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Abstract. The classical Hill’s problem is a simplified version of the restricted three–body
problem where the distance of the two massive bodies (say, primary for the largest one and
secondary for the smallest) is made infinity through the use of Hill’s variables. The Levi-Civita
regularization takes the Hamiltonian of the Hill lunar problem into the form of two uncoupled
harmonic oscillators perturbed by the Coriolis force and the Sun action, polynomials of degree
4 and 6, respectively. In this paper we study periodic orbits of the planar Hill problem using
the averaging theory. Moreover we provide information about the C1 integrability or non–
integrability of the regularized Hill lunar problem.

1. Introduction and statement of the main results

In this paper we study periodic orbits of the Hill lunar problem and its C1 non-integrability.
The Hill lunar problem is a limit version of the restricted three–body problem, it is a model
originally based on the Moon’s motion under the joint action of the Earth and the Sun [4]. In
the rotating frame the Hamiltonian of Hill lunar problem is

(1) HHill(x) =
1

2
(x23 + x24) + x2x3 − x1x4 −

1√
x21 + x22

− x21 +
1

2
x22,

where x = (x1, x2, x3, x4). For more details on this Hamiltonian see [13].

To avoid the difficulties due to the collision is performed the Levi–Civita regularization as
follows. We do the change of variables in the positions given by

(2)

(
x1
x2

)
=

(
x̂1 −x̂2
x̂2 x̂1

)(
x̂1
x̂2

)
,

and the induced change in the conjugate momenta are

(3)

(
x3
x4

)
=

2

r̂2

(
x̂1 −x̂2
x̂2 x̂1

)(
x̂3
x̂4

)
,

where r̂2 = x̂21 + x̂22 = r =
√

x21 + x22. To complete the regularization procedure is necessary

to rescale the time doing dτ =
4dt

(x̂21 + x̂22)
. Applying theses changes of variables in (1), and

considering the Hamiltonian Ĥ(x̂) =
r

4
(HHill(x(x̂))+ p0), after omitting the hat of the variables

we get that the new Hamiltonian for the Hill problem becomes
(4)

H(x) =
(p0
2

) x21 + x22
2

+
1

2
(x23 +x24)+

1

2

(
x21 + x22

)
(x2x3 −x1x4)−

1

4

(
x61 − 3x41x

2
2 − 3x21x

4
2 + x62

)
.

2000 Mathematics Subject Classification. 34C05, 34A34, 34C14.
Key words and phrases. periodic orbit, averaging method, Hill lunar problem, integrability.

1

This is a preprint of: “On the periodic orbits and the integrability of the regularized Hill lunar
problem”, Jaume Llibre, Lucy Any Roberto, J. Math. Phys., vol. 52(8), 082701, 2011.
DOI: [10.1063/1.3618280]

10.1063/1.3618280


2 J. LLIBRE AND L. A. ROBERTO

where 1
2p0 = −1

2h = c, h being the value of the Hamiltonian (1). The Hamiltonian (4) is still
dependent on the parameter c which can be eliminated doing the canonical change of variables

(5) x1 = 2c1/4x̄1, x2 = 2c1/4x̄2, x3 = 2c3/4x̄3, x4 = 2c3/4x̄4,

and the Hamiltonian of the Hill problem that we shall use is
(6)

HReg =
1

4c
H(2c1/4x1, 2c

1/4x2, 2c
3/4x3, 2c

3/4x4)

=
1

2

(
x21 + x22 + x23 + x24

)
+ 2

(
x21 + x22

)
(x2x3 − x1x4)− 4

(
x61 − 3x41x

2
2 − 3x21x

4
2 + x62

)
,

where the bar has been suppressed from the variables. The Hamiltonian HReg is called the
regularized Hamiltonian of Hill lunar problem, for more details see subsection 2.2 in [16].

