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GENERALIZED RATIONAL FIRST INTEGRALS
OF ANALYTIC DIFFERENTIAL SYSTEMS

WANG CONG!, JAUME LLIBRE? AND XIANG ZHANG!

ABSTRACT. In this paper we mainly study the necessary conditions for
the existence of functionally independent generalized rational first in-
tegrals of ordinary differential systems via the resonances. The main
results extend some of the previous related ones, for instance the clas-
sical Poincaré’s one [16], the Furta’s one [8], part of Chen et al’s ones
[4], and the Shi’s one [18]. The key point in the proof of our main re-
sults is that functionally independence of generalized rational functions
implies the functionally independence of their lowest order rational ho-
mogeneous terms.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

The rational first integrals in analytic differentiable systems and mainly
in the particular case of polynomial differentiable systems has been studied
intensively, specially inside the Darboux theory of integrability, see for in-
stance [15], [9], [17], [19]. In this paper we want to study the generalized
rational first integrals of the analytic differential systems.

Consider analytic differential systems in (C",0)
(1) &= f(x), x€(C"0).

A function F(x) of form G(x)/H(z) with G and H analytic functions in
(C™,0) is a generalized rational first integral if

(f(z), & F(x)) =0,  z€(C"0),

where (-,-) denotes the inner product of two vectors in C", and 0,F =
(0g, F,...,0;,F) is the gradient of F' and 0, F = 0F/0x;. As usually, if
G and H are polynomial functions, then F(x) is a rational first integral.
If H is a non—zero constant, then F(z) is an analytic first integral. So
generalized rational first integrals include rational first integrals and analytic
first integrals as particular cases.

If f(0) # 0, it is well-known from the Flow-Box Theorem that system (1)
has an analytic first integral in a neighborhood of the origin. If f(0) = 0,
ie. x = 0 is a singularity of system (1), the existence of first integrals for
system (1) in (C™,0) is usually much involved.
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Denote by A = Df(0) the Jacobian matrix of f(z) at z = 0. Let A =
(A1, .., An) be the n—tuple of eigenvalues of A. We say that the eigenvalues
\ satisfy a ZT—resonant condition if

(A k) =0, for some k € (Z+)n, k # 0,

where Z* = NU {0} and N is the set of positive integers. The eigenvalues \
satisfy a Z—resonant condition if

(A k) =0, for some k € N*,  k #0,
where Z is the set of integers.

Poincaré [16] was the first one in studying the relation between the ex-
istence of analytic first integrals and resonance, he obtained the following
classical result (for a proof, see for instance [8]).

Poincaré Theorem If the eigenvalues N\ of A do not satisfy any Z+-
resonant conditions, then system (1) has no analytic first integrals in (C",0).

Recall that k (k < n) functions are functionally independent in an open
subset U of C™ if their gradients have rank k£ in a full Lebesgue measure
subset of U. Obviously an n—dimensional nontrivial autonomous system can
have at most n — 1 functionally independent first integrals, where nontrivial
means that the associated vector field does not vanish identically.

In 2003 Li, Llibre and Zhang [14] extended the Poincaré’s result to the
case that A admit one zero eigenvalue and the others are not Z™-resonant.

In 2008 Chen, Yi and Zhang [4] proved that the number of functionally in-
dependent analytic first integrals for system (1) does not exceed the maximal
number of linearly independent elements of {k € (Z1)" : (k,\) =0, k # 0}.

In 2007 the Poincaré’s result was extended by Shi [18] to the Z-resonant
case. He proved that if system (1) has a rational first integral, then the
eigenvalues A of A satisfy a Z-resonant condition. In other words, if A do
not satisfy any Z-resonant condition, then system (1) has no rational first
integrals in (C",0).

The aim of this paper is to improve the above results by studying the
existence of more than one functionally independent rational first integrals.
Our first main result is the following.

Theorem 1. Assume that the differential system (1) satisfies f(0) = 0
and let A = (M\1,...,\p) be the eigenvalues of Df(0). Then the number
of functionally independent generalized rational first integrals of system (1)
in (C™,0) is at most the dimension of the minimal vector subspace of R™

containing the set {k € Z" : (k,\) =0, k # 0}.

We remark that Theorem 1 extends all the results mentioned above, i.e.
the one of Poincaré [16], the Theorem 1.1 of Chen, Yi and Zhang [4], and the
Theorem 1 of Shi [18]. We should mention that the methods of the above
mentioned papers are not enough to study the existence of more than one
functionally independent generalized rational first integrals. Here we will
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use a different approach to prove Theorem 1. Our key technique will be the
Lemma 6 given in Section 2, which shows that the functionally independence
of generalized rational functions implies the functionally independence of
their lowest order rational homogeneous terms.

We should say that Theorem 1 has some relation with Propositions 3.5
and 5.4 of Goriely [10]. In the former the author established a relation be-
tween the weight degrees of independent algebraic first integrals of a weight
homogeneous vector field and its Kowalevskaya exponents. And in the latter
he provided a necessary condition for the existence of independent analytic
first integrals of a weight homogeneous vector field.

We note that if the linear part Df(0) of (1) has all its eigenvalues zero,
then the result of Theorem 1 is trivial. For studying these cases we consider
semi—quasi-homogeneous systems. Let f = (f1,..., fn) be vector functions.
Then system (1) is quasi—-homogeneous of degree ¢ € N\ {1} with exponents
S1y...,8p € Z\ {0} if for all p > 0

fi (p*y, ... ponay) = pt TS (g, xy), i=1,...,n.

The exponents s := (s1,. .., s,) are called weight exponents, and the number
q + si — 1 is called the weight degree of f;, i.e., f; is a quasi-homogeneous
function of weight degree q+s;—1. A vector function f is quasi-homogeneous
of weight degree q with weight exponents if each component f; is quasi—
homogeneous of weight degree g, i.e. f; (p*1x1,...,p*""xy) = plfi(x1,...,2p)
fori=1,...,n.

