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Abstract

We develop two methods for constructing several new and explicit m-periodic dif-

ference equations. Then we apply our results to two different problems. Firstly we

show that two simple natural conditions appearing in the literature are not necessary

conditions for the global periodicity of the difference equations. Secondly we present the

first explicit non-linear analytic potential differential system having a global isochronous

center.
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1 Introduction and main results

In general, a real difference equation (or recurrence) of order n writes as

xj+n = f(xj, xj+1, . . . , xj+n−1) (1)

where xj ∈ R for all j ∈ N, and f is a map from an open subset of Rn into R. This recurrence
can be studied through the dynamical system generated by the map F : U → U, where U

is an open subset of Rn and F is

F (x1, . . . , xn) = (x2, . . . , xn, f(x1, . . . , xn)). (2)

Recurrence (1) or the dynamical system generated by (2) is m-periodic if Fm = Id and

m ≥ n is the smallest natural with this property. In terms of the recurrence (1) this

property reads as xj+m = xj for all j ≥ 0. Several examples of periodic recurrences are

given for instance in [1, 4, 8, 9, 14, 15, 19].
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The first part of the paper is devoted to give several new examples of periodic recur-

rences (1), defined in the whole Rn. In our constructions we follow the next two simple

ideas:

• The difference equation (1) is transformed into the new difference equation

yj+n = ϕ−1 (f(ϕ(yj), ϕ(yj+1), . . . , ϕ(yj+n−1))) , (3)

with the change of variables xn = ϕ(yn), where ϕ is any invertible map. Hence if (1)

is m-periodic the same holds for (3). Moreover if f , ϕ and ϕ−1 are all elementary

functions, the same happens with the function defining the new recurrence (3).

• Let G be a given m-periodic recurrence of order n and let Φ be a homeomorphism of

V ⊂ Rn into U ⊂ Rn. Then F = Φ ◦G ◦Φ−1 gives a periodic map on U which is not

necessarily a periodic recurrence. We investigate the structure of the map Φ in order

that F still gives a recurrence on Rn and we study in more detail the case n = 2.

Although the first method is common knowledge, our focus has been the construc-

tion of elementary functions ϕ with elementary inverse function ϕ−1. Recall that, roughly

speaking, elementary functions are functions built from a finite number of (complex) ex-

ponentials, logarithms and polynomials, through composition and combinations using the

four elementary operations. As far as we know the second method considered in this paper

is new.

The above constructions, detailed in Sections 2.1 and 2.2, respectively, will allow to

prove the main results of the paper, described in the sequel. The first one deals with the

following two properties, which try to give necessary conditions for some f to define a

m-periodic difference equation (1). They are:

• P1: For each fixed y ∈ R and w ∈ R the real valuated map fy(w) := f(w,y, . . . ,y)

is an involution.

• P2: The map σ ◦ F is an involution, where σ : Rn → Rn is σ(x1, x2, . . . , xn−1, xn) =

(xn, xn−1, . . . , x2, x1).

Note that σ(F (w, x2, . . . , xn)) = (f(w, x2, . . . , xn), xn, xn−1, . . . , x2). So (σ ◦ F )2 = Id is

equivalent to

f(f(w, x2, x3, . . . , xn), xn, xn−1, . . . , x2) = w.

Therefore, in general, property P2 implies property P1 and when n = 2 both properties

are equivalent.
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The main reasons to introduce them are Theorem 3.1 of [2], where the author asserts that

the global periodicity of (1) implies property P1, and the results of Lemma 10, where we

prove that all real linear periodic n-th order recurrences satisfy P2. Moreover, surprisingly,

it can be seen that many known non-linear recurrences also satisfy both properties.

Nevertheless our first main result below, Theorem 1, shows that none of these properties

is a necessary condition for periodicity of (1). Our proof is based on the constructing of

a 3-periodic second order recurrence for which both properties fail. Before continuing we

want to comment that an example of a known recurrence not satisfying property P2 is the

8-periodic Lyness given in [15],

xj+3 =
xj+1 − xj+2 − 1

xj
.

Notice that F (x, y, z) = (y, z, f(x, y, z)) where f(x, y, z) = (y−z−1)/x. Then σ◦F (x, y, z) =
(y−z−1

x , z, y). So

(σ ◦ F )2(x, y, z) = (
z − y − 1

y − z − 1
x, y, z) 6= (x, y, z).

