
POLYNOMIAL INTEGRABILITY OF THE HAMILTONIAN

SYSTEMS WITH HOMOGENEOUS POTENTIAL OF DEGREE −3

JAUME LLIBRE1, ADAM MAHDI2 AND CLAUDIA VALLS3

Abstract. In this paper we study the polynomial integrability of natural
Hamiltonian systems with two degrees of freedom having a homogeneous po-
tential of degree k given either by a polynomial, or by an inverse of a polyno-
mial. For k = −2, −1, . . . , 3, 4 their polynomial integrability has been charac-

terized. Here we have two main results. First we characterize the polynomail
integrability of those Hamiltonian systems with homogeneous potential of de-
gree −3. Second we extend a relation between the nontrivial eigenvalues of the

Hessian of the potential calculated at a Darboux point to a family of Hamilton-
ian systems with potentials given by an inverse of a homogeneous polynomial.
This relation was known for such Hamiltonian system with homogeneous poly-
nomial potentials. Finally we present three open problems related with the

polynomial integrability of Hamiltonian systems with a rational potential.

1. Introduction and statement of the main results

Ordinary differential equations in general and Hamiltonian systems in particular
play a very important part in many branches of the applied sciences. The question
whether a differential model admits a first integral is of fundamental importance as
first integrals give conservation laws for the model and that enables us to lower the
dimension of the system. Moreover, knowing a sufficient number of first integrals
allows to solve the system explicitly. Until the end of the 19th century the majority
of scientists thought that the equations of classical mechanics were integrable and
finding the first integrals was mainly a problem of computation. In fact, integra-
bility is a rare phenomenon and in general it is very hard to determine whether a
given Hamiltonian system is integrable or not.

In this work we are concerned with the polynomial integrability of the natural
Hamiltonian systems defined by the Hamiltonian function

(1) H =
1

2

2∑

i=1

p2
i + V (q1.q2),

where V (q1, q2) ∈ C(q1, q2) is a rational homogeneous potential of degree k given
by either a polynomial or an inverse of a polynomial. Here C(q1, q2) as usual is
the field of rational functions over C in the variables q1, q2. To be more precise we
consider the following system of four differential equations

(2) q̇i = pi, ṗi = −∂V

∂qi
, i = 1, 2.
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Case Potential

Vi α(q2 − iq1)i(q2 + iq1)3−i for i = 0, . . . , 3.

V4 q3
1

V5 q3
1/3 + cq3

2/3

V6 q2
1q2/2 + q3

2

V7 q2
1q2/2 + 8q3

2/3

V8 ±i
√

3q3
1/18 + q2

1q2/2 + q3
2

Table 1. All nonequivalent integrable homogeneous polynomial
potentials of degree 3.

Let A = A(q,p) and B = B(q,p) be two functions, where p = (p1, p2) and
q = (q1, q2). We define the Poisson bracket of A and B as

{A,B} =
2∑

i=1

(
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)
.

The functions A and B are in involution if {A,B} = 0. A non–constant function
F = F (q,p) is a first integral for the Hamiltonian system (2) if it is in involution
with the Hamiltonian function H, i.e. {H, F} = 0. Since the Poisson bracket
is antisymmetric it follows that H itself is always a first integral. A 2–degree
of freedom Hamiltonian system (2) is completely or Liouville integrable if it has 2
functionally independent first integrals H and F . As usual H and F are functionally
independent if their gradients are linearly independent at all points of C4 except
perhaps in a zero Lebesgue set.

Let PO 2(C) denote the group of 2×2 complex matrices A such that AAT = α Id,
where Id is the identity matrix and α ∈ C \ {0}. The potentials V1(q) and V2(q)
are equivalent if there exists a matrix A ∈ PO 2(C) such that V1(q) = V2(Aq).
Therefore we divide all potentials into equivalent classes. In what follows a poten-
tial means a class of equivalent potentials in the above sense. This definition of
equivalent potentials is motivated by the following simple observation (for a proof
see [10]). Let V1 and V2 be two equivalent potentials. If the Hamiltonian system
(2) with the potential V1 is integrable, then it is also integrable with the potential
V2.

In the 80’s all integrable Hamiltonian systems (1) with homogeneous polynomial
potential of degree at most 5 and having a second polynomial first integral up to
degree 4 in the variables p1 and p2 were computed, see [18, 7, 5, 3, 8, 9]. We
note that all these first integrals are polynomials in the variables p1, p2, q1 and
q2. Recently two mathematically rigorous approaches to the integrability problem
have been proposed by Ziglin [22, 23] and Morales-Ruiz and Ramis [17]. They
explain relations between the existence of first integrals and branching of solutions
as functions of the complex time and give necessary integrability conditions for
Hamiltonian systems. It appears that the integrability is related to properties of
the monodromy group or the differential Galois group of variational equations along
a particular solution.

One of the strongest necessary conditions for the complete meromorphic inte-
grability of the Hamiltonian systems with a homogeneous potential was given by
Morales and Ramis (see [17, p. 100] and references therein). Using these results,
Maciejewski and Przybylska [13] gave necessary and sufficient conditions for the
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Case Potential

Vi α(q2 − iq1)i(q2 + iq1)4−i for i = 0, 1, 2, 3, 4.

