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Abstract. The subject of this paper concerns with the bifurcation of limit
cycles and invariant cylinders from a global center of a linear differential sys-
tem in dimension 2n perturbed inside a class of continuous and discontinuous
piecewise linear differential systems. Our main results show that at most one
limit cycle and at most one invariant cylinder can bifurcate using the expan-
sion of the displacement function up to first order with respect to a small
parameter. This upper bound is reached. For proving these results we use
the averaging theory in a form where the differentiability of the system is not
needed.

1. Introduction

In control theory and in the study of electrical circuits appear in a natural way the
continuous and discontinuous piecewise linear differential systems, see for instance
[6], [9] and the references therein. Such differential systems can exhibit complicate
dynamics such as those exhibited by general nonlinear differential systems. The
limit cycles and the invariant sets by the flow are some of the main components in
the qualitative description of the dynamical behavior of a differential system.

In this paper we study the existence of limit cycles and invariant generalized
cylinders for the class of control systems represented by

(1) ẋ = A0x+ εF (x)

where

(i) A0 ∈ M2n(R) with eigenvalues {±ip1/q1, . . .± ipn/qn} where pk and qk
are positive integers for k = 1, . . . n and (pk, qk) = 1, where (., .) denotes
the greatest common divisor of pk and qk.

(ii) pk/qk 6= pl/ql for k 6= l;
(iii) ε 6= 0 is a sufficiently small real parameter;
(iv) F : R2n → R2n given by

(2) F (x) = Ax+ ϕ0(k
Tx)b,

with A ∈ M2n(R) and ϕ0 : R → R is the discontinuous function

(3) ϕ0(y) =

{
−1 y ∈ (−∞, 0),
1 y ∈ (0,∞).
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Here the dot denotes derivative with respect to t.
Let Q be the least common multiple of q1, . . . , qn. Doing a linear change of

variables and a rescaling of the independent variable t we write the matrix A0 in its
real Jordan normal form with eigenvalues {±i, ±ia2, . . . ,±ian}, where ak = αk/q

with αk =
pkQ

qk
, k = {2, ..., n} and q =

p1Q

q1
are positive integers. Note that by (ii)

ak 6= al if k 6= l. This q will be used later on in this paper. So A0 is

(4) A0 =




0 −1
1 0

0 −a2
a2 0

. . .

0 −an−1

an−1 0
0 −an
an 0




,

where the empty entries of the matrix are zeros.
For our purpose we first study the perturbed problem

(5) ẋ = A0x+ εFw(x),

where Fw is the piecewise linear function Fw(x) = Ax+ϕw(k
Tx)b where ϕw : R → R

is given by

(6) ϕw(y) =





−1 y ∈ (−∞,−w],
y

w
y ∈ (−w,w),

1 y ∈ [w,∞).

Observe that we have two different limit differential systems. More precisely

(i) For ε = 0 system (5) becomes

(7)

ẋ1 = −x2,
ẋ2 = x1,
ẋ3 = −a2x4,
ẋ4 = a2x3,

...
ẋ2n−1 = −anx2n,
ẋ2n = anx2n−1,

where the origin is a global center.
(ii) Taking w → 0 in (5) we obtain the discontinuous two piecewise linear

differential system (1).

A limit cycle of a differential system is an isolated periodic orbit in the set of all
periodic orbits of the system.

Our main results are the following.

Theorem 1. For every integer n ≥ 2 at most one limit cycle of the piecewise
linear differential system (5) bifurcates from the periodic orbits of system (7), up to
first-order expansion of the displacement function of (5) with respect to the small
parameter ε. Moreover there are systems (5) having exactly one limit cycle.
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Corollary 2. For every integer n ≥ 2 at most one limit cycle of the discontinuous
piecewise linear differential system (1) bifurcates from the periodic orbits of system
(7), up to first-order expansion of the displacement function of (1) with respect
to the small parameter ε. Moreover there are systems (1) having exactly one limit
cycle.

Theorem 3. For every integer n ≥ 2 at most one invariant cylinder homeomorphic

to R×
(
S1
)n−1

of the piecewise linear differential system (5) bifurcates from (7), up
to first-order expansion of the displacement function of (5) with respect to the small
parameter ε. Moreover there are systems (5) having exactly one invariant cylinder.
This cylinder is fulfilled of periodic orbits.

Corollary 4. For every integer n ≥ 2 at most one invariant cylinder homeo-

morphic to R ×
(
S1
)n−1

of the discontinuous piecewise linear differential system
1 bifurcates from (7), up to first-order expansion of the displacement function of
(1) with respect to the small parameter ε. Moreover there are systems (1) having
exactly one invariant cylinder. This cylinder is fulfilled of periodic orbits.

Theorem 1 is an extension first of the main results of [4] where the case αj = 1
for j = 1, · · · , n with A0 semi-simple is considered, and second of the main results
of [7] where the case 1 : m with integer m > 1 in dimension 4 is studied.