On the other hand property P1 holds because

fy(w) = f(w,y,y) = − 1

w

is an involution. In any case it is a not natural example because, as can be seen by

analyzing the dynamical system associated to F, it has no connected invariant region. In

fact F permutes invariant regions and has no fixed point. In some sense it is natural to

think that properties P1 and P2 are inherited from the linear part of F at the fixed points,

because as we will see in Lemma 10, the recurrences associated to the linear part at them

always satisfy both properties. Anyway, the example that we will present for proving next

theorem has a fixed point.

Theorem 1. None of the properties P1 and P2 is a necessary condition for the global peri-

odicity of (1). More specifically, there are periodic recurrences, whose associated dynamical

systems have a fixed point, that do not satisfy properties P1 and P2.

Hence, unfortunately, none of the above properties can be used to obtain necessary

conditions of global periodicity. In particular our result shows that there is a gap in the

proof of [2, Thm. 3.1].

As a second application of our results we will construct a 2-parameter family of non-

linear explicit global isochronous potential systems. To the best of our knowledge all the

known explicit examples were not globally defined. Before stating the result we will motivate

the problem.
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From the pioneering works of Urabe ([21, 22]) it is already known how to characterize

the planar potential systems of the form

ẋ = −y, ẏ = V ′(x), (4)

having a (local or global) isochronous center at the origin. Recall that a critical point p

of center type is called isochronous if the periods of all the orbits in a neighborhood of p

coincide. If moreover the center is global and all the periodic orbits have the same period

then we will say the the p is a global isochronous center. See for instance [7, 16] and the

references therein for more information about planar isochronous centers.

In [12, 23] there is a different characterization of the isochronism of a center of system (4)

based on the existence of some (local or global) involution. This characterization, recalled

in Theorem 12 is the one that will interest us. We only comment here that in that result it

is proved that the existence of an analytic explicit global isochronous center is reduced to

the construction of an analytic global explicit involution.

As usual a real involution ψ is an invertible function defined in an open subset of R that

satisfies ψ2 = Id, or equivalently ψ = ψ−1. As far as we know, apart of the trivial involution

ψ(x) = a− x, all the other known explicit involutions, like

ψ(x) =
ax+ b

cx− a
, ψ(x) =

2m+1
√
a− x2m+1, ψ(x) = 2a4 + x− 2a2

√
a4 + 2x, . . .

either are not defined in the whole R, or are not differentiable. With the methods introduced

in Section 2.1 we give a 2-parameter family of explicit analytic global involutions. From it we

construct the first explicit non-linear analytic potential systems having a global isochronous

center.

Theorem 2. The 3-parameter family of analytic potential systems

ẋ = −y, ẏ = V ′(x), (5)

with V (x) := K(x− ψ(x))2, where

ψ(x) =
1

6


 3

√
A(x) +

√
A2(x) +∆3 − ∆

3

√
A(x) +

√
A2(x) + ∆3

− 2r


 , (6)

being

∆ := 4(3s − r2) > 0, A(x) := 4
(
(9s − 2r2)r − 27(x3 + rx2 + sx)

)
,

and K, r, s ∈ R, has a global isochronous center at the origin.

From the proof of the above theorem it also can be seen that for some values of r and

s not satisfying ∆ > 0, the origin of (5) is a local isochronous center.
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2 New periodic recurrences

The first part of this section is devoted to give explicit new global trivially linearizable

periodic recurrences based on the construction of explicit one-dimensional global homeo-

morphisms. In the second part we build periodic recurrences based on the construction of

planar homeomorphisms which conjugate recurrences into recurrences.

2.1 Explicit global diffeomorphisms and involutions

An easy way of obtaining new difference equations having the same behavior as a given

one (1) consists in constructing the difference equations (3) where ϕ is any given invertible

map. A particularly interesting case is the one where the base difference equation is linear,

that is recurrence (1) is

xj+n = ℓ(xj , xj+1, . . . , xj+n−1),

where ℓ(w1, . . . , wn) = a1 w1 + a2w2 + · · ·+ anwn. All the recurrences that can be written

as

yj+n = ϕ−1 (ℓ(ϕ(yj), ϕ(yj+1), . . . , ϕ(yj+n−1))) ,

for some invertible map ϕ, will be called trivially linearizable.

The above facts motivate our interest to find elements of the group with the composition:

Ek = {ϕ : R → R with ϕ and ϕ−1 elementary functions that are Ck-homeomorhisms}

where k ∈ {0, 1, . . . , n,∞, ω}.
It is clear, that once we have some elements {ϕλ, λ ∈ Λ} of Ek, the new maps formed

by composing them with their inverses are again elements of Ek. So we center our attention

to find simple elements of this set.

