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POLYNOMIAL INTEGRABILITY OF THE HAMILTONIAN
SYSTEMS WITH HOMOGENEOUS POTENTIAL OF DEGREE -2

JAUME LLIBRE!, ADAM MAHDI? AND CLAUDIA VALLS?

ABSTRACT. We characterize the analytic integrability of Hamiltonian systems
2

1
with Hamiltonian H = 5 pr + V(q1,¢2), having homogeneous potential
i=1
V(q1,q2) of degree —2.

1. INTRODUCTION

We consider C* as a symplectic linear space with canonical variables ¢ = (q1, g2)
and p = (p1,p2). We are interested in Hamiltonian systems defined by the Hamil-
tonian function

1<,
(1) H= 5;% +V(q),

where V(q) = V(q1, g2) is a homogeneous function of degree k. To be more precise
we consider the following system of four differential equations

oV
2 'i: (2] .i:_iv :132
(2) G4 =pi, P % i

Let A = A(q,p) and B = B(q,p) be two functions. Then their Poisson bracket

{A, B} is given by
2
0AdB 0AOB
A,B} = - .
4.5} ;(aq o o)

We say that functions A and B are in involution if {A, B} = 0. We say that a
non—constant function F = F(q,p) is a first integral for the Hamiltonian system
(2) if it commutes with the Hamiltonian function H, i.e. {H,F} = 0. Since the
Poisson bracket is antisymmetric it is clear that H itself is always a first integral.
We say that a 2-degree of freedom Hamiltonian system (2) is completely or Liouwville
integrable if it has 2 functionally independent first integrals: H, and an additional
one F', which are in involution. As usual H and F' are functionally independent if
their gradients are linearly independent at all points of C* except perhaps in a zero
Lebesgue set.

First we recall basic properties of system (2). Let PO (C) denote the group of
2 x 2 complex matrices A such that AAT = al, where I is the identity matrix and
a € C\ {0}. We say that potentials V1(q) and Va(q) are equivalent if there exists
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’ Case H Potential
|4 @
Vs @/3+cq3/3
Vs aq? /3 + qiq2/2 + 3 /6
Vi Gq2/2+ 6
Vs +i7¢3 /15 + ¢7q2/2 + ¢3 /15
Vs 03q2/2 + 843 /3
Vi +i17v/14¢3 /90 + g2 g2 /2 + ¢3 /45
Vi +iv3¢3 /18 + ¢2q2/2 + ¢
v +i3v/3¢3/10 + ¢3q2/2 + ¢3 /45
Vio +£il1v/3q3 /45 + q3g2/2 + 43 /10

TABLE 1. All nonequivalent integrable homogeneous potentials of
degree 3.

a matrix A € PO 3(C) such that Vi(¢) = V2(Aq). So we divide all potentials into
equivalent classes. Here a potential means a class of equivalent potentials in the
above sense. This definition of equivalent potentials is motivated by the following
simple lemma. For a proof see [§].

Lemma 1. Let Vi and Vs be two equivalent potentials. If Hamiltonian system (2)
is integrable with potential Vi then it is also integrable with V5.

In the beginning of 80’s all integrable Hamiltonian systems (1) with homogeneous
polynomial potential of degree at most 5 and having a second polynomial first
integral up to degree 4 in the variables p; and ps were found, see [14, 5, 3, 6, 2]
and also [7] for the list of corresponding additional first integrals. We remark that
all these first integrals are polynomials in the variables p1, p2, g1 and ¢z. The main
tools used there in order to identify these integrable systems were Painlevé test [4]
and direct methods [8].