This paper is organized as follows. In section 2 we present the averaging theory
of first order in the form obtained in [1] for detecting limit cycles and invariant
cylinders. The advantage of this result is that the smoothness assumptions for the
vector field of the differential system it is not necessary. In particular, it can be
applied to piecewise linear differential systems, which are not C2 (not even C1),
as it was required in its classical version, see for instance, Theorem 11.5 of [10].
This version of averaging theory has been used in some previous papers, see for
instance, [2], [4] and [5]. We note that when the averaged function of first order
is not identically zero (and this will be the case in this paper), it is sufficient for
studying the periodic orbits of the perturbed system. For more details see section
2 and [1].

In section 3 we prove Theorem 1. For this purpose first we prove Lemma 8 where
we reduce the number of parameters by a linear change of coordinates. In the next
step we put the system in the standard form for applying averaging, this is done in
Lemma 14.

In section 4 we prove Theorem 3 which needs Lemma 20 where a change of co-
ordinates is presented for writing the system in the normal form of the averaging
theory. In section 5 we give an illustrative example where a discontinuous piece-
wise linear differential system exhibits a unique limit cycle and a unique invariant
cylinder.

2. First-Order Averaging Theory

The aim of this section is to present the first-order averaging theory as obtained
in [1]. In this version differentiability of the vector field is not needed. The specific
conditions for the existence of a simple isolated zero of the averaged function are
given in terms of the Brouwer degree. In fact, the Brouwer degree theory is the key
point in the proof of this theorem. We remind here that continuity of some finite
dimensional function is a sufficient condition for the existence of its Brouwer degree
(see [8] for precise definitions).
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Theorem 5. We consider the following differential system

(8) ẋ = εH(t, x) + ε2R(t, x, ε),

where H : R×D → Rn, R : R×D × (−εf , εf ) → Rn are continuous functions, T-
periodic in the first variable, and D is an open subset of Rn. We define h : D → Rn

as

(9) h(z) =

∫ T

0

H(s, z)ds,

and assume that:

(i) H and R are locally Lipschitz with respect to x;
(ii) for a ∈ D with h(a) = 0, there exists a neighborhood V of a such that

h(z) 6= 0 for all z ∈ V \{a} and dB(h, V, a) 6= 0 (here dB(h, V, a) denotes
the Brouwer degree of h at a).

Then, for |ε| > 0 sufficiently small, there exists an isolated T-periodic solution
ψ(., ε) of system (8) such that ψ(0, ε) → a as ε→ 0.

Here we will need some facts from the proof of Theorem 5. Hypothesis (i)
assures the existence and uniqueness of the solution of each initial value problem
on the interval [0, T ]. Hence, for each z ∈ D, it is possible to denote by x(., z, ε) the
solution of (8) with the initial value x(0, z, ε) = z.We consider also the displacement
function ζ : D × (−εf , εf) → Rn defined by

(10) ζ(z, ε) =

∫ T

0

[εH(t, x(t, z, ε)) + ε2R(t, x(t, z, ε), ε)]dt.

From the proof of Theorem 5 we extract the following facts.

Remark 6. For every z ∈ D the following relation holds

x(T, z, ε)− x(0, z, ε) = ζ(z, ε).

The function ζ can be written in the form

ζ(z, ε) = εh(z) +O(ε2),

where h is given by (9) and the symbol O(ε2) denotes a bounded function on every
compact subset of D×(−εf , εf) and of order ε2. Moreover, for |ε| sufficiently small,
z = ψ(0, ε) is a isolated zero of ζ(., ε).

Note that from Remark 6 it follows that a zero of the displacement function
ζ(z, ε) at time T provides initial conditions for a periodic orbit of the system of
period T. We also remark that h(z) is the displacement function up to terms of
order ε. Consequently the zeros of h(z), when h(z) is not identically zero, also
provides periodic orbits of period T.

For a given system there is the possibility that the function ζ is not globally
differentiable, but the function h is C1 as we shall see in Section 3 and 4. In fact,
only differentiability in some neighborhood of a fixed isolated zero of h could be
enough. When this is the case, one can use the following remark in order to verify
the hypothesis (ii) of Theorem 5.

Remark 7. Let h : D → Rn be a C1 function, with h(a) = 0, where D is an open
subset of Rn and a ∈ D. Whenever a is a simple zero of h (i.e. the Jacobian Jh(a)
of h at a is not zero), then there exists a neighborhood V of a such that h(z) 6= 0
for all z ∈ V \{a} and dB(h, V, a) ∈ {−1, 1}.
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The averaging theory provides information on the location of the periodic orbits.
Thus if a is a zero of the averaged function h(z) with dB(f, V, a) 6= 0, then there is
a limit cycle ϕ(t, ε) of system (8) satisfying that ϕ(0, ε) → a when ε → 0. So a is
an initial condition for the periodic orbit which bifurcates to the limit cycle ϕ(t, ε).

The averaging theory for C2 differential system also provides in the hyperbolic
case the stability or unstability of the periodic orbits. For discontinuous differential
systems a weaker result on the stability and unstability can be found in [3].