Lemma 3. The following functions belong to Ek :

(i) The affine maps ϕ(x) = p x+ q, p 6= 0 with k = ω.

(ii) The functions ϕ(x) = x2p+1, being 0 < p ∈ N, with k = 0.

(iii) The function ϕ(x) = sinh(x) = (ex − e−x)/2, with k = ω.

(iv) The function ϕ(x) = x3 + p x+ q, p > 0, with k = ω

Proof. The proof of the first three items is very easy: the corresponding inverse functions

ϕ−1(y) are, (y − q)/p, 2p+1
√
y and ln

(
(y +

√
y2 + 4)/2

)
, respectively.
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The proof of (iv) is a consequence of Cardano’s formula. Note that when p > 0 the

corresponding ϕ is a diffeomorphism and

ϕ−1(y) =
3

√
y − q

2
+

√
(q − y)2

4
+
p3

27
− 3

√
q − y

2
+

√
(q − y)2

4
+
p3

27
. (7)

Observe also that for p > 0 we do not need to pass trough complex numbers to find the

real solution of the cubic equation.

Let us see a family of simple global m-periodic recurrences of order n constructed by

using the diffeomorphism ϕ−1(x) = sinh(x). The map

F (x1, . . . , xn) =


x2, . . . , xn−1,

1

2




n∏

i=1



xi +

√
x2i + 1

2




ai

−
n∏

i=1



xi +

√
x2i + 1

2




−ai




 ,

where the values ai, i = 1 . . . , n are taken such that

L(x1, . . . , xn) = (x2, . . . , xn−1, a1 x1 + a2 x2 + a3 x3 + · · ·+ an xn)

is a real linear m-periodic recurrence, gives rise to a m-periodic recurrence. In particular,

when n = 2, L(x, y) = (y,−x + 2Re(α)y) with α some primitive m-root of the unity (see

Lemma 7 below) we obtain the global second order m-periodic recurrences

xj+2 =
1

2







xj+1 +
√

x2
j+1 + 1

2




b 


xj +
√

x2
j + 1

2




−1

−




xj+1 +
√

x2
j+1 + 1

2




−b 


xj +
√

x2
j + 1

2





 ,

where b = 2Re(α).

There are many elementary functions that can be inverted in an open interval giving

also an elementary function, but it is not possible to invert them globally. We introduce a

simple trick to get from them global homeomorphisms.

Lemma 4. Consider three Ck-invertible real elementary functions defined on the intervals

given in next diagram

(−∞,∞)
g−→ (r, t)

φ−→ (u,w)
h−→ (−∞,∞).

If the three functions g, φ, h have a Ck elementary inverse in their corresponding intervals,

then ψ = h ◦ φ ◦ g is an element of Ek.

Note also that in the above result it is also possible to take some of the intervals (r, t)

or (u,w) unbounded.
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Simple examples of 1-parametric functions g and h are given by the expressions

hv(x) = Hu,v,w(x) :=
x− v

(x− u)(w − x)
, where −∞ < u < v < w <∞,

and

gs(x) = H−1
r,s,t(x), where −∞ < r < s < t <∞.

Then, once an invertible increasing elementary function φ : (r, t) → (φ(r), φ(t)), with ele-

mentary inverse is given, it suffices to take u = φ(r) and w = φ(t) and g and h as above.

Let us give some concrete examples:

By taking

(−∞,∞)
g−→ (−π

2
,
π

2
)

sin−→ (−1, 1)
h−→ (−∞,∞)

with g(x) = −1+
√
1+π2x2

2x and h(x) = x
1−x2 we obtain the global diffeomorphism in Eω :

ϕ(x) = h(sin(g(x))) =
sin

(
−1+

√
1+π2x2

2x

)

cos2
(
−1+

√
1+π2x2

2x

) .

The functions g and h can also be taken different from the above ones. For instance, by

using

(−∞,∞)
g−→ (−π

2
,
π

2
)

tan−→ (−∞,∞)
Id−→ (−∞,∞)

with g(x) = π
2

x√
1+x2

we get the element of Eω :

ϕ(x) = tan(g(x)) = tan

(
π

2

x√
1 + x2

)
.

When some of the values r, t, u or w are plus or minus infinity, other functions g and h

can be used. For instance, a simple one is g(x) = ex + r that sends (−∞,∞) into (r,∞).