V5 αq4
2

V6 αq4
1/4 + q4

2

V7 4q4
1 + 3q2

1q2
2 + q4

2/4

V8 2q4
1 + 3q2

1q2
2/2 + q4

2/4

V9 (q2
1 + q2

2)2/4

V10 −q2
1(q1 + iq2)2 + (q2

1 + q2
2)2/4

Table 2. Nonequivalent integrable homogeneous polynomial po-
tentials of degree 4.

complete meromorphic integrability of Hamiltonian systems with the homogeneous
polynomial potential of degree 3. See Table 1 for the list of nonequivalent inte-
grable homogeneous potentials of degree 3. In [14] the same authors studied the
meromorphic integrability of the class of Hamiltonian systems with a homogeneous
polynomial potential of degree 4. They proved that except for the family of poten-
tials

(3) V =
1

2
aq2

1(q1 + iq2)2 +
1

4
(q2

1 + q2
2)2,

only these systems with potentials Vi for i = 0, 1, . . . , 8 given in Table 2 are the
nonequivalent integrable homogeneous potentials of degree 4. We proved in [11]
that for the family (3) only the potentials V9 and V10 of Table 2 are integrable.

We note that from the papers [11, 13, 14] it follows that all the Hamiltonian
systems (2) with a potential V given by a homogeneous polynomial of degree 3
or 4 which have an additional independent meromorphic first integral with respect
to the Hamiltonian, have also a polynomial first integral independent with the
Hamiltonian. It is well known, see for instance [12], that if the potential V is a
homogeneous polynomial or an inverse of a homogeneous polynomial of degree 2,
1, 0 or −1, then the Hamiltonian system (2) has always a polynomial first integral
independent with the Hamiltonian. The existence of a polynomial first integral
independent with the Hamiltonian for the Hamiltonian systems (2) with a potential
given by the inverse of a homogeneous polynomial of degree −2 was characterized
in [12]. More precisely, in [12] we classified the polynomial integrability of the
Hamiltonian systems (2) with a homogeneous potential of degree −2 of the form
V = 1/(aq2

1 + bq1q2 + cq2
2). We proved that the study of the integrability for

this potential is equivalent to studying the integrability of (2) with homogeneous
potential

(4) V = 1/(aq2
1 + cq2

2).

Moreover, we showed that it is polynomially integrable if and only if either c = 0,
or c ̸= 0 and a ∈ {0, c}. Moreover it is well known that these Hamiltonian systems
with potentials (4) have always the additional rational first integral

I =
1

2
(q1p2 − q2p1)2 + (q2

1 + q2
2)V (q),

see [2, 15, 11].

One of the main results of this paper is the characterization of the polynomial
integrability of the natural Hamiltonian systems (2) with a homogeneous potential
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of degree −3 of the form

(5) V =
1

aq3
1 + bq2

1q2 + cq1q2
2 + dq3

2

,

with aq3
1 + bq2

1q2 + cq1q
2
2 + dq3

2 ̸≡ 0.

Our first intention was to characterize the existence of meromorphic first integral
of the Hamiltonian systems (2) with potential (5) using the Morales-Ramis theory.
Notice that such meromorphic first integrals includes the rational ones, probably
the more natural class for looking the second additional first integral because the
Hamiltonian of our systems is a rational function. But this characterization looks
at this moment computationally very hard, and in a first approach to this charac-
terization we have classified the existence of polynomial first integrals.

In the following proposition we reduce the study of the existence or non-existence
of polynomial first integrals of the Hamiltonian systems (2) with potential (5) to
the study of seven Hamiltonian systems (2) with the potentials described in the
statement of Proposition 1.

Proposition 1. After an appropriate rotation and a rescaling we can transform
the potential (5) into one of the reduced forms

V0 =
1

q3
1

; V1 =
1

aq3
1 + q3

2

; V2,3 =
1

(q2
2 + q2

1)(q2 ± iq1)
;

V4,5 =
1

(q2 ± iq1)3
; Vgen =

1

aq3
1 + q2

1q2 + dq3
2

.

Proposition 1 is proved in section 4.

In what follows we say that a Hamiltonian system (2) is not polynomially inte-
grable if it does not admit a polynomial first integral independent of the Hamil-
tonian. The existence or non-existence of polynomial first integrals for these seven
classes of potentials is characterized in the following theorem.

Theorem 2. The Hamiltonian system (2) with the potential:

(a) Vgen does not admit an additional polynomial first integral.
(b) V0 is completely integrable with the additional polynomial first integral p2.
(c) V1 admits a polynomial first integral if and only if a = 0, in which case the

first integral is p1.
(d) V2 or V3 does not admit a polynomial first integral.
(e) V4 is completely integrable with the additional polynomial first integral p1 −

p2i.
(f) V5 is completely integrable with the additional polynomial first integral p1 +

p2i.

Theorem 2 is proved in section 5.

We say that a nonzero d ∈ C2 is a Darboux point of system (2) if it is the solution
of the gradient equation

V ′(d) = γd,

where γ ∈ C∗ := C \ {0}. It is clear that if d is a Darboux point, then d̃ = αd,
where α ∈ C∗ satisfies

V ′(d̃) = αk−2γd̃ = γ̃d̃.

Of course this implies that d and d̃ represent the same Darboux point. Thus, as it
was explained in [14] a Darboux point d can be considered as a point in a projective
space d = [d1 : d2] ∈ CP1.



ON THE INTEGRABILITY OF HAMILTONIAN SYSTEMS 5

Consider the Hessian matrix V ′′(q) evaluated at the Darboux point d, that is

(6) V ′′(d) =




∂2V (d)

∂q2
1

∂2V (d)

∂q1∂q2

∂2V (d)

∂q2∂q1

∂2V (d)

∂q2
2


 .