An elegant result related with the integrability of Hamiltonian systems with a
homogeneous polynomial potential was given by Morales and Ramis (see [13, p.
100] and references therein), which gives the necessary condition for the complete
meromorphic integrability of such systems. Using the result of Morales—Ramis,
Maciejewski and Przybylska [10] gave a necessary and sufficient condition for the
complete meromorphic integrability of Hamiltonian systems with the homogeneous
polynomial potential of degree 3. The list of nonequivalent integrable homogeneous
potentials of degree 3 is given in Table 1. Later on in [11] the same authors studied,
among other things, the meromorphic integrability of the class of Hamiltonian
systems with a homogeneous polynomial potential of degree 4. They proved that
except for the family of potentials

1 , 1
3) V = Sagi(an +ig2)” + (i +a3)%,
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’ Case H Potential
V; a(qe —iq1)H(ga +iq1)*" fori=0,1,2,3,4.
Vs oq;

Vo | oqt/A+as

Voo |l 4qi + 3¢5 + 45 /4

Vs | 24t +3¢143/2 + g3 /4

Vo | (qf+g3)%/4

Vio || —af(q1 +iq2)? + (¢} +¢3)?/4

TABLE 2. Nonequivalent integrable homogeneous potentials of de-
gree 4.

only these systems with potentials V; for ¢ = 0,1,...,8 given in Table 2 are the
nonequivalent integrable homogeneous potentials of degree 4. In [9] we proved that
for the family (3) only the potentials Vo and V3o of Table 2 are integrable.

In this paper we classify the analytic integrability of the Hamiltonian systems (2)
with homogeneous potentials of degrees k =2, k=1, k=0, k= —1 and k = —2.
So at this moment the analytic integrability of the Hamiltonian systems (2) with
homogeneous potentials of degrees k = —2,—1,0,1,2, 3,4 has been characterized.

2. HOMOGENEOUS POTENTIALS OF DEGREES 2, 1, 0 AND —1

For the sake of completeness we summarize here the trivial results related to the
integrability of the Hamiltonian systems with the homogeneous potential of degree
2, 1, 0 and —1 being either a polynomial or an inverse of the polynomial. It turns
out that all those systems are completely integrable, with a polynomial additional
first integral.

Theorem 2. Hamiltonian systems (2) with the homogeneous potential V' and one
corresponding additional polynomial first integral I:

V =aq? +bqiqz +cq3, I = b>qi+4bcgaqy+(b* +4c* —4ac)qs —2(a—c)p3+2bpipa,
V' = aq1 + bqa, I =apy — bps,

V =a, I =p,

V =1/(aq1 + bgz), I'=aps —bps,

where a,b,c € C and V Z 0.

Proof. The theorem follows by a straightforward computation. (I

3. HOMOGENEOUS POTENTIAL OF DEGREE —2

In this section we consider Hamiltonian systems (2) with a homogeneous poten-
tial of the form
1

ag} + bqige + g3

(4) V=V =

with a, b, or ¢ nonzero.
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As we shall see only few of these potentials of degree —2 will be analytically
integrable, however all of them are rationally integrable with the additional well-
known first integral

1
I'=5(ap> - @p1)’ + (¢ + @)V (g),

see for more details [1] and [12].

Our main results are the following two theorems (Theorems 3 and 4).

Theorem 3. The following statements hold.

(a) The polynomial integrability of the Hamiltonian system (2) with homoge-
neous potential (4) is equivalent to study the polynomial integrability of
Hamiltonian system (2) with homogeneous potential V = 1/(aq? + cq3).

(b) The Hamiltonian system (2) with homogeneous potential V = 1/(ag? +cq3)
is completely integrable with an additional polynomial first integral if and
only if either ¢ =0, or ¢ # 0 and a € {0,c}. Moreover this additional first
integral is po if c=0; p1 if a =0 and q1p2 — q2p1 if a = c.

We consider polynomial differential systems of the form

d
(5) d—f =i =Px), x= (21,72 23, 24) € C,
with P(x) = (P1(x), Pa(z), P3s(xz), Py(z)) and P; € Clx1, x2, 23, 24] for i = 1,2, 3,4.
We say that system (5) is weight-homogeneous if there exist s = (s1, s2, 83,54) € Z*
and d € Z such that

s s s: s _ . si—1+d -
Pi(a’ 1y, 0™ x9, 0’ w3, 0™ xy) = o Py(x1, w2, 23,24), i=1,2,3,4,

for arbitrary a € RT = {a € R, > 0}. We call s = (s1, 52, 53,54) the weight
exponent of system (5) and d the weight degree with respect to the weight exponent
s. We say that a polynomial F(z1,x2,2s,x4) is a weight-homogeneous polynomial
with weight exponent s and weight degree n if

S S S S n
F(a’xy, a2y, 0P x3, a®xy) = " F (21, T2, T3, 24).