Clearly, collecting all the above results and using the group structure of Ek we can

obtain, for any n > 1 and any m > n, many other examples of recurrences of order n which

are m-periodic on Rn which are trivially linearizable.

2.2 Generating non-trivially linearizable recurrences

An easy way to obtain periodic maps on U ⊂ Rn is to conjugate a known periodic recurrence

of order n, G defined on V, with a homeomorphism Φ : V → U. Recall that to obtain a peri-

odic recurrence we additionally need that Φ◦G◦Φ−1(x1, . . . , xn) = (x2, . . . , xn, f(x1, . . . , xn))

for some continuous map f. The next lemma characterizes the homeomorphisms Φ with this

property. One of this type of examples will be used to prove Theorem 1.
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Lemma 5. Let U and V simply connected subsets of Rn. Let G : V → V be a recurrence

and let Φ : V → U be a homeomorphism. Then the map Φ ◦G ◦Φ−1 is a recurrence defined

in U if and only if Φi(x) = Φ1(G
i−1(x)) for all points x ∈ U and for any i = 2, 3, . . . , n.

Proof. Denote Φ◦G◦Φ−1 by F . Then we will have F ◦Φ = Φ◦G. Thus if F is a recurrence

we obtain Φi = Φi−1(G(x)), for i = 2, 3, . . . , n, which inductively shows the desired result.

The converse follows by the same argument.

Next results study in more detail the case n = 2. First we state a classical result.

Theorem 6. (Kerékjártó’s Theorem, see [13]) Let U ⊂ R2 be homeomorphic to R2 and let

F : U → U be a Ck, m-periodic map, k ≥ 0. Then F is C0-linearizable.

Lemma 7. Let F : R2 → R2 be a continuous recurrence, such that F (x, y) = (y, f(x, y)).

Then F is m-periodic if and only if there exists α, a primitive m-root of the unity, and

g : R2 → R continuous, such that the map Φ : R2 → R2 defined by

Φ(x, y) = (g(x, y), g(Lα(x, y))),

where Lα(x, y) = (y,−x + 2Re(α) y), is a homeomorphism from R2 into itself and F =

Φ ◦ Lα ◦ Φ−1.

Proof. Let L : R2 → R2 be a linear m-periodic recurrence of the form L(x, y) = (y, ax+by).

The characteristic polynomial of L is p(λ) = λ2 − bλ − a. Since L is m-periodic it follows

that its eigenvalues must a pair of conjugate primitive m-roots of the unity. Thus, a = −1

and b = 2Re(α) for some α a primitive m-root of the unity.

From Kerékjártó’s Theorem we already know that there exists a homeomorphism Φ :

R2 → R2 such that F = Φ ◦ Lα ◦ Φ−1. Then, putting Φ = (g, h) by Lemma 5 we get that

h = g ◦ Lα.

Conversely, if F = Φ ◦Lα ◦Φ−1 then F is conjugated to Lα and hence it is m-periodic.

Moreover also by Lemma 5 it follows that F gives rise to a recurrence.

Lemma 8. Let α be primitive m-root of the unity. If Re(α) ≥ 0 (respectively Re(α) ≤ 0)

and d, h : R → R are two homeomorphisms such that d ◦ h is increasing (respectively

decreasing), then the map Φ : R2 → R2 defined by Φ(x, y) = (g(x, y), g(Lα(x, y))), where

g(x, y) = d(x) + h(y), is an homeomorphism from R2 into itself and Φ ◦ Lα ◦ Φ−1 is a

m-periodic recurrence defined in the whole plane.

Proof. We will prove that Φ has a global inverse. Taking (u, v) ∈ R2 we need to show that

there exists one and only one (x, y) ∈ R2 such that Φ(x, y) = (u, v). So for each (u, v) ∈ R2

8



we have to solve the system:

d(x) + h(y) = u,

d(y) + h(−x+ 2Re(α)y) = v.

Assume for instance Re(α) ≥ 0 (the other case follows in a similar way). From the first

equation we get y = h−1(u− d(x)). Substituting in the second equation we obtain

d(h−1(u− d(x))) + h(−x+ 2Re(α)h−1(u− d(x))) = v.

Fixed u ∈ R consider the map Mu : R → R defined by

Mu(x) = d(h−1(u− d(x))) + h(−x+ 2Re(α)h−1(u− d(x))).

From the facts that that Re(α) ≤ 0 and d ◦ h is increasing it follows that Mu is a home-

omorphism from R to itself. Then x = M−1
u (v) and y = h−1(u − d(M−1

u (v))) gives the

continuous global inverse for Φ. The fact that F is a m-periodic recurrence follows from

Lemma 7.