Denote by {µ, λ} the two eigenvalues of V ′′(d). Since V is a homogeneous function
of degree k, it is well-known that one of the eigenvalues, say µ, equals γ̃(k − 1) and
we shall call it the trivial one. We shall also say that λ is the non–trivial eigenvalue.

The second result of this paper is:

Theorem 3. Assume that a homogeneous potential V (q) of degree m ∈ Z being a
polynomial or an inverse of a polynomial has p1, . . . ,pm different Darboux points.
Then

(7)

m∑

i=1

1

Λi
= −1,

where Λi = λi − 1 and λi is a non–trivial eigenvalue of the Hessian matrix V ′′

evaluated at the Darboux point pi.

Theorem 3 is an extension of Theorem 1.2 of Maciejewski and Przybylska [14],
where the authors proved it for Hamiltonian systems with a homogeneous polyno-
mial potential.

There are many papers on Hamiltonian systems (2) with polynomial potentials,
and very few with rational. For one of these papers with rational potential see [1]
and references therein. A natural extension of our main result would be considering
the integrability of potentials being an inverse of a polynomial of arbitrary degree.
Related to that we would like to state some open problems.

Open problem 1. Consider a natural Hamiltonian system (2) with the potential

(8) V (q1, q2) =
1

a0qm
1 + a1q

m−1
1 q2 + . . . + am−1q1q

m−1
2 + amqm

2

, aj ∈ C,

where am−1 = 0 and m ≥ 2. Show that if a1 . . . am−2am ̸= 0, then system (2) does
not admit any polynomial first integral.

The open problem 1 has a positive answer for m = 2, 3 (see [12] and Proposition
14 of this paper).

For certain types of potentials it will be shown in the next proposition that the
Hamiltonian system (2) is completely integrable. The proof follows easily by direct
computations.

Proposition 4. Hamiltonian systems (2) having a potential V given below is com-

pletely integrable with the given corresponding additional first integral I:

(9)

V = f(q1) + g(q2), I = p2
1 + 2f(q1),

V = f(aq1 + bq2), I = bp1 − ap2,

V = f(q2
1 + q2

2), I = q2p1 − q1p2,

where f : C → C is any differentiable function.

Open problem 2. Consider a natural Hamiltonian system (2) with the potential
given by (8) with m ≥ 1. Prove or disprove that system (2) is completely integrable
with an additional polynomial first integral if and only if the potential V (q) is
equivalent to one of the potentials given in (9).
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The open problem holds for m = 1, 2, 3 (see [12] and Proposition 14 of this
paper).

We think that Theorem 2 holds if instead of polynomial first integrals we write
global analytic first integrals. Thus a more general open question is the following
one.

Open problem 3. Prove or disprove that if a Hamiltonian system (2) with a
potential given by the inverse of a homogeneous polynomial does not admit an ad-
ditional polynomial first integral, then it does not admit an additional analytic first
integral globally defined.

We note that the open problem 3 has a positive answer for potentials given by
homogeneous polynomials.

Somehow similar questions of whether the non-integrability within a smaller
class of functions implies automatically the non-integrability in a bigger class were
considered by Gorni and Zampieri [6]. To be more precise motivated by the works
of Tăımanov [19] and Butler [4] the authors asked whether for a polynomial Hamil-
tonian system with two degrees of freedom an analytic integrability implies C∞

integrability. They answered this question negatively constructing a very simple
explicit example, which does not have a full set of analytic first integrals but pos-
sesses a full set of C∞ first integrals. The example of Gorni and Zampieri was
further generalized by Yoshino [21] (see also [20]).

2. Morales–Ramis theory

We would like to mention some known integrability obstructions for homogeneous
polynomial potentials.

In the case that Hamiltonian system (2) is completely integrable the eigenval-
ues of (6) are not arbitrary. The following theorem due to Morales and Ramis
determines these values. For proof see, e.g. [17].

Theorem 5 (Morales–Ramis). Assume that the Hamiltonian system defined by the
Hamiltonian (1) with a homogeneous potential V of degree k ∈ Z\{0} is completely
integrable with holomorphic or meromorphic first integrals, then λ satisfies the fol-
lowing conditions:

Degree Eigenvalue λ

k p + p(p − 1)k
2

2 arbitrary

−2 arbitrary

−5 49
40 − 1

40 ( 10
3 + 10p)2

−5 49
40 − 1

40 (4 + 10p)
2

−4 9
8 − 1

8 ( 4
3 + 4p)2

−3 25
24 − 1

24 (2 + 6p)2

−3 25
24 − 1

24 ( 3
2 + 6p)2

−3 25
24 − 1

24 ( 6
5 + 6p)2

Degree Eigenvalue λ

−3 25
24 − 1

24 ( 12
5 + 6p)2

3 − 1
24 + 1

24 (2 + 6p)2

3 − 1
24 + 1

24 ( 3
2 + 6p)2

3 − 1
24 + 1

24 ( 6
5 + 6p)2

3 − 1
24 + 1

24 ( 12
5 + 6p)2

4 −1
8 + 1

8 ( 4
3 + 4p)2

5 − 9
40 + 1

40 ( 10
3 + 10p)2

5 − 9
40 + 1

40 (4 + 10p)2

k 1
2 (k−1

k + p(p + 1)k)

where p is an integer.