System (1) is semi—quasi—-homogeneous of degree ¢ with the weight expo-
nent s if

(2) f(@) = fo(x) + fu(2),

where pP—S fq is quasi-homogeneous of degree ¢ with weight exponent s and
pE7S f,, is the sum of quasi-homogeneous of degree either all larger than ¢
or all less than ¢ with weight exponent s. The former (resp. latter) is called
positively (resp. negatively) semi—quasi-homogeneous. Here we have used
the notations: E is the n x n identity matrix, S is the n x n diagonal matrix
diag(s1,..., sy), and pB~5 = diag (p'~*1,..., pl 7).

We note that for any give exponent s an analytic differential system (1)
can be written as a positively semi—quasi-homogeneous system, and also as
a negatively one if it is a polynomial.

Assume that pB~S fq is quasi-homogeneous of weight degree ¢ > 1 with
weight exponent s. Set W = S/(¢ — 1). Any solution ¢ = (¢1,...,¢p) of

is called a balance. Denote by B the set of balances. For each balance ¢, the
Jacobian matrix K = Df,(c) + W is called the Kowalevskaya matriz at c
and its eigenvalues are called the Kowalevskaya exponents, denoted by ..
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Let d. be the dimension of the minimal vector subspace of R™ containing
the set

{(keZ": (k,\.) =0, k=0}.

Theorem 2. Assume that system (1) is semi—quasi—homogeneous of weight
degree q with weight exponent s, and f(z) satisfies (2) with f(0) =0. Then
the number of functionally independent generalized rational first integrals of
(1) is at most d = mind,.
ceEB

Theorem 2 is an extension of Theorem 1 of Furta [8], of Corollary 3.7 of
[10] and of Theorem 2 of Shi [18]. In some sense it is also an extension of the
main results of Yoshida [20, 21], where he proved that if a quasi-homogenous
differential system is algebraically integrable, then every Kowalevkaya ex-
ponent should be a rational number.

Theorems 1 and 2 studied the existence of functionally independent gener-
alized rational first integrals of system (1) in a neighborhood of a singularity.
Now we turn to investigate the existence of generalized rational first inte-
grals of system (1) in a neighborhood of a periodic orbit. The multipliers of
a periodic orbit are the eigenvalues of the linear part of the Poincaré map at
the fixed point corresponding to the periodic orbit. Recall that a Poincaré
map associated to a periodic orbit is defined on a transversal section to the
periodic orbit, and its linear part has the eigenvalue 1 along the direction
tangent to the periodic orbit.

Theorem 3. Assume that the analytic differential system (1) has a periodic
orbit with multipliers u = (p1, ..., pn—1). Then the number of functionally
independent generalized rational first integrals of system (1) in a neighbor-
hood of the periodic orbit is at most the mazimum number of linearly inde-
pendent vectors in R™ of the set

{(kez"': yk =1,k #0}.

Here and after, for vectors z = (z1,...,2,) and k = (ki1,...,k,) we use
7¥ to denote the product xlfl R

Finally we consider the periodic differential systems
(4) = f(t, ), (t,x) € S' x (C",0),

where S' = R/(27N), and f(t,z) is analytic in its variables and periodic
of period 27 in t. Assume that © = 0 is a constant solution of (4), i.e.
f(t,0)=0.

A non—constant function F(t,z) is a generalized rational first integral of
system (4) if F(t,x) = G(t,x)/H(t,x) with G(t,x) and H (t,z) analytic in
their variables and 27 periodic in ¢, and it satisfies

OF (t,x)

S+ (0:F(t2), f(t2)) =0 in S x (C7,0).
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If H(t,z)is constant and non-zero, then F(¢,x) is an analytic first integral.
If G(t,x) and H(t,x) are polynomials in = we say that F'(¢,x) is a rational
first integral. If G(t,z) and H(t,x) are both homogeneous polynomials in x
of degrees [ and m respectively, we say that G/H is a rational homogeneous
first integral of degree | — m.

Since f(t,0) = 0, we can write system (4) as
(5) &= At)x+g(t o),

where A(t) and g(t,z) = O(2?) are 27 periodic in t. Consider the linear
equation

(6) &= A(t)x.

Let xo(t) be the solution of (6) satisfying the initial condition x¢(0) = xg
with 9 € (C",0). The monodromy operator associated to (6) is the map
P (C"10) — (C"1,0) defined by P(zq) = zo(27).

We say that functions Fi(t,x),..., Fy(t,x) are functionally independent
in St x (C*,0) if 9, F1(t, ), ..., 0. Fm(t, x) have the rank m in a full Lebesgue
measure subset of S' x (C",0).

Theorem 4. Let u = (p1,...,1un) be the eigenvalues of the monodromy
operator (i.e. the characteristic multipliers of (6)). Then the number of
functionally independent generalized rational first integrals of system (4) is
at most the maximum number of linearly independent vectors in R™ of the
set

E::{keZ”:ukzl,kyéO}CZ”.

We remark that Theorem 4 is an improvement of Theorem 5 of [14] in
two ways: one is from analytic (formal) first integrals to generalized rational
first integrals, and second our result is for more than one first integral.

If there exits a non-zero k € Z" such that p¥ = 1, we say that p is
resonant. The set = in Theorem 4 is called the resonant lattice. For a
k € =, we say that ¥ is a resonant monomial.

The rest of this paper is dedicated to prove our main results. The proof
of Theorems 1, 2, 3 and 4 is presented in sections 2, 3, 4 and 5, respectively.

2. PROOF OF THEOREM 1

Before proving Theorem 1 we need some preliminaries, which are the
heart of the proof of Theorem 1.