Notice that the Hamiltonian (6) is polynomial. This is very convenient for numerical compu-
tations. The terms of degree 2 of the polynomial Hamiltonian for the regularized Hill problem
takes the form of two uncoupled harmonic oscillators. The fourth degree terms are due to the
Coriolis force because we have changed the inertial reference frame at the center of mass to a
rotating frame centered at the secondary. The sixth degree terms are due to the action of the
primary. The Hamiltonian equations of motion become

(7)

ẋ1 = x3 + 2x2
(
x21 + x22

)
,

ẋ2 = x4 − 2x1
(
x21 + x22

)
,

ẋ3 = −x1 + 2x4
(
x21 + x22

)
+ 4

(
6x51 − 12x31x

2
2 − 6x1x

4
2

)
− 4x1(x2x3 − x1x4),

ẋ4 = −x2 − 2x3
(
x21 + x22

)
+ 4

(
−6x41x2 − 12x21x

3
2 + 6x52

)
− 4x2(x2x3 − x1x4).

As usual the dot denotes derivative with respect to the independent variable t, the time.

In this work we use the averaging method of first order to compute periodic orbits, see
appendix 4.2. This method allows to find analytically periodic orbits of the Hill lunar problem
(7) at any positive values of the energy. Roughly speaking this method reduces the problem
of finding periodic solutions of some differential system to the one of finding zeros of some
convenient finite dimensional function. This method was also used by Koslov in [8], Llibre and
Jiménez-Lara in [6, 7] and LIibre and Roberto in [9].

The following theorem is the main result.

Theorem 1. At every positive energy level the regularized Hill lunar problem has at least two
periodic orbits.

The periodic orbits for Hill lunar problem was also studied by Maciejewski and Rybicki in [10].
They described global bifurcations of non-stationary periodic orbits of the regularized Hill lunar
problem which emanate from stationary ones. The symmetric periodic orbits of this problem
were studied by Henon in [3] and Howison and Meyer in [5] established the existence of a new
family of periodic solutions for the spatial Hill’s lunar problem.

Theorem 1 states that at any positive energy level there exist at least two periodic orbits
and we can use these particular periodic orbits to prove our second main result about the C1

integrability or non–integrability in the sense of Liouville–Arnold of the regularized Hill lunar
problem.

Theorem 2. The regularized Hill lunar problem (7) is

(a) either Liouville–Arnold integrable and the gradients of the two constants of motion are
linearly dependent on some points of the periodic orbits found in Theorem 1,

(b) or it is not Liouville–Arnold integrable with any second first integral of class C1.
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The proof of Theorem 2 is based on a result of Poincaré that allows to prove the Liouville–
Arnold non-integrability independently of the class of differentiability of the second first integral,
see appendix 4.1. The main difficulty for applying Poincaré’s non–integrability method to a given
Hamiltonian system is to find for such system periodic orbits having multipliers different from
1.

The non-integrability of Hill lunar problem was studied by some authors. Winterberg and
Meletlidou in [11] and [12] proved the analytic non–integrability of the Hill lunar problem, that is,
the problem does not possess a second analytic integral of motion, independent of H. Morales–
Ruiz, Simó and Simon in [14] presented an algebraic proof of meromorphic non–integrability.
But in our case we present some result on the C1 integrability .

In section 2 we prove Theorem 1, and Theorem 2 is proved in section 3.

2. Proof of Theorem 1

We shall use the theory averaging of first order to analyze the existence of periodic orbits for
system (7). To apply Theorem 5 we need a small parameter ε, then we rescale system (7) doing
(x1, x2, x3, x4) = (

√
εX1,

√
εX2,

√
εX3,

√
εX4) and we obtain the Hamiltonian system

(8)

Ẋ1 = X3 + 2X2ε
(
X2

1 +X2
2

)
,

Ẋ2 = X4 − 2X1ε
(
X2

1 +X2
2

)
,

Ẋ3 = −X1 + 2ε
(
3X2

1X4 − 2X1X2X3 +X2
2X4

)
+ 24ε2X1

(
X4

1 − 2X2
1X

2
2 −X4

2

)
,

Ẋ4 = −X2 − 2ε
(
X2

1X3 − 2X1X2X4 + 3X2
2X3

)
− 24ε2X2

(
X4

1 + 2X2
1X

2
2 −X4

2

)
,

with the Hamiltonian
(9)
1

2

(
X2

1 +X2
2 +X2

3 +X2
4

)
−2ε

(
X2

1 +X2
2

)
(X1X4−X2X3)−4ε2

(
X2

1 +X2
2

) (
X4

1 − 4X2
1X

2
2 +X4

2

)
.