3. A family of natural hamiltonian systems with a homogeneous
potential of degree m.

We shall derive formulas for the Darboux points and the corresponding non–
trivial eigenvalues of the Hessian matrix V ′′ of the potential V given by (8). We
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also show that the relation (7) introduced first by Maciejewski and Przybylska in [14]
for the generic Hamiltonian systems with the homogeneous polynomial potential
also holds for the family of Hamiltonian systems with the rational potential being
the inverse of a polynomial.

Setting z = q2/q1 we rewrite potential (8) as

V =
1

qm
1 v(z)

where v(z) = a0 + a1z + . . . + amzm.

We define the polynomials

(10) h(z) = mv(z) − zv′(z), g(z) = (1 + z2)v′(z) − mzv(z),

where as usual v′(z) denotes the derivative of v(z) with respect to z.

The following proposition shows the way to calculate the Darboux points and
the non–trivial eigenvalue λ associated to (8).

Proposition 6. Assume that g ̸≡ 0. The Darboux points d = [1 : z⋆] associated
with potential (8) are given by the zeroes of g(z) = 0 for which h(z) ̸= 0. Moreover
the non–trivial eigenvalue of V ′′(d) is given by λ(z⋆) = g′(z⋆)/h(z⋆) + 1.

Proof. It is clear that the Darboux points can be viewed as equilibrium points of
the differential system

(11) q̇1 = −q1 +
∂V (q1, q2)

∂q1
, q̇2 = −q2 +

∂V (q1, q2)

∂q2
.

We shall make a change of the variables (q1, q2) → (q1, z), where z = q2/q1. Clearly
the equilibrium points of the new differential system define also Darboux points.
Expressing the derivatives of the potential in the variables q1 and z we get

∂V

∂q1
= − 1

qm+1
1 v2(z)

[
mv(z) − zv′(z)

]
,

∂V

∂q2
= − 1

qm+1
1 v2(z)

v′(z).

Thus

ż =
q̇2q1 − q2q̇1

q2
1

= − 1

qm+2
1 v2(z)

[(1 + z2)v′(z) − mzv(z)].

In the variables (q1, z) system (11) writes

(12) q̇1 = −q1 − 1

qm+1
1 v2(z)

h(z), ż = − 1

qm+2
1 v2(z)

g(z).

Since the equilibrium points of (12) are Darboux points of V , they must satisfy
the algebraic system

(13) g(z) = 0, h(z) + qm+2
1 v2(z) = 0.

One way to calculate the Hessian matrix V ′′ in the variables (q1, z) is to calculate
the Jacobian matrix J of system (12) and use the relationship obtained from system
(11)

J = V ′′ − Id,

where Id stands for the identity matrix. We have

(14) J =

[
(1+m)q−2−m

1 h(z)v−2(z) − 1 q−1−m
1 v−3(z)[−v(z)h′(z) + 2g(z)]

(2+m)q−3−m
1 g(z)v−2(z) q−2−m

1 v−3(z)[−v(z)g′(z) + 2g(z)]

]
.

Taking into account relations (13) we get V ′′ calculated at the Darboux point is

(15) V ′′ = J + Id =




−m − 1 ∗
0

g′(z⋆)

h(z⋆)
+ 1


 .
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It is clear that one of the eigenvalues of V ′′ is always −m−1 and the non–trivial
eigenvalue calculated at the Darboux point is

λ(z⋆) =
g′(z⋆)

h(z⋆)
+ 1.

�

Proposition 7. The number of Darboux points of the potential (8) is at most m.

Proof. We use the freedom of the choice of the potential from the equivalence class
and take such one that has all Darboux points localized in the affine part of CP1

where q1 ̸= 0. Thus potential (8) cannot possess Darboux points in the infinity
except if polynomial in denominator is factorizable by q1.

From Proposition 6 the Darboux points d = [1 : z⋆] are given by the zeroes of
g(z) = 0 for which h(z) ̸= 0. We have

g(z) = (1 + z2)v′(z) − mzv(z) = −am−1z
m + (mam − 2am−2)zm−1 + l.o.t.

where l.o.t. stands for the lower order terms in z. Thus there are at most m Darboux
points of the form [1 : z], and since there cannot be additional Darboux points of
the form [0 : z], the proposition follows. �

Proposition 8. The polynomials g(z) and h(z) have a common root z⋆ if and only
if z⋆ is a multiple root of v(z).

Proof. If z∗ is a multiple root of v(z) if and only if v(z⋆) = v′(z⋆) = 0. Therefore
g(z⋆) = h(z⋆) = 0. On the other hand if g(z⋆) = h(z⋆) = 0, then from (10) we
obtain that v′(z) = zh(z) + g(z), so we get v′(z⋆) = 0. Finally again from (10) we
get v(z⋆) = 0. �

Proof of Theorem 3. We introduce the following 1-form

ω(z) =
h(z)

g(z)
dz.

It is clear that CP1 = U1 ∪ U2, where

U1 = {[q1 : q2] ∈ CP1 : q1 ̸= 0}, U2 = {[q1 : q2] ∈ CP1 : q2 ̸= 0}.

The 1-form ω(z) is defined on U1 and we shall extended it to CP1. In order to
do that we introduce the map ξ : U1 → U2 defined as ξ = 1/z. Thus we have
dz = −dξ/ξ2 and

ω∞ = ω(1/ξ) = −h(1/ξ)

g(1/ξ)

1

ξ2
dξ.