We note that Hamiltonian system (2) with homogeneous potential (6) is a weight-
homogeneous polynomial differential system with weight exponent (s1, $2, S3,84) =
(=1,-1,1,1) and weight degree d = 3. Indeed with those values of d and s,
i=1,2,3,4 we can easily show

7352

s1—1+d o y

so—1+4d s3—1+4d — 351

Q =a®, « =ao®, « a3 s =

for an arbitrary o € RT. Tt is well-known (see for instance Proposition 1 of [9])
that the study of the existence of analytic first integrals of a weight—homogeneous
polynomial differential system reduces to the study of the existence of a weight—
homogeneous polynomial first integrals. This fact together with Theorem 3 states
the following main theorem.

Theorem 4. The Hamiltonian system (2) with homogeneous potential (6) is com-
pletely integrable with an additional analytic first integral if and only if either ¢ = 0,
orc#0 and a € {0,c}.

The following lemma proves statement (a) of Theorem 3.
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Lemma 5. Let F(q) = aq? + bqiqs + cq2. Then there exists a change of variables
q = Ag, where A € PO 5(C) such that
F(Aq) = agqi + 5.

Proof. We can assume that b # 0, otherwise there is nothing to prove. Let

(m)=(o =) (o).

Then
F(Aq) = agi + Bnig2 + 743,
with
a = (aa? — ajagb + a3c),
B = 2aaiay + ab— a3b — 2aiasc,
5 = (aa3+ ajasb+ aic).
Taking
as(c— a) + YBE T @=)
[ )
b
we get 3 = 0. (]

The above lemma implies that we can work with a homogeneous potential of the
form

1

(6) V = —5——, with a or ¢ nonzero.
aqy + cq;

First we consider the case ac(c—a) # 0. We recall that we have the Hamiltonian
system

(7) . . . 2aq1 . 2¢qs
g1 =P1, 42 = P2, P1 = (aq% +Cq%)27 b2 = (aq% +Cq%)2’

where the dot in (7) denotes the derivative with respect to t. Now we take the new
independent variable T defined by dt = (aq? + cg2)?dr. Then system (7) becomes

(8) ¢ = p1(aqi + c3)?, o = pa(aqi + cg3)*, p1 = 2aq1, P2 = 2cqe,

where now the dot denotes the derivative with respect to 7. Changing the variables
(91,92, p1,p2) = (q1,42,p1,T), where T' = gap1 — q1p2, system (8) writes

1 = p1(agi + cg3)?,

. g2p1 =T, , 242
q2 = aqy +c¢q3)°,

(©) 2 m (aqq 2)
p1 = 2aqa,

T =2(a — ¢)q1¢.
With this change of variables we put in evidence the first integral when a = c.

If we denote by F(q1,q2,p1,p2) € Clq1,q2,p1,p2] a polynomial first integral of
(8), then in the variables (q1, g2, p1,T) it writes

(10) Flqr,q2.00.T) = > fi(g2,p1,T)di,

j=—n
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where f;(q2,p1,T) € Clgz,p1,T]. By definition F is a first integral of (9) if and
only if F' is non-constant and

oFr or -7 or ~or
oF @2p1 ) + o (a

11 2 2y2 [ 95 2 L (g — =0.
(11)  (aqy + cq3) (8q1p1+8q2 o 3p1+3T(a C)qz> 0

We define the following differential operators that act on f; = fi(q2,p1,T) €
R[Q27pl7T]:

Alf;l :=gpifj + (@epr = T) 0J;

g2’
0fi , 94 01

. af; B af; ) 9 '
8(]2 +a’ap1 + (CL C)q2 8T +.]a/cq2p1f]'