Let C(x) be the field of rational functions in the variables of z, and C[z] be
the ring of polynomials in z. We say that the functions Fij(z),..., Fp(z) €
C(z) are algebraically dependent if there exists a complex polynomial P of
k variables such that P(Fj(z),...,Fg(x)) = 0. For general definition on
algebraical dependence in a more general field, see for instance [6, p.152]).
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The first result provides an equivalent condition on functional indepen-
dence. The main idea of the proof follows from that of Ito [12, Lemma
9.1].

Lemma 5. The functions Fy(z),...,Fx(x) € C(x) are algebraically inde-
pendent if and only if they are functionally independent.

Proof. Sufficiency. By contradiction, if Fj(z),..., Fp(z) are algebraically

dependent, then there exists a complex polynomial P(zy, ..., z;) of minimal
degree such that
Here minimal degree means that for any polynomial Q(z1, ..., z;) of degree

less than degP we have that Q(Fi(z),..., Fx(z)) Z 0.
From (7) it follows that 0, P(Fi(z),...,Fy(z)) = 0 for j = 1,...,n.
These are equivalent to

() : : : =0.
. —(Fi(x),..., F
Oxy Oxy, 8zk( 1) k(@)

Since P(z1,...,2n) has the minimal degree and some of the derivatives
a—P(zl, .y 2n) # 0, it follows that
82[

oP _ oprP o

aiz:l(Fl(l’), e ,Fk((l}')) = O, ey T%(Fl(ﬂ:), .o ,Fk(x)) = O,

cannot simultaneously hold. This shows that the rank of the n x k matrix in
(8) is less than k. Consequently Fj(x), ..., Fi(x) are functionally dependent,
this is in contradiction with the assumption. So we have proved that if
Fi(x),..., F,(z) are functionally independent, then they are algebraically
independent.

Necessity. For proving this part, we will use the theory of field extension.
For any vy, ..., v, which are elements of some finitely generated field exten-
sion of C, we denote by C(vy,...,v,) the minimal field containing vy, ..., v,
(for more information on finitely generated field extensions, see for instance
[6, Chapter one, §8]).

Recall that for a finitely generated field extension K of the field C, de-
noted by K/C, the transcendence degree of K over C is defined to be the

smallest integer m such that for some yq,...,y, € K, K is algebraic over
C(y1,---,Ym), the field of complex coefficient rational functions in y1, ..., ym
(see for instance [6, p.149]). We say that K is algebraic over C(y1,...,yn)
if every element, saying k, of K is algebraic over C(yi,...,ym), i.e. there

exists a monic polynomial p(X) = X' +p X"+ +p € Clys, - ., ym) [ X]
such that p(k) = 0, where by definition p; € C(y1,...,ym) for j =1,...,1
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(see for instance [6, p.29]). The elements {y1,...,ymn} is called a transcen-
dence base of K over C (see for instance [6, p.152]). A finitely generated
field extension K of C is separably generated if there is a transcendence base
{z1,...,2m} of K over C such that K is a separable algebraic extension of
C(z1,...,2m) (see for instance [11, p.27]). Let K be a field extension of a
field L. The field extension K/L is called algebraic if K is algebraic over
L. An algebraic extension K/L is separable if for every o € K, the minimal
polynomial of « over L is separable. A polynomial is separable over a field
L if all of its irreducible factors have distinct roots in an algebraic closure
of L.

Since Fi, ..., Fy are algebraically independent, C(F1,..., Fj) is a separa-
bly generated and finitely generated field extension of C of transcendence
degree k. Here separabililty follows from the fact that C is of characteris-
tic 0, and so is C(F1,..., Fy). This last claim follows from [11, Theorem
4.8A], which states that if k is an algebraically closed field, then any finitely
generated field extension K of k is separably generated.

From the theory of derivations over a field (see for instance [13, Chapter
X, Theorem 10]), there exist k derivations D,(r = 1,...,k) on C(Fi,..., Fy)
satisfying

(9) DrFs = 51”53

where d,s =0 if r # s, or é,s =1 if r = s.
Since F1, ..., F} are algebraically independent, it follows that C(z) is a
finitely generated field extension of C(Fy,..., F) of transcendence degree

n—k. Hence there exist n derivations Dy, ..., D, on C(z) satisfying 5]- = D;
on C(Fy,...,Fy) for j =1,...,k. In addition, all derivations on C(z) form
an n—dimensional vector space over C(z) with base {6%] :j=1,...,n}. So
we have

~ n b
D = stjaixja

J=1

where dg; € C(x). The derivations D, acting on C(Fy, ..., Fy) satisfy

~ "\ OF
Sop = DsF, = D,F, = ;dsjax;, rse{l,... .k}
This shows that the gradients V,F71, ...,V Fi have the rank k, and conse-
quently Fi, ..., Fy are functionally independent. ([

We remark that Lemma 5 has a relation in some sense with the result of
Bruns in 1887 (see [7]), which stated that if a polynomial differential system
of dimension n has [ (1 <[ < n — 1) independent algebraic first integrals,
then it has [ independent rational first integrals. For a short proof of this
result, see Lemma 2.4 of Goriely [10].
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For an analytic or a polynomial function F(z) in (C™,0), in what follows
we denote by FY(z) its lowest degree homogeneous term. For a rational or
a generalized rational function F(z) = G(z)/H(z) in (C",0), we denote by
FO9(z) the rational function G%(z)/H°(x). We expand the analytic functions
G(z) and H(z) as

O(z) + ZG’(Q:) and  H°(z) + ZH’(:U)
i=1 =1

where G*(z) and H*(z) are homogeneous polynomials of degrees deg G°(x)+
i and deg H'(z) + i, respectively. Then we have

_G(x) _ O(x) ‘() — Hi(x)\
F@ =% = ( HO(x) Z HO(2) ) (”; HO@))
(10) = (x)) + Z 8

(LL‘ =1

Y

where A%(x) and B’(z) are homogeneous polynomials. Clearly
deg G°(z) — deg H®(z) < deg A'(x) — deg B'(z) for all + > 1.
In what follows we will say that deg A’(x) — deg B'(x) is the degree of
Al(z)/B%(z), and G°(z)/H°(z) is the lowest degree term of F(z) in the
expansion (10). For simplicity we denote
d(G) =degG(z),  d(F)=d(G)—d(H) = deg G°(z) — deg H°(2),
and call d(F) the lowest degree of F'.