Under our assumptions the Darboux points are simple roots of g(z) = 0, then we
get

resziω =
h(zi)

g′(zi)
=

1

λi − 1
=

1

Λi
.

Now the residue of ω(z) at infinity is res∞ω. We have

res∞ω = res0 ω∞ = 1.

Then the theorem follows by the Residue Theorem, see the appendix. �

Proposition 9. Consider a Hamiltonian system (2) with the following potential

(16) V =
1

aqm
1 + qm

2

,

where m ∈ Z, m > 2. Then system (2) is completely integrable with a meromorphic
first integral if and only if a = 0.
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Proof. First we note that if a = 0, then potential (16) is trivially separable and
therefore by Proposition 4 is integrable. To prove the non–integrability for a ̸= 0,
we shall use Theorem 5 of Morales and Ramis. Thus we shall calculate the non–
trivial eigenvalue λ associated with potential (16). Since V is of the form (8), we
can calculate λ using Proposition 6. The Darboux points z⋆ are given by the zeros
of g(z⋆) = 0 for which h(x⋆) ̸= 0. Since g(z) = −amz + mzm−1 and h(z) = am we
obtain the Darboux point

z⋆ = a1/m−2,

and the corresponding non–trivial eigenvalue

(17) λ =
g′(z⋆)

h(z⋆)
+ 1 = m − 1.

Now we define Za
−m = {p − p(p − 1)m

2 : p ∈ Z} and Zb
−m = {m+1

2m − p(p +
1)m

2 : p ∈ Z}. We shall consider different cases depending on the degree of the
homogeneity of V .

Case: m = 3. In order to prove that potential (16) is non–integrable when a ̸= 0
consider the following sets

Z1
−3 =

{25

24
− 1

24
(2 + 6p)2 : p ∈ Z

}
, Z3

−3 =
{25

24
− 1

24
(
6

5
+ 6p)2 : p ∈ Z

}
,

Z2
−3 =

{25

24
− 1

24
(
3

2
+ 6p)2 : p ∈ Z

}
, Z4

−3 =
{25

24
− 1

24
(
12

5
+ 6p)2 : p ∈ Z

}
.

From (17) the nontrivial eigenvalue is λ = 2. Thus by Theorem 5 if potential
(16) is completely integrable then

λ ∈ {Z1
−3 ∪ Z2

−3 ∪ Z3
−3 ∪ Z4

−3 ∪ Za
−3 ∪ Zb

−3}.

A simple computation shows that the last condition is never fulfilled for λ = 2
and therefore the potential V given by (16) for m = 3 is not integrable.

Cases: m = 4 and m = 5. We prove the non–integrability in a similar manner.

Case: m > 5. By (17) the nontrivial eigenvalue is λ = m − 1. Theorem 5 for
m > 5 implies that if potential (16) is completely integrable, then

λ = m − 1 ∈ {Za
−m ∪ Zb

−m}.

The last condition is fulfilled if and only if m ∈ {1, 2}, which is not compatible with
our assumption that m > 5. �

4. Homogeneous potentials of degree −3

In this section we prove all the results stated in the introduction for the homo-
geneous potentials of degree −3 given in (5).

Proof of Proposition 1. Consider the potential V given in (5) and let P (q1, q2) =
aq3

1 + bq2
1q2 + cq1q

2
2 + dq3

2 be its denominator. The integrability of the Hamiltonian
system (2) is preserved under the rotation

(18) q1 = Q1 cos α + Q2 sin α, q2 = −Q1 sin α + Q2 cos α, α ∈ [0, 2π).

We shall use this fact in order to simplify the potential V .

We substitute (18) into the polynomial P (q1, q2) and we get that the coefficient
of Q1Q

2
2 in the expression of P (Q1, Q2) is

c cos3 α + (2b − 3d) cos2 α sin α + (3a − 2c) cos α sin2 α − b sin3 α.

Assume c ̸= 0. Then dividing the previous expression by sin3 α we can vanish the
coefficient of Q1Q

2
2 if and only if there is α such that

(19) c cot3 α + (2b − 3d) cot2 α + (3a − 2c) cot α − b = 0.
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This is a cubic equation in cot α. Then it is easy to check that always there exists
α⋆ ∈ (0, π) such that cot α⋆ is a root of (19), except if all the roots of (19) are ±i.
So if we are not in this last case we can assume that c = 0.

We note that if all roots of (19) are ±i, then there is no rotation to eliminate
Q1Q

2
2. This is the case when the polynomial P (q1, q2) is of the form (q1 ± iq2)3 or

(q2
1 + q2

2)(q1 ± iq2), obtaining the potentials V2, . . . , V5.

Now we recall that a 2n × 2n matrix S is called symplectic with multiplier µ if

ST JS = µS, where J =

(
0 Id

−Id 0

)
.

A symplectic change of variables takes a Hamiltonian system of equations into
another Hamiltonian system (see [16] for details). When c = 0 and b ̸= 0 the
change

Q1 = q1, Q2 = q2, P1 =
√

b p1, P2 =
√

b p2

is symplectic with multiplier
√

b and we get Vgen. When b = c = 0 and d ̸= 0 with

the symplectic change Q1 = q1, Q2 = q2, P1 =
√

d p1, P2 =
√

d p2 we get V1, and
when b = c = d = 0 with the symplectic change Q1 = q1, Q2 = q2, P1 =

√
a p1, P2 =√

a p2 we get V0. So the proposition is proved. �

5. Proof of Theorem 2

Statement (b) of Theorem 2 is trivial.