Computing the different coefficients of q{ in (11) for j = —n—1,...,n+ 3 we get
that F is a first integral of (9) if and only if

gy Alfi] =0
2B[f;] + g3 Alfiy2] =0
(12) gy Alfi] +2B[fio] +a®> Alfi_a) =0, for i=—-n+4,...,n,
]=0
]=0

B(fj]:= nga(szl -T)

, for i=—-n,—n+1,

, for i=-n,—n+1,

2B[fi] +a* A[fi_a] =0, for i=n—1,n,
a*> Alfi] =0, for i=n—1,n.
We shall prove that if ac(a — ¢) # 0, then F' = const and consequently it is not
a first integral. The proof will follow from the following two lemmas.
Lemma 6. Let F be as in (10) and ac(a—c) # 0. If F is first integral of (9), then
filg2,p1, T) =0 forj=1,...,n.
Proof. From (12) we consider a? A[f,] = 0. Using that a # 0, the solution is
fn = a/(T — g2p1)™, where a = a(p1,T). Since f, € Clgz,p1,T] we conclude that
fn = 0. Similarly, from a?A[f,,_1] we show that f, ;1 = 0. Now using that B[0] = 0,
and f, = fn_1 = 0 the conditions
2B[f;] + a*Alfi_a] =0 for i=n-—1,n,

implies that A[f,—2] = A[fn—3] = 0. Thus using the arguments for solving
a’A[f,] = 0 we obtain that as long as n —3 > 1 we get f, o = fn_3 = 0.
If n = 4 we are done. If n > 5, then we proceed by induction. Assume that

fo="fn-1=...= fj+1 = 0, where j > 1. We shall show that f; = 0. Now we
consider condition (12) for ¢ = j + 4, that is,
(13) CQL]AQ1 A[fj+4] +2 B[fj+2] +a? A[fj] =0.

Since fj+a = fj+2 = 0, we have A[fj+4] = B[f;+2] = 0. Thus condition (13) reduces
to A[f;] = 0. Since j > 1, the only polynomial solution of this differential equation

is f]‘ =0. O
Lemma 7. Let F be as in (10) and ac(a—c) # 0. If F is first integral of (9), then
filg2,p1,T) =0 for j=—n,—n+1...,—1 and fo(g2,p1,T) = constant.

Proof. Consider (12) for i = —n, —n-+1, that is, ¢?¢3 A[f_,] = 0 and c*¢5 A[f_n+1] =
0. Since ¢ # 0 this implies that A[f_,] = A[f—n+1] = 0 and solving it we get

(14) fon = (Q2p1 - T)na—na and f_p41 = (q2p1 - T)n_la—n+17
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where a_, = a_,(p1,T) and a_,y1 = @_pt1(p1,T) are polynomials. Now we
consider the condition 2B[fi] + ¢*¢3 A[fi42] = 0, for i = —n,—n + 1 and we shall
use (14). Thus for i = —n we get

fent2 = (@2p1 = T)" ?[a—ns2 + Bontal;

where a_p42 = @_nt2(p1,T) is an integral constant and

1 da_, Jda_,
nt2 = 5= | 3 —n—3(a— T-2 3 2T .
B-nt2 3243 ( negao (a —c)ga( q2p1) 57+ a(3q2p1 ) Do )
Since f_, 42 is a polynomial, S_, 2 also is a polynomial. In the expression of 5_,, 42

there are terms (a — c)plqgl dg;" and f%aqug dg};". Since f,,—2 is a polynomial

we obtain that

da_p,  Oa_,
aT - 6p1 N
So a_,, = constant. Moreover in f_, 2 we also have the term nc‘1q2_2a,n. Again
since f_,+2 is a polynomial a_,, = 0, thus f_,, = 0. Working with f_, 11 similarly
as with f_,, we obtain

fents = (@2p1 = T)" *[a—nys + Bonss),

where a_p4+3 = @_pnt3(p1,T) and

1 aa—"ﬁl 6OlfnJrl
s = —— (3(n—1 —3(a—c)qa(T—2 oy Pani )
Bnts 5243 (3(n )eq20ny1 —3(a—c)qa( q2p1) 5T +a(3gap1 ) o

Similarly as in the previous case we conclude that a_, 1 = 0. In summary we have
proved that f_,, = f_,+1 = 0. Now we shall proceed by induction. Assume that

fon=...=f-j—1 =0and for —j < —3. We shall prove that f_; = 0. Consider
(12) for ¢ = —j, that is,
(15) Cqu Alf=;]+2B[f-j—2] + a? Alf-j—4a] =0.