3. Proof of Theorem 1

As before we will assume that A0 is given by its real Jordan normal form (4).
Moreover a set of lemmas will be presented to put the system (5) in a more tractable
way for using the averaging method.

The next lemma writes system (5) to a convenient normal form.

Lemma 8. If the vector k = (k1, k2, . . . , k2n−1, k2n) is such that
∏n

j=1(k
2
2j−1 +

k22j) 6= 0, then there exists a linear change of coordinates that sending the system

(5) to the system

(11) ẋ = A1x+ εĀx+ εϕw(x1)b̄,

where Ā ∈ M2n(R) and b̄ ∈ R2n are functions of A and b. Moreover

A1 =




0 −1 ε 0
1 0 0 ε

0 −a2 ε 0
a2 0 0 ε

. . .

. . .

0 −an−1 ε 0
an−1 0 0 ε

0 −an
an 0




,

where all the empty entries of A1 are zero.

Proof. To prove the lemma we must find J satisfying

(12)
J−1A0J = A1,
kTJ = eT1 .

The proof will be done by induction on n.
If n = 2 the vector field is in a 4-dimensional space and a straightforward calcu-

lation shows that the matrix

J4 =




k1

k2
1+k2

2
− k2

k2
1+k2

2
− εk2

(k2
1+k2

2)(a2−1)
− εk1

(k2
1+k2

2)(a2−1)
k2

k2
1+k2

2

k1

k2
1+k2

2

εk1

(k2
1+k2

2)(a2−1)
− εk2

(k2
1+k2

2)(a2−1)

0 0 εk4

(k2
3+k2

4)(a2−1)
εk3

(k2
3+k2

4)(a2−1)

0 0 − εk3

(k2
3+k2

4)(a2−1)
εk4

(k2
3+k2

4)(a2−1)




=




J1,1 J1,2

J2,1 J2,2




satisfies system (12), where the matrix Ji,j ∈ M2(R) and J2,1 = 0. Note that, in
this case, J4 is well defined and invertible because its determinant ε2/[(a2−1)2(k21+
k22)(k

2
3 + k24)] 6= 0 and a2 6= 1.
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Suppose that the result is valid up to n − 1. That is, there exists a (2n −
2)−invertible matrix J2n−2 of the form

J2n−2 =




J∗
1,1 J∗

1,2 . . . J∗
1,n−2 J∗

1,n−1

J∗
2,1 J∗

2,2 · · · J∗
2,n−2 J∗

2,n−1

· · · · · · · · · · · · · · ·
J∗
n−2,1 J∗

n−2,2 · · · J∗
n−2,n−2 J∗

n−2,n−1

J∗
n−1,1 J∗

n−1,2 · · · J∗
n−1,n−2 J∗

n−1,n−1



,

with J∗
i,j ∈ M2(R) and J∗

i,j = 0 if i > j and satisfying system (12).
Now we have to find a matrix J2n of the form




J∗
1,1 · · · J∗

1,n−2

(
j∗1,2n−3 j∗1,2n−2

j∗2,2n−3 j∗2,2n−2

) (
j1,2n−1 j1,2n
j2,2n−1 j2,2n

)

.

.

.
.
.
.

.

.

.
.
.
.

J∗
n−1,1 · · · J∗

n−1,n−2

(
j∗2n−3,2n−3 j∗2n−3,2n−2

j∗2n−2,2n−3 j∗2n−2,2n−2

) (
j2n−3,2n−1 j2n−3,2n

j2n−2,2n−1 j2n−2,2n

)

(
0 0
0 0

)
· · ·

(
0 0
0 0

) (
0 0
0 0

) (
j2n−1,2n−1 j2n−1,2n

j2n,2n−1 j2n,2n

)




satisfying system (12) and where the elements with (*) are fixed by the previous
step in the sense that the submatrix with terms (*) satisfies (12) in dimension
2n− 2. Moreover Ji,j = 0 if i > j.

Some calculations show that the equation JA1 − A0J = 0 is equivalent to the
following system of equations:

(13)

εj∗2k−1,2n−3 + anj2k−1,2n + akj2k,2n−1 = 0, k = 1, . . . , n− 1,

εj∗2k,2n−3 + anj2k,2n − akj2k−1,2n−1 = 0, k = 1, . . . , n− 1,

εj∗2k−1,2n−2 − anj2k−1,2n−1 + akj2k,2n = 0, k = 1, . . . , n− 1,

εj∗2k,2n−2 − anj2k,2n−1 − akj2k−1,2n = 0, k = 1, . . . , n− 1,

anj2n−1,2n + anj2n,2n−1 = 0,
anj2n,2n − anj2n−1,2n−1 = 0.