Notice that system (8) has the same phase portrait that system (7) for all ε 6= 0.

Another change of variables is done because system (8) is not in the normal form (19) for
applying the averaging theory. We do the transfomation

X1 = r cos θ, X2 = ρ cos(θ + α), X3 = r sin θ, X4 = ρ sin(θ + α).

Recall that this is a change of variables when r > 0 and ρ > 0. Moreover doing this change of
variables appear in the system the periodic variables θ and α. Later on the variable θ will be
used for obtaining the periodicity necessary for applying the averaging theory.

With this change of variables we obtain the equations of motion
(10)

ṙ = ερ
(
cosα(cos 2θ(r2 + ρ2 cos 2α) + r2 + ρ2)− sinα sin 2θ(−2r2 + ρ2 cos 2α+ ρ2)

)
+

24ε2r sin θ cos θ
(
r4 cos4 θ − 2r2ρ2 cos2 θ cos2(α+ θ)− ρ4 cos4(α+ θ)

)
,

θ̇ = −1 + ερr sinα
(
3r2 cos 2θ + 3r2 + ρ2 cos 2(α+ θ) + ρ2

)
+

24ε2 cos2 θ
(
r4 cos4 θ − 2r2ρ2 cos2 θ cos2(α+ θ)− ρ4 cos4(α+ θ)

)
,

ρ̇ = −1
2εr

(
r2 cos(α− 2θ) + 2(r2 + ρ2) cosα+ (r2 − ρ2) cos(α+ 2θ) + 3ρ2 cos(3α + 2θ)

)
+

24ε2ρ sin(α+ θ) cos(α + θ)
(
−r4 cos4 θ − 2r2ρ2 cos2 θ cos2(α+ θ) + ρ4 cos4(α + θ)

)
,

α̇ = ε 1
rρ sinα

(
r4 +

(
3r2ρ2 − ρ4

)
cos 2(α+ θ) + r2

(
r2 − 3ρ2

)
cos 2θ − ρ4

)
−

24ε2
(
r4 cos6 θ + r2(r2 − 2ρ2) cos4 θ cos2(α+ θ)− ρ2(ρ2 − 2r2) cos2 θ cos4(α+ θ)−

ρ4 cos6(α+ θ)
)
.
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This change of variables is not canonical, so the system lost the Hamiltonian structure. In these
news variables Hamiltonian (9) becomes into the first integral
(11)
H = 1

2(r
2 + ρ2)− εrρ sinα

(
r2 cos 2θ + r2 + ρ2 cos 2(α + θ) + ρ2

)
−

4ε2
(
r2 cos2 θ + ρ2 cos2(α+ θ)

) (
r4 cos4 θ − 4r2ρ2 cos2 θ cos2(α+ θ) + ρ4 cos4(α+ θ)

)
.

However the derivatives of the left hand side of equations (10) are with respect to the time
variable t, which is not periodic. So we change to the variable θ as the new independent one,
and we denote by a prime the derivative with respect to θ. Moreover we write the system as a
Taylor series in powers of ε and obtain
(12)
r′ = ε

(
ρ sinα sin 2θ(−2r2 + ρ2 cos 2α+ ρ2)− ρ cosα(cos 2θ(r2 + ρ2 cos 2α) + r2 + ρ2)

)
+O(ε2),

ρ′ = 1
2εr

(
r2 cos(α− 2θ) + 2(r2 + ρ2) cosα+ (r2 − ρ2) cos(α+ 2θ) + 3ρ2 cos(3α + 2θ)

)
+O(ε2),

α′ = ε 1
rρ sinα

(
−r4 + (ρ4 − 3r2ρ2) cos 2(α+ θ)− r2(r2 − 3ρ2) cos 2θ + ρ4

)
+O(ε2).

Now system (12) is 2π−periodic in the variable θ.

We shall apply Theorem 5 in the Hamiltonian level H = h for h > 0, H given by (11). Solving
H = h for ρ = ρ0 + ερ1 +O(ε2) we have
(13)

ρ =
√

2h− r2+ε(2hr sinα cos 2(α+θ)+2hr sinα+r3 sinα cos 2θ−r3 sinα cos 2(α+θ))+O(ε2).