Lemma 6. Let
Hy(z)" 7™ Hy(z)’

be functionally independent generalized rational functions in (C™,0). Then
there exist polynomials Pi(z1, . .., zm) fori=2,...,m such that F\(z), Fy(z) =
Py(Fi(2),...,Fpn(2)), ..., Fp(z) = Pn(Fi(2),...,Fn(z)) are functionally
independent generalized rational functions, and that FY(x), ﬁg(a:), L FY (2)
are functionally independent rational functions.

Fl(ﬂj‘) =

Proof. This result was first proved by Ziglin [22] in 1983, and then proved
by Baider et al [1] in 1996. In order that this paper is self-contained, we
provide a proof here (see also the idea of the proof of Lemma 2.1 of [12]).

If F(x),..., FY(z) are functionally independent, the proof is done.

Without loss of generality we assume that FP(z),...,Fp(z) (1 < k <
m) are functionally independent, and FY(z),...,Fp, (z) are functionally
dependent. By Lemma 5 it follows that F{(z),..., Fj (z) are algebraically
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dependent. So there exists a polynomial P(z) of minimal degree with z =
(#1,...,2k+1) such that

P(FY(x),...,F¢yq(z)) =0.
The fact that FP(z),..., FP(z) are algebraically independent implies

oP
0z

(2) £ 0.

Since Fy(z),. .., Fi(2) are functionally independent, and so also Fi(x), ...,
Fj11(x) are functionally independent. Hence there exists a (k+1) x (k+1)

minor M = 8(F1@’“"Ff““(x)) of the matrix 2F1@Fhir@) oh that its
($117---7$zk+1) (1., Tn)

determinant does not vanish. We denote by D this last determinant, and

O(FY (), 4 (@)
d(wiy ,...,ccik+1)

We note that DV is the lowest degree rational homogeneous term of D.

Define

denote by D° the determinant of the square matrix M° :=

k+1
/"‘(Fh?Fk-‘rl) :d(D)+k+1 7Zd(F])a
j=1

where d(D) is well-defined, because D is also a generalized rational function.

Since 0F;/0x; = (H 9¢; _ 8Hi) /(H;)* has the lowest degree larger than

i g, gerr
8G9 om? .
L — G5t =0), it follows
J

or equal to d(F;) — 1 (the former happens if HY Ty
from the definition of D that

M(Fla"'ka+1)ZO~

Furthermore u(Fi,...,Fiy1) = 0 if and only if d(DY) = d(D), because
DV is the lowest degree rational homogenecous part of D. We note that
d(D°) = d(D) if and only if det(D?) # 0, and this is equivalent to the
functional independence of FY(z),...,Fg, (z). So by the assumption we
have p(Fi,..., Fxy1) > 0. Set

Feni(x) = P(Fi(@), ..., Fra(x)).

First we claim that the functions F(z),..., Fx(x), ﬁk+1(a:) are function-
ally independent. Indeed, define

D :=det(A(Fi(x),. .., Fi(x), Fyp1(2))/0(xiy, -, Tig, T, )-

Then it follows from the functional independence of Fi(x),... Fxy1(x) that

23 det 3(F1(1:),,Fk($),ﬁk+1($)) 8(F1""7Fk7Fk+1)
a(Flv"')FkaFk-‘rl) a(xi17“’7xik’xik+l)

oP
02141

1) = D (Fi, ..., Fys1).
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The first equality is obtained by using the derivative of composite functions,
and the second equality follows from the fact that

det(a(m(x),...,Fk<x),ﬁk+1(x))) 0P (A

- L Fi).
a(Fh' . 'aFkaFk+1) 8Zk+1 +1)

Since (0P/0zk+1)(21, - .-, 2k+1) # 0 and P has the minimal degree such that
P(FP(x),...,FY, (z)) = 0, we have (OP/0z41)(F}(x),..., F)  (z)) # 0,

and so D # 0. This proves that Fy(z), ..., Fj(z), Fyp1(2) are functionally
independent. The claim follows.

Second we claim that

,U,(Fb...,Fk,ﬁk_A,_l) </’L(F17"'5Fk+1)'

Indeed, writing the polynomial P as the summation

P(z) = Zpaza, 2 =20 a=(an,. . app) € (ZT)FL,
«

Define

v =min{{«a, (d(F1),...,d(Fx+1)) : pa # 0, agy1 # 0}.
We have v < d(Fjt1), because Fyyi(z) = P(F(z),..., Fyy1(z)) contains
Fis1 and P(F (), ..., FY, (z)) = 0, so the lowest degree part in the expan-
sion of P(z) must contain Fyyi(x). This implies the lowest degree of ﬁ(a:)

is larger than that of P(z). Moreover we get from (11) and the definition of
v that

d(D) = d(D) +d ( or

Zk41

(Fy,.. ., Fk+l)> =d(D) + v — d(Fj+1),

where the last equality holds because the partial derivative of P with respect
to zpy1 is such that P loses one F}11, and so the total degree loses the degree
of Fj11. Hence from the definition of the quantity pu it follows that

k
WL, F Fon) = dD)+k+1-) d(F;) - d(Fyp)
j=1

= WF,... Fep) +v—d(Fep)
< lu(Flv"ka-l-l)‘
This proves the claim.