Statement (c) follows easily from Proposition 9 and it is immediate to check that
its first integral is p1.

Now we prove statement (d). The nontrivial eigenvalue calculated at the simple
Darboux point associated with V2 and V3 is λ = 2. Using the notation introduced
in Proposition 9, it is easy to check that

2 /∈ {Z1
−3 ∪ Z2

−3 ∪ Z3
−3 ∪ Z4

−3 ∪ Za
−3 ∪ Zb

−3}.

Thus by Theorem 5 potentials V2 and V3 are not integrable.

Statements (e) and (f) of Theorem 2 follow easily from Proposition 4.

In the rest of this section we shall prove statement (a) of Theorem 2.

We consider a Hamiltonian system associated with the potential Vgen, that is

(20) q̇1 = p1, q̇2 = p2, ṗ1 =
3aq2

1 + 2q1q2

(aq3
1 + q2

1q2 + dq3
2)2

, ṗ2 =
q2
1 + 3dq2

2

(aq3
1 + q2

1q2 + dq3
2)2

.

Now we take the new independent variable τ defined by dt = (aq3
1+q2

1q2+dq3
2)2dτ

and we write system (20) as

(21)
q̇1 = p1(aq3

1 + q2
1q2 + dq3

2)2, q̇2 = p2(aq3
1 + q2

1q2 + dq3
2)2,

ṗ1 = 3aq2
1 + 2q1q2, ṗ2 = q2

1 + 3dq2
2 .

We separate the proof of the non-existence of polynomial first integrals of system
(21) into three cases:

• a = 0,
• a ̸= 0 and d = 0,
• ad ̸= 0.

Proposition 10. The Hamiltonian system (21) with a = 0 has no polynomial first
integrals.
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Proof. Setting a = 0 equation (21) becomes

(22)
q̇1 = p1q

2
2(q2

1 + dq2
2)2, q̇2 = p2q

2
2(q2

1 + dq2
2)2,

ṗ1 = 2q1q2, ṗ2 = q2
1 + 3dq2

2 .

We proceed by contradiction by assuming that there exists f a polynomial first
integral of system (22). Then it satisfies

(23) p1q
2
2(q2

1 + dq2
2)2

∂f

∂q1
+ p2q

2
2(q2

1 + dq2
2)2

∂f

∂q2
+ 2q1q2

∂f

∂p1
+ (q2

1 + 3dq2
2)

∂f

∂p2
= 0.

We write f in sum of its homogeneous parts as f =

n∑

j=0

fj where each fj is a

homogeneous polynomial of degree j and we can assume that fn ̸= 0 and n ≥ 1.
Then computing the terms of degree n + 6 in (23) we have that fn satisfies

q2
2(q2

1 + dq2
2)2

(
p1

∂fn

∂q1
+ p2

∂fn

∂q2

)
= 0.

The general solution of the linear partial differential equation is an arbitrary func-
tion in the variable (q1p2 − q2p1)/p1 with coefficients arbitrary functions in the
variables p1 and p2. Since fn must be a polynomial of degree n in the variables p1,
p2, q1 and q2, we get that fn must be of the form as

(24) fn =

n∑

i+j+2l=0

fijlp
i
1p

j
2(q1p2 − q2p1)l.

Now computing the terms of degree n + 1 we obtain

(25) q2
2(q2

1 + dq2
2)2

(
p1

∂fn−6

∂q1
+ p2

∂fn−6

∂q2

)
+ 2q1q2

∂fn

∂p1
+ (q2

1 + 3dq2
2)

∂fn

∂p2
= 0.

Evaluating (25) on q2 = 0 we get that

fn =
n∑

i+j+2l=0

fijl(j + l)pi
1p

j+l−1
2 ql

1 = 0.

This implies that j = l = 0, and consequently fn = fn(p1). Now after simplifying
equation (25) by q2 and evaluating it on q2 = 0, we get that dfn/dp1 = 0. Hence
fn must be a constant. So n = 0 and we have a contradiction. �

Proposition 11. The Hamiltonian system (21) with a ̸= 0 and d = 0 has no
polynomial first integrals.

Proof. Now equation (21) becomes

(26)
q̇1 = p1q

4
1(aq1 + q2)2, q̇2 = p2q

4
1(aq1 + q2)2,

ṗ1 = 3aq2
1 + 2q1q2, ṗ2 = q2

1 .

We proceed by contradiction by assuming that there exists a polynomial first inte-
gral f of system (26). Then after removing a common q1, f satisfies

(27) p1q
3
1(aq1 + q2)2

∂f

∂q1
+ p2q

3
1(aq1 + q2)2

∂f

∂q2
+ (3aq1 + 2q2)

∂f

∂p1
+ q1

∂f

∂p2
= 0.

We write f in sum of its homogeneous parts as f =
n∑

j=0

fj where each fj is a

homogeneous polynomial of degree j and we have that fn ̸= 0 and n ≥ 1. Then
computing the terms of degree n + 5 in (27) we have that fn satisfies

q3
1(aq1 + q2)2

(
p1

∂fn

∂q1
+ p2

∂fn

∂q2

)
= 0.
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Solving it we obtain that fn is of the form (24). Now computing the terms of degree
n in (27) we obtain

(28) q3
1(aq1 + q2)2

(
p1

∂fn−5

∂q1
+ p2

∂fn−5

∂q2

)
+ (3aq1 + 2q2)

∂fn

∂p1
+ q1

∂fn

∂p2
= 0.