From the first and fourth equations of (13) we obtain

j2k−1,2n =
ε(anj

∗
2k−1,2n−3 + akj

∗
2k,2n−2)

a2k − a2n
and

j2k,2n−1 =
ε(akj

∗
2k−1,2n−3 + anj

∗
2k,2n−2)

a2k − a2n

for k = 1, . . . , n− 1 and from the second and third of (13) we obtain

j2k,2n =
ε(anj

∗
2k,2n−3 − akj

∗
2k−1,2n−2)

a2k − a2n
and

j2k−1,2n−1 =
ε(akj

∗
2k,2n−3 − anj

∗
2k−1,2n−2)

a2k − a2n

for k = 1, . . . , n− 1.
Moreover as a2n − a2k 6= 0, for all k = 1, . . . , n− 1, the solutions found above are

unique.
Now from the last two equations of (13) we have

−j2n−1,2n = j2n,2n−1 = β, j2n,2n = j2n−1,2n−1 = α.
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Considering the equation kTJ = eT1 the previous constants must satisfy

k2n−1α+ k2nβ = −
2n−2∑

i=1

kiji,2n−1,

k2nα− k2n−1β = −
2n−2∑

i=1

kiji,2n.

This system has a single solution if k22n−1 + k22n 6= 0. This completes the proof of
the lemma. �

The next result will put the system in the standard form for applying the aver-
aging method. This will be done via a convenient change of coordinates.

Lemma 9. Doing the changing of coordinates from (x1, x2, x3, x4, . . . , x2n−1, x2n)
to (r1, . . . , rn, θ1, . . . , θn) given by

x1 = r1 cos θ1, x2 = r1 sin θ1,
x2k−1 = rk cos(akθ1 + θk), x2k = rk sin(akθ1 + θk), k = 2, . . . , n,

and considering θ1 as the new time system (11) becomes

(14)

dr1
dθ1

= εH1(θ1, r1, . . . , rn, θ2, . . . θn) +O(ε2),

drk
dθ1

= εHk(θ1, r1, . . . , rn, θ2, . . . θn) +O(ε2), k = 2, . . . , n,

dθk
dθ1

= εGk(θ1, r1, . . . , rn, θ2, . . . θn) +O(ε2), k = 2, . . . , n,

where

(15)

H1 = r2 cos((a2 − 1)θ1 + θ2) + cos θ1F1 + sin θ1F2,

Hk = rk+1 cos((ak+1 − ak)θ1 + (θk+1 − θk)) + cos(akθ1 + θk)F2k−1

+sin(akθ1 + θk)F2k,

Hn = cos(anθ1 + θn)F2n−1 + sin(anθ1 + θn)F2n,

Gk = −ak
r1

[r2 sin((a2 − 1)θ1 + θ2) + cos θ1F2 − sin θ1F1]+

1

rk
[rk+1 sin((ak+1 − ak)θ1 + (θk+1 − θk)) + cos(akθ1 + θk)F2k−

sin(akθ1 + θk)F2k−1],

Gn = −an
r1

[r2 sin((a2 − 1)θ1 + θ2) + cos θ1F2 − sin θ1F1]+

1

rn
[cos(anθ1 + θn)F2n − sin(anθ1 + θn)F2n−1],

for Hk and Gk the subindex k varies from 2 to n − 1. The expressions of Fl for
l = 1, · · · , 2n are given in Appendix 1.

We take εf sufficiently small, m arbitrarily large, and Dm = (1/m,m)× (n)
. . .

×(1/m,m)×R× (n−1)
. . . ×R. Then the vector field of system (14) is well defined and

continuous on R×Dm × (−εf , εf ). Moreover it is 2πq−periodic with respect to θ1
and globally Lipschitz with respect to (r1, . . . , rn, θ2, . . . θn).
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Proof. Considering the variables (θ1, r1, . . . , rn, θ2, . . . θn) system (11) becomes

(16)

θ̇1 = 1 +
ε

r1
(r2 sin((a2 − 1)θ1 + θ2) + cos θ1F2 − sin θ1F1),

ṙ1 = εH1(θ1, r1, . . . , rn, θ2, . . . θn),
ṙk = εHk(θ1, r1, . . . , rn, θ2, . . . θn), k = 2, . . . , n,

θ̇k = εGk(θ1, r1, . . . , rn, θ2, . . . θn), k = 2, . . . , n.

Observe that the functions on the right hand of (16) have the form given by
(15). So from the fact that ak = αk/q it is easy to see that they are 2πq−periodic
in the variable θ1.

Now for |ε| sufficiently small we have θ̇1(t) > 0 for each θ1 such that (θ1, r1, . . . , rn,
θ2, . . . θn) ∈ R × Dm. A suitable time-rescaling allows to take θ1 as the time and
so (16) can be written as a (2n− 1)−dimensional system. Expanding this system
with respect to ε in Taylor series we obtain the desired form (14). Moreover the
periodicity of the O(ε2) functions follows from the fact that these functions are
obtained from the previous ones by this expansion in Taylor series. The remaining
affirmations follow by direct computations. �

In Lemma 9 we have obtained for vector field (5) a form where we are able to
apply the averaging theory.