By the two claims, from the functionally independent generalized ratio-
nal functions Fi(z), ..., Fy(x), Fit1(z) with FQ(z),..., FQ(z), F,(z) be-
ing functionally dependent, we get functionally independent generalized ra-
tional functions Fy (z), ..., Fp(z), Fiit (x), which satisfy u(Fy,..., Fg, Fi1)
< p(Fry . i)

If ((FY, ..., Fy, Fre1) = 0, then Fo(z),... ,F,S(m),ﬁ,gﬂ(x) are function-
ally independent. The proof is done.
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If w(Fy,. .., F, ﬁk-{-l) > 0, then FY(z),... ,F,?(:c), ﬁl?ﬂ are also function-
ally dependent. Continuing the above the procedure, finally we can get a

polynomial P(z) with z = (z1,..., zk11) such that
Fi(2),. .., Fu(x), Fip1(z) = P(Fi(2),..., Fey1(2)),

are functionally independent and p(Fi,. .., Fy, F k+1) = 0. The last equality
implies that the rational functions Fl0 ooy I ]?, F,g 1 are functionally inde-
pendent. Furthermore, the generalized rational functions

Fi(z),...,Fy(@), Fi1(2), Fupo(2), ..., Fn(z),

are functionally independent, because ﬁk+1($) involves only Fiy,..., Fri1,
and Fi,..., Fy, ﬁk+1 are functionally independent, and also F1i, ..., F,, are
functionally independent. This can also be obtained by direct calculations
as follows

et (8(F1(:c),...,Fk(w),ﬁkﬂ(;v),FkH(x),...,Fm(x)))

6(3)1, Ceey JJn)
or oF
o0z e OTn
oF, oOF,
B o e orn
— 9P oF dP  9Fy41 oP oF P 9Fy41
= det 0z1 Ox1 +..+ Ozky+1 Ox1 Tt 0z1 Oxn +..+ 0zky1 OTn
OF41 OFy1o
ox1 e Oy
OFm OFm
oz e 0Ty
oP O(Fi(),. .., Fn(r))
= () det £ 0.
8Zk+1 6(.1‘1, s 7xn)

If k41 = m, the proof is completed. Otherwise we can continue the above
procedure, and finally we get the functionally independent generalized ra-
tional functions Fi(x),..., Fx(z), Fxr1(x) = Pera(Fi(2), ..., Fge1(x)), ...,

Fpn(z) = Pp(Fi(2), ..., Fn(z)) such that their lowest order rational func-
tions F{(x), F)(x), F) (), .., F}(z) are functionally independent, where
fN’j for j = k+1,...,m are polynomials in F1,..., F}.

The proof of the lemma is completed. O

The next result characterizes rational first integrals of system (1). A
rational monomial is by definition the ratio of two monomials, i.e. of the
form 2%/z! with k,1 € (ZT)". The rational monomial z*/z! is resonant
if (\,k—1) = 0. A rational function is homogeneous if its denominator
and numerator are both homogeneous polynomials. A rational homoge-
neous function is resonant if the ratio of any two elements in the set of all
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its monomials in both denominator and numerator is a resonant rational
monomial.

In system (1) we assume without loss of generality that A is in its Jordan
normal form and is a lower triangular matrix. Set f(x) = Az + g(x) with
g(z) = O(z?). The vector field associated to (1) is written in

X =X+ & = (Ax,05) + (g(x), 0x).

Lemma 7. If F(z) = G(z)/H(z) is a generalized rational first integral of
the vector field X defined by (1), then F°(x) = G%(z)/H (x) is a resonant
rational homogeneous first integral of the linear vector field Xy, where we
assume that F° is non—constant, otherwise if FO(z) = a € C, then we
consider (F — a)®, which is not a constant.

For proving this last lemma we will use the following result (see Lemma

1.1 of [2], for a different proof see for example [14]).

Lemma 8. Let H]' be the linear space of complex coefficient homogeneous
polynomials of degree m in n variables. For any constant ¢ € C, define a
linear operator on HI™ by

L.(h)(x) = (0zh(x), Ax) — ch(x), h(x) € H,'.
Then the spectrum of L. is
{K,AN)—c: ke (ZD" |k|=ki+... +k,=m},

where \ are the eigenvalues of A.

Proof of Lemma 7. As in (10) we write F(z) in
Flz) = Fa) + 3 Fi(a),
i=1

where FY(z) is the lowest order rational homogeneous function and F'(x)

for i € N are rational homogeneous functions of order larger than FO(x).

That F(z) is a first integral in a neighborhood of 0 € C™ is equivalent to
(0:F(x), f(x)) =0, z € (C",0).

Equating the lowest order rational homogeneous functions gives

(12) (0,F°(z), Ax) = 0, i.e. <ax (%) ,Ax> =0.

This shows that FY(z) is a rational homogeneous first integral of the linear
system associated with (1).

Next we shall prove that F°(x) is resonant. From the equality (12) we can
assume without loss of generality that GY(x) and H°(z) are relative prime.
Now equation (12) can be written as

HO(x) <833G0(a:), Az) — G(x) <833H0(95), Az) = 0.
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So there exists a constant ¢ such that
<8$G0(m)7 Al‘> - CGO(SU) = 0, <axH0(55), ASU> — CHO(LL“) = 0.

Set deg G°(x) = I, deg H(x) = m and L. be the linear operator defined in
Lemma 8. Recall from Lemma 8 that L. has respectively the spectrums on
Hr,
S ={{L\) —c: 1e(zZ)", 1| =1},
and on H)"
Sm = {(m,\) —c: me (ZY)", jm| =m}.

Separate H!, = H!; + Hl, in such a way that for any p(x) € H!, its
monomial ! satisfies (1, \) — ¢ = 0, and for any q(z) € H., its monomial !
satisfies (I, \) — ¢ # 0. Separate GY(z) in two parts G%(z) = G{(z) + GY(=)
with G € H!; and GY € H!,. Since A is in its Jordan normal form and is
lower triangular, it follows that

LA, cH,, and L.H, cH,.
Hence L.G°(x) = 0 is equivalent to
LGY(z)=0 and L.GY(z)=0.
Since L. has the spectrum without zero element on H!, and so it is invertible

H!,, the equation L.GY(z) = 0 has only the trivial solution, i.e. G3(z) = 0.

n2»

This proves that G%(x) = G{(z), i.e. each monomial, say 2!, of G(x)
satisfies (I, \) — ¢ = 0.