Evaluating (28) on q1 = 0 and working as in the proof of Proposition 10 we get
that fn = fn(p2). Now after simplifying equation (28) by q1 and evaluating it on
q1 = 0 we get that dfn/dp2 = 0. Hence fn must be a constant, and thus we obtain
a contradiction. �

In the remainder of the paper we prove that system (21) with ad ̸= 0 does not
admit any polynomial first integrals.

Changing the variables (q1, q2, p1, p2) → (q1, q2, p1, T ), where T = q2p1 − q1p2,
system (21) writes

(29)
q̇1 = p1(aq3

1 + q2
1q2 + dq3

2)2, q̇2 =
q2p1 − T

q1
(aq3

1 + q2
1q2 + dq3

2)2,

ṗ1 = 3aq2
1 + 2q1q2, Ṫ = −q1[q2

1 − 3aq1q2 + (3d − 2)q2
2 ].

If we denote by F (q1, q2, p1, p2) ∈ C[q1, q2, p1, p2] a polynomial first integral of
(21), then in the variables (q1, q2, p1, T ) it writes

(30) F (q1, q2, p1, T ) =
n∑

j=−n

fj(q2, p1, T )qj
1,

where fj(q2, p1, T ) ∈ C[q2, p1, T ]. We define the following differential operators that
act on fj = fj(q2, p1, T ) ∈ C[q2, p1, T ]:

A[fj ] : = jp1fj + (q2p1 − T )
∂fj

∂q2
,

B[fj ] : = q2
2A[fj ] − ∂fj

∂T
,

C[fj ] : = 2dq3
2A[fj ] + 3

(∂fj

∂p1
+ q2

∂fj

∂T

)
,

D[fj ] : = 2dq3
2A[fj ] + (2 − 3d)q2

∂fj

∂T
+ 2

∂fj

∂p1
.

Then by definition F is a first integral of (29) if and only if

(31) a2A[fj−6]+2aq2A[fj−5]+B[fj−4]+aC[fj−3]+q2D[fj−2]+d2q6
2A[fj ]=0,

where j = −n, . . . , n + 6 and fj = 0 if j > n or j < −n. Thus system (21) admits
a polynomial first integral if and only if there exist 2n + 1 polynomial functions fj

satisfying system (31) of 2n + 7 partial differential equations. The following two
lemmas will address the problem of existence of such polynomial functions.

Lemma 12. Let F be as in (30) and ad ̸= 0. If F is first integral of (29), then
fj(q2, p1, T ) = 0 for j = 1, . . . , n.

Proof. Consider (31) for j = n + 6, that is, a2 A[fn] = 0. Using that a ̸= 0, the
solution is fn = α/(T − q2p1)n, where α = α(p1, T ). Since fn ∈ C[q2, p1, T ] we
conclude that fn = 0. If n = 1 we are done. If n ≥ 2, using that A[fn] = 0 we
get from (31) that a2A[fn−1] = 0 and hence fn−1 = 0. If n = 2 we are done. If
n ≥ 3 then using that B[0] = 0, and fn = fn−1 = 0 the conditions in (31) imply
that a2A[fn−2] = 0. The arguments for solving a2A[fn] = 0 imply that fn−2 = 0.
Furthermore using that C[0] = 0 together with (31) we get that as long as n−3 ≥ 1,
then fn−3 = 0. Again, if n = 4 we are done. If n ≥ 5, then we proceed by induction.
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Assume that fn = fn−1 = · · · = fi+1 = 0, where i ≥ 1. We shall show that fi = 0.
Now we consider condition (31) and we get

a2A[fi] + 2aq2
2A[fi+1] + B[fi+2] + aC[fi+3] + q2D[fi+4] + d2q6

2A[fi+6] = 0.(32)

Since fi+6 = fi+4 = fi+3 = fi+2 = fi+1 = 0, and using that A[0] = B[0] = C[0] =
D[0] = 0, equation (32) reduces to a2A[fi] = 0. Since a ̸= 0 and i ≥ 1, the only
polynomial solution of this differential equation is fi = 0. This concludes the proof
of the lemma. �

Lemma 13. Let F be as in (30) and ad ̸= 0. If F is a first integral of (29), then
fj(q2, p1, T ) = 0 for j = −n, −n + 1, . . . ,−1 and f0(q2, p1, T ) = constant.

Proof. Consider (31) for j = −n, −n+1, i.e. d2q6
2A[f−n] = 0 and d2q6

2A[f−n+1] = 0.
Since d ̸= 0 this implies that A[f−n] = A[f−n+1] = 0 and solving it we get

(33) f−n = α−n(T − q2p1)n, and f−n+1 = α−n+1(T − q2p1)n−1,

where α−n = α−n(p1, T ) and α−n+1 = α−n+1(p1, T ) are polynomials. Now we
consider (31) for j = −n + 2, that is, q2D[f−n]+d2q6

2A[f−n+2] = 0 and using (33)
we get

f−n+2 = (α−n+2 + β−n+2)(T − q2p1)n−2,

where α−n+2 = α−n+2(p1, T ) is an integration constant and

β−n+2 =
1

6d2q4
2

β̃−n+2,

where

β̃−n+2 = 6ndq2α−n + (3d − 2)q2(2T − 3q2p1)
∂α−n

∂T
+ (4q2p1 − 3T )

∂α−n

∂p1
.