Since by induction hypothesis f_;_4 = f_;_2 = 0, we have A[f_;_4] = B[f_;_2] =
0. Thus, condition (15) reduces to A[f_;] = 0. This implies that f_; = (gap1 —

T) a_j, where again a_; = a_;(p1,T). Now considering (12) for i = —j + 2 we
get
(16) gy Alf-jy2] +2BIfj] + a® Alf—j—2] = 0.

Taking into account that that A[f_;_»] = 0 as well as f_; = (g2p1 — T)?a_; the
solution of (16) writes

fojrz = (@@pr — TV ?la_jia + B_jial,

where

oT 8p1
Again, since 3_;15 has to be a polynomial the same argument as before allows to
deduce that a—; = 0, therefore f_; = 0.

Following the induction steps we have proved that f_, = ... = f_3 =0, f_o =
(T — q2p1)?a_o and f_1 = (T — qap1)a_1, where a_; = a_1(p1,T) and a_» =
a_o(p1,T). Consider again (12) for ¢ = 1, that is,

(

17 gy Alfi] +2B[f-1] + a® A[f-5] = 0.

1 . Oa_ Oa_;
Boji2 = 328 <3ch2a_j —3(a — ¢)q2(T — 2qap1) —=L + a(3q2p1 — 27) J) -
2
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By Lemma 6 f; = 0 so this implies A[f1] = 0. Since by the induction process
f-3=0,and f_; = (T — gap1)a—1 the solution of (17) is given by

c—a

a

a1 =7 <T + q2p1> /(a(T — q2p1)), where e C.

Again since a_1 = a_1(p1,T) is a polynomial and (¢ — a)/a # 0 we conclude that
v =0, thus a_; = 0 which implies that f_; = 0. To show that f_5 = 0 and that
fo = fo(p1,T), that is, fo does not depend on gy consider (12) for ¢ = 0, that is,

(18) a3 Alfo] + 2 B[f—2] + a® A[f-a] = 0.

Since A[f_4] =0, f_o = (T — g2p1)*a_2 and a_s = a_5(p;, T) solving (18) we get
fo = a0 + Bo,

where ay = ag(py, T) and

2

1 dar_ 601_2
=——1|(6 _o—3(a — T—-2 3 =27 .

Bo 3eqd < cg2a—2 — 3(a — ¢)ga( q42p1) ar a(3¢2p1 ) ops >
Since 3y has to be a polynomial, using the same arguments for proving that f_,, ;2 =

0 we conclude that a_s = 0, and consequently 5y = 0. Thus f_s = 0, and therefore
fo=ao(p1, 7).

Finally we consider (12) for ¢ = 2. Since by Lemma 6 we have that fo = 0, as
well as fo = fo(p1,T) we get

Its solution is of the form

CcC—a
fo(pl,T)=F<T+ . q2p1>.

Since a(a — ¢) # 0 and fy does not depend on g2 we get that fy = constant which
ends the proof. O

Proof of Theorem 3. If ¢ = 0 then p, is an additional polynomial first integral
and the corresponding Hamiltonian system (2) with potential (6) is completely
integrable. So we can assume that ¢ # 0.

There are at least two values of a for which system (7) is completely integrable.
These cases are a = 0 with additional first integral p; and a = ¢ with additional
first integral ¢1p2 — gap1. We note that in both cases the additional first integral is
a polynomial. The rest of the proof follows directly from Lemmas 6 and 7. (]
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