Similarly we can prove that each monomial, say =™, of H?(z) satisfies
(m,\) — ¢ = 0. This implies that (1 —m,\) = 0. The above proofs show
that FO(x) = GY(z)/H(z) is a resonant rational homogeneous first integral
of Xj. O

Having the above lemmas we can prove Theorem 1.

Proof of Theorem 1. Let

Gi(x) G ()
F = . =
1(5C) Hl (1,') ) ) m('x) Hm<$) 9
be the m functionally independent generalized rational first integrals of X.
Since the polynomial functions of F;(z) for i = 1,...,m are also generalized

rational first integrals of X, so by Lemma 6 we can assume without loss of
generality that

Gi(=) G (@)
Fl(z)= =22 FV(2) = =22
0= ) I = )
are functionally independent.
Lemma 7 shows that FY(z),..., F2 (z) are resonant rational homogeneous

first integrals of the linear vector field X7, that is, these first integrals are
rational functions in the variables given by resonant rational monomials.
According to the linear algebra (see for instance [3]), the square matrix A
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in C has a unique representation in the form A = A; + A, with A; semi—
simple and A, nilpotent and A;A,, = A,As. The semi-simple matrix A
is similar to a diagonal matrix. Without loss of generality we assume that
As is diagonal, i.e. A; = diag(\1,...,Ay). Define Xy = (Agx,0,) and
X, = (Apz,0;). Separate X} = X + A,,. Direct calculations show that
any resonant rational monomial is a first integral of Xy (for example, let
™ be a resonant rational monomial, i.e. it satisfies (A\,m) = 0. Then
Xs(z™) = (\,m)z™ = 0). So FY(z),...,FY(x) are also first integrals of
Xs. This means that m is less than or equal to the number of functionally
independent resonant rational monomials. In addition, we can show that the
number of functionally independent resonant rational monomials is equal
to the maximum number of linearly independent vectors in R™ of the set
{kez": (k,\) =0}.

This completes the proof of the theorem. O

3. PROOF OF THEOREM 2

We only consider system (1) to be positively semi—quasi-homogeneous.
The negative case can be studied similarly, and its details are omitted. An
analytic function w(x) is semi—quasi—homogeneous of degree k with weight
exponent s if w(x) = wg(z) + wp(x), where wy is quasi-homogeneous of
degree k and wy, is the sum of quasi-homogeneous polynomials of degree
larger than k. A rational function G(x)/H (z) is rational quasi-homogeneous
with weight exponent s if G(z) and H(z) are both quasi-homogeneous with
weight exponent s. In this section, for an analytic function w(x) we denote
by w(?(z) its lowest degree quasi-homogeneous part. For a generalized
rational function F(z) = G(z)/H(x) we denote by F@(z) the rational
quasi-homogeneous function G'9 (z)/H@ (x).

The following result is the key point for proving Theorem 2, which is
a generalization of Lemma 6 to rational quasi-homogenous functions. Its
proof can be obtained in the same way as that of Lemma 6, where we replace
the usual degree by the weight degree. The details are omitted.

Lemma 9. Let

Gi(x)

B =)

ooy () =

be functionally independent generalized rational functions in (C",0) with G;
and H; semi—quasi-homogeneous for i =1,...,m. Then there exist polyno-
mials Py(z1,. .., zm) fori=2,...,m such that Fy(z), F5(z) = Py(Fy(z), ...,
Fn(2)), ..., F(x) = Pn(Fi(2),...,Fn(x)) are functionally independent
generalized rational functions, and that Fl(q) (z), ﬁQ(q) (x),... ,EE;”) () are func-
tionally independent rational quasi—homogeneous functions.
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Now we shall prove Theorem 2. Since system (1) is semi—quasi-homogeneous
of degree ¢ > 1, we take the change of variables

z— pSz, t— p_(q_l)t,

where pS = diag (p°1,..., p**). System (1) is transformed into

where fu(z,p) = 3 pijzﬂ(x) and pE_Sﬁ]H(az) is quasi-homogeneous of
i>1
weight degree q + 1.
If F(z) = G(z)/H(z) is a generalized rational first integral of system (1)
with G(x) and H (x) semi-quasi-homogeneous of weight degree | and m with
weight exponent s respectively, then

PG (pSx) (

F =2 L ) _ pl) .

is a generalized rational first integral of the semi—quasi—-homogeneous sys-
tem (13), where the dots denote the sum of the higher order rational quasi—

homogeneous functions. Some easy calculations show that F(9)(z) is a ra-
tional quasi-homogeneous first integral of the quasi-homogeneous system

(14) &= fq(x).
Let cg be a balance. Taking the change of variable 2 =t~ (o +u), then

l
——1G@
F(q) (CL‘) _ t qmlG (CO + u) _ uéfmF(q) (CO + u)’
t a1 H(Q)(Co + u)

where ug = t~/(¢=1) will be chosen as a new auxiliary variable. Define
FO(ug,u) = uly ™ F@(co 4 u). System (14) is transformed into

(15) v =Ku+ f,(u),
where the prime denotes the derivative with respect to 7 = Int and

fq(u) = Wecp + fy(co+u) — 0z f(co)u.