Since α−n is a polynomial, β̃−n+2 is also a polynomial. We note that β̃−n+2 is

a polynomial if and only β̃−n+2 is divisible by q4
2 . This is possible if and only if

β̃−n+2 = 0 or equivalently α−n = 0, and from (33) f−n = 0. Working with f−n+1

similarly as with f−n we obtain

f−n+3 = (α−n+3 + β−n+3)(q2p1 − T )n−3,

where α−n+3 = α−n+3(p1, T ) and

β−n+3 =
1

6d2q4
2

β̃−n+3,

where β̃−n+3 is

6(n − 1)dq2α−n+1 + (3d − 2)q2(2T − 3q2p1)
∂α−n+1

∂T
+ (4q2p1 − 3T )

∂α−n+1

∂p1
.

As in the previous case we conclude that α−n+1 = 0. Following exactly the same
steps we can prove that f−n+3 = . . . = f−3 = 0 and f−2 = (T − q2p1)2α−2, f−1 =
(T − q2p1)α−1, where again α−2 = α−2(p1, T ) and α−1 = α−1(p1, T ) are polyno-
mials.

We claim that f0(q2, p1, T ) = f0(p1, T ). To prove our claim recall that by Lemma
12 we have fj = 0 for j ≥ 1. Now the condition (31) for j = 6 becomes A[f0] = 0,
so ∂f(q2, p1, T )/∂q2 = 0, which proves our claim.

In the rest of the proof we show that f−1 = f−2 = 0 and f0 = constant. Consider
(31) for j = 0, that is q2D[f−2] =0. Since f−2 = (T −q2p1)2α−2 the above condition
takes the simplified form

D[(T − q2p1)2α−2(p1, T )] = 0.
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The general solution of this partial differential equation is

α−2(p1, T ) =
g(T − q2p1 + 3dq2p1/2)

4(T − q2p1)2
,

where g is a function of the variable T −q2p1+3dq2p1/2. Since α−2 does not depend
on q2 and d ̸= 0, we obtain that α−2 = 0. So, f−2 = 0.

Considering (31) for j = 1 we get D[(T − q2p1)α−1(p1, T )] = 0. Its general
solution is

α−1(p1, T ) =
g(T − q2p1 + 3dq2p1/2)

2(T − q2p1)
.

As before we get α−1 = 0, and consequently, f−1 = 0.

Taking into account Lemma 12 and that f−4 = . . . = f−1 = 0, the condition
(31) for j = 2 writes, after simplifying by q2,

(2 − 3d)q2
∂f0

∂T
+ 2

∂f0

∂p1
= 0.

Solving this equation and using that f0 does not depend on q2, we obtain first that
∂f0/∂T = 0, and then ∂f0/∂p1 = 0. So f0 = constant. This concludes the proof
of the lemma. �

Proposition 14. The Hamiltonian system (21) with ad ̸= 0 has no polynomial
first integrals.

Proof. It follows immediately from Lemmas 12 and 13. �

This completes the proof of statement (a) of Theorem 2.

Appendix A. Residue theorem

Theorem 15 (Residue theorem). Let f(z) be a holomorphic function everywhere
on the plane C \ {z1, . . . , zn}, where zj ∈ C, j = 1, . . . , n. Then

n∑

j=1

reszj f + res∞f = 0,

where reszj is the residue f(z) at zj and res∞ is the residue of f(z) at infinity.
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the Hénon-Heiles system, Phys. Lett. A 89 (1982), no. 3, 111–113.

[8] L.S. Hall, A theory of exact and approximate configurational invariants, Phys. D 8 (1983),
no. 1-2, 90–116.

[9] J. Hietarinta, A search for integrable two-dimensional Hamiltonian systems with polynomial

potential, Phys. Lett. A 96 (1983), 273–278.
[10] , Direct methods for the search of the second invariant, Phys. Rep. 147 (1987), 87–154.
[11] J. Llibre, A. Mahdi and C. Valls, Analytic integrability of Hamiltonian systems with homo-

geneous polynomial potential of degree 4, J. Math. Phys. 52 (2011), 012702-1–9.

[12] J. Llibre, A. Mahdi and C. Valls, Analytic integrability of the Hamiltonian systems with
homogeneous potential of degree −2, Physics Letters A 375 (2011), 1845–1849.

[13] A.J. Maciejewski and M. Przybylska, All meromorphically integrable 2D Hamiltonian systems
with homogeneous potential of degree 3, Phys. Lett. A 327 (2004), no. 5-6, 461–473.

[14] , Darboux points and integrability of Hamiltonian systems with homogeneous polyno-
mial potential, J. Math. Phys. 46 (2005), no. 6, 062901.

[15] A.J. Maciejewski, M. Przybylska and H. Yoshida, Necessary conditions for classical super-
integrability of a certain family of potentials in constant curvature spaces, J. Phys. A 43

(2010), 382001, 15 pp.
[16] K. Meyer, G.R. Hall and D. Offin, Introduction to Hamiltonian Dynamical Systems and the

N-body problem, Second Ed., Applied Math. Sci. 90, Springer, 2009.

[17] J.J. Morales Ruiz, Differential Galois theory and non-integrability of Hamiltonian systems,
Progress in Mathematics, vol. 179, Birkhäuser Verlag, Basel, 1999.
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