For this purpose we have to find the corresponding averaging function (9).
We call f : Dm → R2n−1 the function f = (h1, . . . , hn, g2, . . . , gn) defined by

hk(r, R, s) =

∫ 2πq

0

Hk(θ1, r1, . . . , rn, θ2, . . . θn)dθ1 for k = 1, . . . , n,

and

gl(r, R, s) =

∫ 2πq

0

Gl(θ1, r1, . . . , rn, θ2, . . . θn)dθ1 for l = 2, . . . , n.

In order to compute the averaging function we present below some integral that
can be easily calculated

∫ 2πq

0

cos θ1 sin θ1dθ1 = 0,

∫ 2πq

0

cos2(αθ1 + θk)dθ1 = πq =

∫ 2πq

0

sin2(αθ1 + θk)dθ1,

∫ 2πq

0

cos θ1 sin(αθ1 + θk)dθ1 = 0, ∀ k = 2, . . . , n and α 6= 1,

∫ 2πq

0

cos θ1 cos(αθ1 + θk)dθ1 = 0, with k, α 6= 1,

∫ 2πq

0

sin θ1 sin(αθ1 + θk)dθ1 = 0, with k, α 6= 1,

∫ 2πq

0

sin θ1 cos(αθ1 + θk)dθ1 = 0, ∀ k = 2, . . . , n and α 6= 1.

Now for each r1 > 0 define

I1(r1, w) =

∫ 2πq

0

ϕw(r1 cos θ1) cos θ1dθ1,
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I2(r1, w) =

∫ 2πq

0

ϕw(r1 cos θ1) sin θ1dθ1,

I2k−1(r1, w) =

∫ 2πq

0

ϕw(r1 cos θ1) sin(akθ1)dθ1, k = 2, . . . , n,

I2k(r1, w) =

∫ 2πq

0

ϕw(r1 cos θ1) cos(akθ1)dθ1, k = 2, . . . , n,

where ϕw is the real function given in (6).
A direct calculation shows that

I2(r1, w) = 0 and I2k−1(r1, w) = 0, ∀ r1 > 0.

Moreover

I1(r1, w) =





πqr1
w

0 < r1 ≤ w,

2q

(
r1
w
arccsc

(r1
w

)
+

√
r21 − w2

r1

)
r1 > w,

and

I2k(r1, w) =

{
0 0 < r1 ≤ w,

2Jk(r1, w) r1 > w,

where

Jk(r1, w) =

(
1

ak
− ak
a2k − 1

)
sin

[
ak arccos

(
w

r1

)]
+

r1 sin

[
arccos

(
w

r1

)]
cos

[
ak arccos

(
w

r1

)]

w(a2k − 1)
,

for k = 2, . . . , n.

Lemma 10. The system obtained for the averaged function f is given by
(17)
h1 = πqr1(a11 + a22) + b1I1(r1, w) = 0,
hk = πqrk(a2k−1,2k−1 + a2k,2k) + (b2k−1 cos θk + b2k sin θk)I2k(r1, w) = 0,
gk = πq(a2k,2k−1 − a2k−1,2k + aka2,1 − aka1,2)+

1

r1rk
[akb2rkI1(r1, w) − r1 (−b2k cos θk + b2k−1 sin θk)] I2k(r1, w) = 0,

where k = 2, · · · , n and Ā = (aij), 1 ≤ i, j ≤ 2n and b̄ = (bl), l = 1, ..., 2n are the
ones given in Lemma 8.

Proof. The proof of this lemma is directly obtained using the expression of H1, Hk

and Gk with k = {2, . . . , n} given in Lemma 9, the previous integrals and the fact
that ak 6= al for k 6= l. �

Now we can prove Theorem 1.
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Proof of Theorem 1. We have to find the zeroes of system (17). If 0 < r1 ≤ w then
system (17) becomes

h1 = πqr1(a11 + a22) + b1
πqr1
w

= 0,

hk = πqrk(a2k−1,2k−1 + a2k,2k) = 0,

gk = πq

(
a2k,2k−1 − a2k−1,2k + aka2,1 − aka1,2 +

akb2
w

)
= 0,

where k = 2, · · · , n.
This system either has no solution, or has a continuum of solutions because the

variables θk does not appear explicitly in the system. So, in this case, we do not
find any limit cycle.

Now if r1 > w, from the first equation of (17) we have that the function I1(r1, w)
satisfies

(i) For each w fixed
∂2I1
∂r21

(r1, w) = −4w2q/(r21
√
r21 − w2) < 0 and so the graph

of I1(., w) is convex.

(ii) For each w fixed
∂I1
∂r1

(r1, w) =
2q

w
arccsc

(r1
w

)
− 2q

√
1− w2

r21

r1
and we have

lim
rցw

∂I1
∂r1

(r1, w) =
πq

w
and lim

r→∞
∂I1
∂r1

(r1, w) = 0. From the fact that
∂I1
∂r1

is decreasing (by (i)) we obtain
∂I1
∂r1

(r1, w) > 0, so the graph of I1(., w) is

strictly increasing. Moreover as
∂I1
∂r1

(r1, w) <
πq

w
it follows that the graph of

I1(., w) is below of the straight line
πq

w
r1. Hence in order that the equation

h1 = 0 has solutions in r1 with r1 > w, we have that b1(a11 + a22) < 0.
(iii) lim

r1→∞
I1(r, w) = 4q, I1(., w) : (0,∞) → (0, 4q) and I1 is a C

1−diffeomorphism.

