)2 and p(x, z)
does not have common roots when x ∈ (−2, 0). This fact can be studied by computing the resultant with
respect to z and applying Sturm’s theorem. Unfortunately the resultant has one zero on (−2, 0), numerically
at x̄3 ≈ −1.9980. Exactly as before we will prove that this is not a “true” zero of ω̃2

(
x, σ(x)

)
. Firstly, by

applying Sturm’s theorem, we check that the resultant does not vanish on (−1.9, 0). Secondly we verify that
ω̃2

(
x, σ(x)

)
is positive at x = −2 and increasing on (−2,−1.9).

Finally we will prove that W [t2] does not vanish on (−2, 0). Note that in fact

W [t2](x) = t2(x) = Bσ

(
f2

A′B
5
2

)
(x) =

1

2

(
f2

A′B
5
2

)
(x)− 1

2

(
f2

A′B
5
2

)(
σ(x)

)
.

Thus, since x < 0 < σ(x) for all x ∈ (−2, 0), it suffices to verify that x 7−→
(

f2

A′B
5
2

)
(x) is a monotonic

function. Some computations show that
(

f2

A′B
5
2

)′
(x) = 16S(x)

135(x+2)7/2(x+4)6
with

S(x) = −35 x8 − 656 x7 − 4426 x6 − 7104 x5 + 69216 x4 + 464672 x3 + 1261056 x2 + 1668096 x+ 884736.

By Sturm’s theorem it follows that this polynomial does not vanish on (−2, 0).

Accordingly, taking W [t2, t0+ t1, t0] = −W [t0, t1, t2] into account, by applying Theorem A we can assert

that any linear combination of Î2, Î0 + Î1, Î0 has at most 3 zeros on (0, 43 ) counted with multiplicities.

Obviously, this proves that so it occurs with Î0, Î1, Î2, as desired.
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