We claim that F°(ug,u) is a first integral of

1 _
(16) u6:—q up, u' = Ku+ f,(u).
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Indeed, since <81F(‘1)(x), fo(z)) =0 and W = S/(q — 1) we have

qu(uo, w)
dr (16)

_ lq—_nl’buém FO(co + u) + ul™ <auF<‘Z>(co +u), Ku + Tq(U)>
l—m
_ W : <(l —m)FD(co+u) — (0,FD(co + u),S(co + U)>>
P

where we have used the facts that F(@(co+u) = G (co+u)/HD (co +u),
and the generalized Euler’s formula:

<8xG(q)(ac), Sx> = 1G9 (z) and <8IH(q)(x), Sx> = mH9D(z),

because G(@(z) and H?(z) are quasi-homogeneous polynomials of weight
degree [ and m with weight exponents s, respectively. The claim follows.

Assume that system (1) has the maximal number, say r, of functionally
independent generalized rational first integrals

_ Gi(z) _ Gi(z)
Fl(x)—Hl(x),..., T(x)—Hr(x).
By Lemma 9 we can assume that
1 (I)_ (q) sy .’13)— (q) )
Hy™(z) H;™ (x)

are functionally independent, and they are rational quasi-homogeneous first
integrals of (14).

Assume that GZ(.Q) () and HZ-(q) (x),1=1,...,r, have weight degree [; and
m;, respectively. Then it follows from the last claim that

F{(ug, u) = uff "™ F{ (e +u), ..., (g, u) = uff ™™ F{D(co +u),

are functionally independent rational quasi-homogeneous first integrals of
(16).

The linear part of (16) has the eigenvalues —1/(qg—1), A, = (A},...,A0).
Since the Kowalevskaya matrix has always the eigenvalue —1 (see for in-
stance [22]), we set A} = —1. Then for k = (ky,...,k,) € Z" we have

—ko + (¢ — 1) Ao, k) = (Aeps (ko + (¢ — Dk1, (g — Dk, ..., (g — Dky)).

Recall that d., is the dimension of the minimum linear subspace of R"
containing the set {k € Z" : (A, k) = 0}. Hence we get from Theorem 1
that equation (16) has at most d., functionally independent first integrals.

These proofs imply that r < d,,, and consequently r < d = mié} de.
ce

This completes the proof of the theorem.



GENERALIZED RATIONAL FIRST INTEGRALS 17

4. PROOF OF THEOREM 3

Assume that system (1) has the maximal number, say r, of functionally
independent generalized rational first integrals in a neighborhood U of the
given periodic orbit, denoted by

_ Gi(z) o) =
=) () Ho(z)’

where G; and H; are analytic functions. Let P(z) be the Poincaré map
defined in a neighborhood of the periodic orbit. Then Fj(x) fori=1,...,r
are also first integrals of P(z). Recall that a continuous function C(z) is a
first integral of a homeomorphism M (x) defined in an open subset U of C"
if C(M™(z)) =C(x) for all m € Z and z € U.

We now turn to study the maximal number of functionally independent
generalized rational first integrals of the Poincaré map. Since a polynomial
function of generalized rational first integrals of a map is also a generalized
rational first integral of the map, so by Lemma 6 we can assume without
loss of generality that F{(z),...,F?(z) are functionally independent.

Since system (1) is analytic, the Poincaré map P(z) is analytic (see for
instance, [5]). Set

(17) P(z) = Bx + Pp(x),

Fl(a:)

where Pp,(x) is the higher order terms of P(x). We can assume without loss
of generality that B is in its lower triangular Jordan normal form. Let By
be the semi—simple part of B. Since Fj(z) for ¢ = 1,...,r, are first integrals
of P(x), we have
" CP@) _Gila) |y

Hi(P(x))  Hi(z)
As in (10) we expand G;(P(z))/H;(P(z)) via (17) as the sum of rational
homogeneous functions, and equating the lowest order rational homogeneous
terms of (18), we get that

GY(Br) _ G¥()
HY(Bx) ~ HP(x)’

(19) zeU.

From the last equality, we can assume without loss of generality that G?(m)
and H?(z) are relatively prime. Recall that A°(x) is the lowest order homo-
geneous polynomial of a series A(z). Equation (19) can be written as

GY(Bz)  HY?(Bz)
Gi(z) — H(z)~
Since GY(Bx) is either identically zero or a homogeneous polynomial of the

same degree than GY(r), and GY(x) and H?(x) are relative prime, there
exists a constant ¢; such that

(21) GY(Bz) = ;G%z) and HY(Bz) = ¢;H)(z), zel.

z e U

(20)
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For completing the proof of Theorem 3 we need the following result (see
for instance, Lemma 11 of [14]).

Lemma 10. Let H]* be the complex linear space of homogeneous polynomi-
als of degree m in n variables, and let p be the n—tuple of eigenvalues of B.
Define the linear operator from H* into itself by

L.(h)(xz) = h(Bz) — ch(z), h(x) € H,'.
Then the set of eigenvalues of L is {u* —c: k € (Z1)", |k| = m}.

Assume that GY(x) and H?(x) have respectively degrees I; and m;. Using
the notations given in Lemma 10 we write equations (21) as

Le, (GO () =0 and L, (H?)(x)=0.

Working in a similar way as in the proof of Theorem 1 we obtain from
Lemma 10 that each monomial, say z!, of G?(m) satisfies u! — ¢; = 0, where
1€ (ZT)" and |1| = I;, and that each monomial, say 2™, of H?(x) satisfies
u™ —¢; =0, where m € (Z7)" and |m| = m;.

The above proof shows that the ratio of any two monomials in the nu-
merator and denominator of F{(z), i € {1,...,7}, is a resonant monomial.
Hence each of the ratios is a first integral of the vector field Bz, and con-
sequently F?(z), i =1,...,r, are first integrals of Byz. In addition, we can
check easily that the maximal number of functionally independent elements
of {z%: u* =1, k € Z", k # 0} is equal to the dimension of the minimal
linear subspace in R” containing the set {k € Z" : pX = 1}. This proves
the theorem.