In the same way we can see that for each w fixed I2k(r1, w), k = 2, ..., n are
C1−diffeomorphisms. This implies that the averaging function (17) is C1

From (i)-(iii) we have that there exists in the interval (w,∞) at most one point
of intersection between the graph of I1(., w) and the straight line through the origin

−πq(a11 + a22)

b1
r1. Moreover this intersection point exists if and only if

(18) 0 < − (a11 + a22)

b1
w < 1 (see Figure 1).

Consequently equation h1 = 0 has exactly one solution in r1 > w if we take a11, a22
and b1 satisfying condition (18).

Denote this solution by r∗1 . Substituting it in the others equations of (17) for
k = {2, . . . , n} we obtain

(19)

αk1rk + αk2uk + αk3vk = 0,

βk +
1
rk

(−αk3uk + αk2vk) = 0,

u2k + v2k = 1,
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w
r∗1,w

−4b1
(a11+a22)π

πq

r1

4q
t

s

a

0

Figure 1. The graph of the function I1(., w) and the straight line

t given by equation −πq(a11 + a22)

b1
r1.We denote by s the straight

line
πq

w
r1 and a = −πq(a11 + a22)

b1
w.

where

αk1 = πq(a2k−1,2k−1 + a2k,2k), αk2 = b2k−1I2k(r
∗
1 , w), αk3 = b2kI2k(r

∗
1 , w),

βk = πq(a2k,2k−1 − a2k−1,2k + aka2,1 − aka1,2) + akb2I1(r
∗
1 , w)/r

∗
1 ,

and

uk = cosθk, vk = sin θk.

Note that ∣∣∣∣
αk2 αk3

−αk3 αk2

∣∣∣∣ = (b22k−1 + b22k)I2k(r
∗
1 , w)

2.

So system (19) for each k = 2, . . . , n has a unique solution for suitable election
of the parameters b2k−1, b2k, a1,2, a2,1, a2k−1,2k−1, a2k,2k, a2k,2k−1 and a2k−1,2k.
Hence for

∏n
k=2(b

2
2k−1 + b22k) 6= 0 at most one limit cycle can bifurcate from the

periodic orbits of the linear differential system (7) when this system is perturbed in
the form (5). Moreover there are systems for which a such limit cycle exists. This
proves Theorem 1. �

Proof of Corollary 2. Let
∑

= {x1 = 0} be a section for the flow of (1) and (5).
Define Po :

∑ → ∑
and Pw :

∑ →∑
the first return map associated to (1) and

(5) respectively.
Note that all the maps Po and Pw for w > 0 are analytic, Po is a composition

of two analytic functions and Pw is the composition of four analytic functions.
Moreover, limw→0 Pw = Po.

Now, from Theorem 1 we have that for each w > 0 Pw has at most a unique
fixed point x∗w ∈∑, with x∗w 6= 0.

In the necessary condition for the existence of a such limit cycle (condition (18))
fixed w 6= 0, there exists a unique r∗1,w > w that satisfies the first equation of (17).
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This point is the point of intersection between the graph of the function I1(., w)

and the straight line −πq(a11 + a22)

b1
r1.

Now note that for each r1 > w we have

(a)
∂I1
∂w

=
2q

w2

(√
r21 − w2

r1
w − r1arccsc

(r1
w

))
with lim

r1ցw

∂I1
∂w

(r1, w) = −πq
w

and lim
r1→∞

∂I1
∂w

(r1, w) = 0.

(b)
∂2I1
∂w2

(r1, w) =
4qr1
w2

(
arccsc

(r1
w

)
− w√

r21 − w2

)
< 0 for all r1 > w.

In fact, taking f(r1, w) = arccsc
(r1
w

)
− w

r21 − w2
we have

lim
r1ցw

f(r1, w) = −∞ and lim
r1→∞

f(r1, w) = 0.

Moreover
∂f

∂r1
(r1, w) = − w3

r1(r21 − w2)3/2
< 0.

So f(r1, w) < 0 for r1 > w. This proves the assertion (b).

Now from (a) and (b) we obtain
∂I1
∂w

(r1, w) < 0. So for r1 fixed with r1 > w we

have I1(r1, .) decreasing with w (see figure 2). This implies that if w1 > w2 then

r∗1,w1
< r∗1,w2

. Moreover an upper bounded of r∗1,w for k = 1, 2 is
−4b1

(a11 + a22)π
. This

implies that lim
w→0

r∗1,w = r∗1 exists and

0 < w < r∗1 ≤ − 4b1
(a11 + a22)π

.