The case m = 4 is very special because Re(α) = 0. In this situation we can go further

in the above computations. We have got the following result which gives a simple method

to generate new 4-periodic second order recurrences.

Lemma 9. Let P : R → R be a Ck even map be such that Id+P is a Ck diffeomorphism

from R into itself and P (0) = 0. Then the map F : R2 → R2 defined by

F (x, y) = (y, y − (Id+P )−1 (y + x− P (y − x))

is 4-periodic.

Proof. Denote by L the linear map L(x, y) = (y,−x). Consider h(x) = x + P (2x)
2 which is

also a Ck diffeomorfism of R into itself and the map Φ : R2 → R2 defined by

Φ(x, y) = (h(x) + h(−y), h(y) + h(x)).

From Lemma 8 it follows that Φ is a Ck diffeomorfism of R2 and the map F defined by

Φ ◦ L ◦Φ−1 is a 4-periodic recurrence. Easy computations show that

Φ−1(x, y) =

(
h−1

(
y − h

(
y − x

2

))
,
y − x

2

)
.

Thus we will have

F (x, y) =

(
y, h

(
−h−1

(
y − h

(
y − x

2

)))
+ h

(
y − x

2

))
.
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Now using that h(−x) = h(x)− 2x we obtain

F (x, y) = (y, y − 2h−1(y − h
(y−x

2

)
))

= (y, y − 2h−1(y+x−P (y−x)
2 ))

= (y, y − (Id+P )−1(y + x− P (y − x))).

Clearly if P : R → R is an even function such that Id+P is a Ck-diffeomorphism of R,
k ≥ 1, then |P ′(x)| < 1 for all x ∈ R. Moreover it is easy to see that if |P ′(x)| < k < 1 for

all x ∈ R then Id+P is a Ck diffeomorphism of R. Thus for each a ∈ R such that |a| < 1 we

get that the function ha(x) = x + a cos x is an analytic diffeomorphism of R. Hence from

the above Lemma we obtain that the map

Fa(x, y) = (y, y − h−1
a (x+ y − a cos(y − x)))

is a global 4-periodic analytic recurrence.

3 On properties P1 and P2 and proof of Theorem 1

The next lemma shows that properties P1 and P2 are satisfied by linear recurrences. The

first part of the lemma is already known, see [15, 18].

Lemma 10. Let L : Rn → Rn be a periodic linear map of the form

L(x1, . . . , xn) = (x2, . . . , xn, ℓ(x1, x2, . . . , xn)).

Then the characteristic polynomial of L has no multiple roots. Moreover (σ ◦ L)2 = Id,

where σ(x1, x2, . . . , xn−1, xn) = (xn, xn−1, . . . , x2, x1).

Proof. Let λ ∈ C be an eigenvalue of L. Since for any for any Jordan block and for any

m ∈ N, 


λ 1 0 . . . 0 0

0 λ 1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . λ 1

0 0 0 . . . 0 λ




m

6= Id,

we obtain that L is diagonalizable over C. So to prove the first part of statement it suffices

to show that for any λ its space of eigenvectors has dimension one. Let 0 6= v ∈ Cn be such

that L(v) = λ v. Then v = (x1, λ x1, . . . , λ
n−1x1) = x1(1, λ, . . . , λ

n−1).
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Note also that if L is n-periodic all its eigenvalues must be n-th roots of the unity, so

if λ is a eigenvalue of L then λ−1 must be also eigenvalue of L. Then L and L−1 have the

same characteristic polynomial. Since ℓ(x1, . . . , xn) = a1x1 + · · · + anxn,

L =




0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 1

a1 a2 a3 . . . an−1 an




and L−1 =




b1 b2 b3 . . . bn−1 bn

1 0 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 0

0 0 0 . . . 1 0



,

it follows that (a1, . . . , an) = (bn, . . . , b1). Thus σ ◦ L ◦ σ = L−1 and as a consequence

(σ ◦ L)2 = Id, as we want to prove.

As a corollary we obtain the following result:

Corollary 11. Trivially linearizable recurrences satisfy properties P1 and P2.