5. PROOF OF THEOREM 4

For proving Theorem 4 we need the following result, which is a modifi-
cation of Lemma 6. Its proof can be got in the same way as the proof of
Lemma 6, where we replace the field C by C(t) the field of complex coefficient
generalized rational functions in ¢. The details are omitted.

Lemma 11. Let

Gum(t, )
H,(t,z)’
be functionally independent generalized rational functions and 27 periodic
in t. Then there exist polynomials Pi(z1,. ..y 2m) Jori=2,....,m such that
Fi(t,z), Fo(t,x) = Po(Fi(t,x),...,Fn(t,z)), ..., Fn(t,x) = Py(Fi(t, ), ...,
F.(t,z)) are functionally independent generalized rational functions, and
that FO(t,z), FY(t, ), ..., FO(t,x) are functionally independent rational ho-
mogeneous functions.

Fi(t,z) = L Ep(tz) = (t,x) € S' x (C",0),

In the proof of Theorem 4 we also need the Floquet’s Theorem. For
readers’ convenience we state it here.
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Floquet’s Theorem There exists a change of variables x = B(t)y periodic
of period 2w in t, which transforms the linear periodic differential system
(6) into the linear autonomous one

7y = Ay, A is a constant matriz.

Furthermore the characteristic multipliers p of (6) satisfy p; = exp(2wA;)
fori=1,...,n, where A = (\1,...,\,) are the eigenvalues of A.

Now we can prove Theorem 4. Assume that system (5) has the maxi-
mal number, say m, of functionally independent generalized rational first
integrals, denoted by

Gl (tv .73‘)
Fi(t,e) = —————=,..., Fn(t,x) =
1( ) H1 (t, JZ‘) m( )
By Lemma 11 we can assume without loss of generality that the rational
homogeneous functions

Gm(t, )
Hp(t,x)

G{(t, ) GY (t,7)
0 15 0 m\"
FY(t,x) = 7?(t7x),...,Fm(t,x) = 721(“%),

are functionally independent.

By the Floquet’s Theorem, system (5) is transformed via a change of the
form x = B(t)y into
(22) y=Ay+h(t,y),

where h(t,y) = O(y?) is 27 periodic in t. Therefore system (22) has the
functionally independent generalized rational first integrals

B0 = 5 o T me oy Y T F e T Bt By
and

S0 o @ty =, Gty

Fl(ta )_ ﬁ?(t,m‘)’“"Fm(t’y) - ﬁ%(t,x)’

are also functionally independent. We can assume without loss of general-
ity that G9(t,y) and H?(t,z) have respectively degrees [; and m;, and are
relatively prime for i =1,...,m.

We expand E(t,y), i = 1,...,m, in the way done in (10), and since
F;(t,y) are first integrals of (22), we get that

(23) OFY(t,y) + (0,0t y), Ay) =0, i=1,..,m,

ie., ﬁio (t,y),i=1,...,m, are functionally independent first integrals of the
linear differential system

(24) y = Ay.



20 WANG CONG, JAUME LLIBRE AND XIANG ZHANG

Equations (23) are equivalent to
Ot y) (962t y) + (9,G0(t,y). Ay))
= Gty) (2B (Ly) + (9,H(ty) Ay)) . i=1.m.

So there exist constants, say ¢;, such that

(25)

(26) 8G(t,y) + <<9y5?(t, y), Ay> —G(t,y) =0,
and
(27) OH (t,y) + <3yﬁ?(t, y),Ay> — ¢ HY(t,y) = 0.

For the set of monomials of degree k, Yj := {y*: k € (Z")", |k| = k},
we define their order as follows: yP is before y9 if p — q > 0, i.e., there
exists an ig € {1,...,n} such that p; = ¢; fori =1,...,ip — 1 and p;, > ¢i,-
Then T} is a base of the set of homogeneous polynomials of degree k with
the given order. According to the given base and order, each homogeneous
polynomial of degree k is uniquely determined by its coefficients.

li +n-—1

We denote by é?(t) the vector of dimension < n—1

) formed by

the coefficients of é?(t,y). Let L be the linear operator on HE(t), the
linear space of homogeneous polynomials of degree k in y with coefficients
27 periodic in ¢, defined by

Li(h(t,y)) = (Oyhlt,y), Ay),  hit,y) € Hy(D).
Using these notations equations (26) and (27) can be written as
BGt) + (Ly, — c)GY(t) =0, SHX(t) + (L, — i) HO(t) = 0.
They have solutions
GY(t) = exp (e Bui — L£3,)1) GP(0),  HY(t) = exp (¢ Bai — L, )t) H(0),

vzhere Eq; a~nd Eo; are two identity matrices of suitable orders. In order that
GY(t) and H?(t) be 2m periodic, we should have

(28) (exp ((ciE1; — L£3,)27) — Ey) GY(0) = 0,
and
(29) (exp ((ciEai — Lom,)27) — Eg;) HY(0) = 0.

Recall that A = (A1,...,A,) be the eigenvalues of A. Then it follows
from Lemma 8 that exp((c;E2; — £;,)2m) and exp((¢;E2; — L,)27) have
respectively the eigenvalues

{exp((c; — (LA))2m) : 1€ (Z)™, |1 =1},

and
{exp((c; — (m, A))27) : m € (Z)", |m| = m;}.
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In order that equations (28) and (29) have nontrivial solutions we must have
exp((L \)27) = exp(c;2m) for all 1 € (ZM)", 1] =1,
and
exp((m, \)27) = exp(c;27)  for all m € (Z7)", |m| = m;.
It follows that
exp((1-m,\)27) =1 foralll,m € (Z)", (1| =;, |m| = m,,
ie.,
p™ =1 for Lme (ZN)", 1| =1, |m| = m;.

The above proof shows that the ratio of any two monomials in the de-
nominator and numerator of each FY(t,y) for i € {1,...,m} is resonant.
Hence working in a similar way to the proof of Theorem 1 we get that m is
at most the dimension of =.

This completes the proof of the theorem.
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