The existence of the limits of r∗k,w and θ∗k,w, k = 2, ..., 3 when w → 0 follow

directly from the fact that these values are solutions of system (19) and they depend
only on the parameters aij , 1 ≤ i, j ≤ 2n, bl, l = 1, ..., 2n (fixed for a given
one parameter family of system parameterized by w) and on r∗1,w. So we have
lim
w→0

(r∗1,w , . . . , r
∗
n,w, θ

∗
2,w, . . . , θ

∗
n,w) = (r∗1 , . . . , r

∗
n, θ

∗
2 , . . . , θ

∗
n) 6= (0, . . . , 0).

From the above arguments it follows that the fixed point (r∗1,w, . . . , r
∗
n,w, θ

∗
2,w, . . . ,

θ∗n,w) of the averaging equation associated to the fixed point x∗w of Pw have a
non-zero limit when w → 0. This implies that x∗w → x∗ and x∗ 6= 0. Now as
limw→0 Pw(x

∗
w) = P0(x

∗) we obtain P0(x
∗) = x∗. This concludes the proof of the

corollary. �

Remark 11. We observe that given a discontinuous vector field (11) with w = 0
satisfying the condition (a11 + a22)b1 < 0 the necessary condition (18) for the
existence of limit cycle for the continuous vector field can always be satisfied. In
fact for this we have just to take w sufficiently small.

4. Proof of Theorem 3

Lemma 12. Doing the change of coordinates from (x1, x2, . . . , x2n−1, x2n) to (r1, . . . ,
rn, θ1, . . . θn) where

x2k−1 = rk cos θk, x2k = rk sin θk, k = 1, . . . , n,
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w2 w1

r∗1,w1
r∗1,w2

−4b1
(a11+a22)π

πq

4q

t

r1

0

Figure 2. The graph of the function I1(., w) for two different

values of w. Here t denotes the straight line −πq(a11 + a22)

b1
r1.

and considering θ1 as the new time, system (11) can be written as

(20)

drk
dθ1

= εM1(θ1, r1, . . . , rn, θ2, . . . θn) +O(ε2) k = 1, . . . , n− 1

drn
dθ1

= εMn(θ1, r1, . . . , rn, θ2, . . . θn) +O(ε2),

dθl
dθ1

= al +O(ε) l = 2, . . . , n,

where

Mk = rk+1 cos(θk+1 − θk) + cos θkL2k−1 + sin θkL2k, k = 1, . . . , n− 1
Mn = cos θnL2n−1 + sin θnL2n.

The functions Ll for l = 1, · · · 2n are given in Appendix 2.

Proof. The proof is similar to the proof of Lemma 9. �

Observe that if (r1(θ1), . . . , rn(θ1), θ2(θ1), . . . , θn(θ1)) is a solution of (20), then
we have

θl(θ1) = alθ1 + θol +O(ε), l = 2, . . . , n.

Substituting these expressions in system (20) we obtain

(21)

drk
dθ1

= εM1(θ1, r1, . . . , rn, a2θ1 + θo2, . . . , anθ1 + θon) +O(ε2),

drn
dθ1

= εMn(θ1, r1, . . . , rn, a2θ1 + θo2, . . . , anθ1 + θon) + O(ε2),

where k = 1, . . . , n− 1.
Note that for fixed (θo2 , . . . , θ

o
n) any zero of the averaging system associated to

system (21) corresponds to a limit cycle of (20). Moreover if the zero is persistent
for (θo2, . . . , θ

o
n) ∈ [γ21, γ22]× . . .× [γn1, γn2] so system (11) has an invariant cylinder

homeomorphic to R×
(
S1
)n−1

fulfilled of periodic orbits because all the al ∈ Q for
l = 2, · · · , n. So all the periodic orbits have period 2πq. Here in order to find this
invariant cylinders we have to study the averaging system associated to system (21).
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In this case the averaging function is given by g(r1, · · · , rn, θ2, · · · , θn) = (u1, · · · ,
un) where

uk(r1, . . . , rn, θ2, . . . , θn) =

∫ 2πq

0

Mk(θ1, r1, . . . , rn, a2θ1 + θo2, . . . anθ1 + θon)dθ1,

for k = 1, · · · , n.
Lemma 13. The system obtained from (21) by the averaging function g is given
by
(22)

u1 = πqr1(a11 + a22) + b1I1(r1, w) = 0,
uk = πqrk(a2k−1,2k−1 + a2k,2k) + (b2k−1cosθ

o
k + b2k sin θ

o
k)I2k(r1, w) = 0,

where k = 2, . . . , n.

Proof. The proof of this lemma is similar to the proof of Lemma 10 and it will be
omitted. �

With Lemma 22 we are in position to present the proof of Theorem 3

Proof of Theorem 3. As in the proof of Theorem 1 we will just find isolated solu-
tions for the case r1 > w.