Proof. It is easy to check that if recurrence (1) satisfies properties P1 or P2, then the same

happens for any recurrence of the form

yj+n = ϕ−1 (f(ϕ(yj), ϕ(yj+1), . . . , ϕ(yj+n−1))) ,

where ϕ is an invertible map. Since trivially linearizable recurrences can be written as

yj+n = ϕ−1 (ℓ(ϕ(yj), ϕ(yj+1), . . . , ϕ(yj+n−1))) ,

for some linear map ℓ and some invertible map ϕ, the result follows from Lemma 10.

By using the above corollary we have that both properties P1 and P2 hold for the

difference equations appearing in [1, 4, 5, 6, 20], like

xj+n =
C

xjxj+1 · · · xj+n−1
, C > 0, (n+ 1)-periodic,

xj+n =
xjxj+2 · · · xj+n−1

xj+1xj+3 · · · xj+n−2
, n odd, (n+ 1)-periodic,

xj+3 = xj

(
xj+2

xj+1

)φ

, where φ2 = φ+ 1, 5-periodic,

which are trivially linearizable, as can be seen by using the function ϕ(x) = ln(x).

Moreover it is easy to prove that many of the well-known periodic recurrences like the

Lyness or the max-type ones, see [3, 4, 9, 10] also satisfy properties P1 and P2, although

they are not trivially linearizable, see again [10]. The same happens with the Coxeter

periodic recurrences, see [11, 14]. Nevertheless we give a counterexample in the proof of

Theorem 1.
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Proof of Theorem 1. To show that P1 is not a necessary condition of global periodicity we

will give a second order, 3-periodic recurrence. Notice that since for order 2 recurrences

both properties are equivalent, this example will be also a counterexample for property P2.

Consider F = Φ ◦ L ◦Φ−1, where

Φ(x, y) = (x+ g(y), y + g(−x− y))

with g(z) = −z − z2 − z3 and L(x, y) = (y,−x − y). That F is a second order, 3-periodic

recurrence follows from Lemmas 7 and 8 applied to d(x) = x, h(y) = −y − y2 − y3 and

α = (−1 + i
√
3)/2. So we can put F (x, y) = (y, f(x, y)). Since F is 3-periodic we get that

F−1 = (f(x, y), x). On the other hand we have that (σ ◦ F ◦ σ)(x, y) = (f(y, x), x). Then

the equality σ ◦ F ◦ σ = F−1 is equivalent to (σ ◦ F )2 = Id and also to f(x, y) = f(y, x).

Computing the Taylor series of f we obtain

f(x, y) = −y − x− 2
3x

2 − 2
3xy − 2

3y
2 − 4

9x
3 − 5

9x
2y − 5

9xy
2 − 4

9y
3

−1
9x

4 − 2
27x

3y + 1
27x

2y2 − 2
27xy

3 − 1
9y

4

+ 8
243x

5 + 29
243x

4y + 161
243x

3y2 + 229
243x

2y3 + 199
243xy

4 + 76
243y

5 +O(6).

Since the degree 5 homogeneous part of the Taylor series of f is non symmetric it follows

that f(x, y) 6= f(y, x) and so that σ ◦ F is not an involution, as we wanted to prove.

4 Proof of Theorem 2

Our proof of Theorem 2 is based on the following result:

Theorem 12 (See [12, 23]). The origin of

ẋ = −y, ẏ = V ′(x),

is a global analytic isochronous center if and only if there exists an analytic involution ψ,

different from the identity, and satisfying ψ(0) = 0, such that

V (x) = K(x− ψ(x))2,

for some positive real number K.

Proof of Theorem 2. It is well known that Ck-periodic maps in R are either the identity

or globally Ck-conjugated to − Id, see [17]. Then the way to obtain explicit examples of

Cω-involutions in R is to consider maps of the form ψ(x) = ϕ(−(ϕ−1(x)), where ϕ ∈ Eω.
However note that if ϕ is odd then ϕ(−(ϕ−1(x)) = −x. So to obtain non-trivial global

involutions we must choose non odd elements of Eω. Consider the map ϕ(x) = x3+rx2+sx,

12



with ∆ = 4(3s − r2) > 0. Since ϕ′(x) > 0 for all x ∈ R we know that it is an analytic

diffeomorphism. By using suitably Cardano’s formula (7) to compute ϕ−1 we obtain an

explicit expression for this function. After some more computations we get that ψ(x) =

ϕ−1(−ϕ(x)) is the function (6) given in the statement of the theorem. Finally observe that

in the expression 3

√
A(x) +

√
A2(x) + ∆3, neither A(x) +

√
A2(x) +∆3 nor A2(x) + ∆3

vanish. So ψ is a global analytic involution. Thus the result follows by Theorem 12.
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