Note that the first equation of system (22) is exactly the first equation of system
(17). So we can find a unique solution for the first equation provided that b1(a11 +
a22) < 0. Substituting this solution r∗1 into the others equations of (22) and solving
then with respect to the variables rk for k = 2, . . . , n we obtain

(23) r∗k = − b2k−1 cos θ
o
k + b2k sin θ

o
k

πq(a2k−1,2k−1 + a2k,2k)
I2k(r

∗
1 , w).

Now note that these expressions provide positive solutions if a2k−1,2k−1+a2k,2k 6=
0, b22k−1 + b22k 6= 0 for k = 2, . . . , n and for θok chosen in a convenient way.

Moreover, for each k = 2, . . . , n, given θok satisfying equation (23), it is possible
to vary the angle θok in an interval in such a way that the solution obtained is
locally persistent. This implies the existence of an invariant cylinder for system

(11) homeomorphic to R×
(
S1
)n−1

. �

Proof of Corollary 4. The proof is similar to the proof of Corollary 2. �

5. Example

Consider the following differential system in R4

(24)

ẋ1 = −x2 + ε(x1 + x3 − ϕ0(x1)),
ẋ2 = x1 + εx4,
ẋ3 = −2x4 + εx3,
ẋ4 = 2x3 + εϕ0(x1).

For this particular system the matrix Ā = (aij) and the vector b̄ = (bl)
T of

Lemma 8 have a11 = 1 = a33 and all the other entries zero, and b1 = −1, b2 =
b3 = 0, b4 = 1. Moreover the entry a2 of the Jordan matrix A1 of Lemma 8 is
a2 = 2 and the integer q here is q = 1. So considering w ≤ 0.1 we obtain

0 < − (a11 + a33)

b1
w = w ≤ 0.1 < 1,
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and the equation h1 = 0 of (17) has a unique solution r∗1 > 0.1. In fact we can see
that r∗1 ≈ 1.27193. Moreover substituting this solution in the other two equations
of (17) we obtain

πr2 + I∗4v2 = 0, −I∗4u2 = 0,

where I∗4 = 2J2(r
∗
1 , w) ≈ −8.4 < 0, u2 = cos θ2 and v2 = sin θ2.

From this system we obtain v1 = −πr2
I∗4

and u2 = 0. This implies θ∗2 = π/2, and

from the fact that u22 + v22 = 1 we obtain r∗2 = −I
∗
4

π
. So the averaging function f

given by (17) has (r∗1 ,−I∗4/π, π/2) as a unique zero. Moreover the eigenvalues of
Df(r∗1 ,−I∗4/π, π/2) are all positive real numbers. This implies that system (24)
has a unique limit cycle up to first order in the displacement function.

In the same way we can show that system (24) admits an invariant cylinder
homeomorphic to R× S1.

6. Appendix 1

Here we provide the explicit expressions of the functions Fl for l = 1, · · · , 2n :

F1 = a1,1r1 cos θ1 +
∑n

j=2 a1,2j−1rj cos(ajθ1 + θj) + a1,2r1 sin θ1
+
∑n

j=2 a1,2jrj sin(ajθ1 + θj) + b1ϕw(r1 cos θ1),

F2 = a21r1 cos θ1 +
∑n

j=2 a2,2j−1rj cos(ajθ1 + θj) + a2,2r1 sin θ1
+
∑n

j=2 a2,2jrj sin(ajθ1 + θj) + b2ϕw(r1 cos θ1),

F2k−1 = a2k−1,1r1 cos θ1 +
∑n

j=2 a2k−1,2j−1rj cos(ajθ1 + θj) + a2k−1,2r1 sin θ1
+
∑n

j=2 a2k−1,2jrj sin(ajθ1 + θj) + b2k−1ϕw(r1 cos θ1),

F2k = a2k,1r1 cos θ1 +
∑n

j=2 a2k,2j−1rj cos(ajθ1 + θj) + a2k,2r1 sin θ1
+
∑n

j=2 a2k,2jrj sin(ajθ1 + θj) + b2kϕw(r1 cos θ1),

F2n−1 = a2n−1,1r1 cos θ1 +
∑n

j=2 a2n−1,2j−1rj cos(ajθ1 + θj) + a2n−1,2r1 sin θ1
+
∑n

j=2 a2n−1,2jrj sin(ajθ1 + θj) + b2n−1ϕw(r1 cos θ1),

F2n = a2n,1r1 cos θ1 +
∑n

j=2 a2n,2j−1rj cos(ajθ1 + θj) + a2n,2r1 sin θ1
+
∑n

j=2 a2n,2jrj sin(ajθ1 + θj) + b2nϕw(r1 cos θ1),

where k = 2, · · · , n− 1.

7. Appendix 2

Here we provide the explicit expressions of the functions Ll for l = 1, · · · , 2n :

L2k−1 =
∑n

j=1 a2k−1,2jrj sin θj +
∑n

j=1 a2k−1,2j−1rj cos θj + b2k−1ϕw(r1 cos θ1),

L2k =
∑n

j=1 a2k,2jrj sin θj +
∑n

j=1 a2k,2j−1rj cos θj + b2kϕw(r1 cos θ1).
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