Substituting ρ in equation (12) and developing in power series of ε we have just two differential
equations
(14)

r′ = −1
2ε
√
2h− r2

(
8h cosα cos2(α+ θ) + 2r2 sinα(sin 2(α+ θ) + 3 sin 2θ)

)
+O(ε2),

α′ = 2ε
r
√
2h−r2

sinα((2h2 − 5hr2 + 2r4) cos 2(α + θ) + r2(3h− 2r2) cos 2θ + 2h(h − r2)) +O(ε2).

Now system (14) satisfies all assumptions of Theorem 5 and it is in the normal form (19). We
define the function

(15)

f1(r, α) = (f11, f12)

=
1

2π

∫ 2π

0

(
F11, F12

)
dθ

=

(
−2h

√
2h− r2 cosα,

4h(h − r2) sinα

r
√
2h− r2

)
,

where

F11 = −1

2

√
2h− r2

(
8h cosα cos2(α+ θ) + 2r2 sinα(sin 2(α + θ) + 3 sin 2θ)

)

and

F12 =
2

r
√
2h− r2

[
sinα

(
(2h2 − 5hr2 + 2r4) cos 2(α+ θ) + r2(3h− 2r2) cos 2θ + 2h(h − r2)

)]
.

To find the zeros of f1 first we solve f11 = 0 with respect to r. These zeros are r = ±
√
2h that

take f2 indefinite. Then, we solve f11 = 0 for α and obtain α = ±π/2. Substituting in f12 = 0

these two values of α we have the following zeros for f1: s1 = (
√
h, π/2) and s2 = (

√
h,−π/2).

Of course r = −
√
h is a zero for f2 where α = ±π/2.
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Now we shall verify at what zeros of f1 we have a non–zero Jacobian. The Jacobian of f1 is

(16) Jf1 =

∣∣∣∣∣∣∣∣

2hr cosα√
2h− r2

2h
√
2h− r2 sinα

− 8h3 sinα

r2(2h− r2)3/2
4h(h− r2) cosα

r
√
2h− r2

∣∣∣∣∣∣∣∣
,

and the Jacobian restricted at each zero s1 and s2 takes the value 16h2 > 0. In short, by
Theorem 5 the solutions s1 and s2 of f1(r, α) = 0 provide two periodic solutions of system (14),
and consequently of the Hamiltonian system (7) on the level h > 0. This completes the proof of
Theorem 1.

3. Proof of Theorem 2

We know by Theorem 1 that the regularized Hill lunar system at every positive Hamiltonian
level has at least 2 periodic solutions corresponding to solutions s1 and s2, and that their
associated Jacobians are non–zero, that is, Jf1(si) = 16h2 for i = 1, 2. So the corresponding
multipliers are not all equal to 1 (see for more details the last part of appendix 4.2). Hence,
by Theorem 4, either the regularized Hill lunar problem cannot be Liouville–Arnold integrable
with any second C1 first integral G, or this system is Liouville-Arnold integrable and the vector
gradient of H and G are linearly dependent on some points of these periodic orbits. Therefore
Theorem 2 is proved.

4. Appendix

4.1. Periodic orbits and the Liouville–Arnold integrability. We shall summarize some
facts on the Liouville–Arnold integrability of the Hamiltonian systems, and on the theory of
the periodic orbits of the differential equations, for more details see [1, 2] and the subsection
7.1.2 of [2], respectively. We present these results for Hamiltonian systems of two degrees of
freedom, because we are studying a Hamiltonian system with two degrees of freedom associated
to regularized Hill lunar problem, but these results work for an arbitrary number of degrees of
freedom.

We recall that a Hamiltonian system with Hamiltonian H of two degrees of freedom is inte-
grable in the sense of Liouville–Arnold if it has a first integral G independent with H (i.e. the
gradient vectors of H and G are independent in all the points of the phase space except perhaps
in a set of zero Lebesgue measure), and in involution with H (i.e. the parenthesis of Poisson of
H and G is zero). For Hamiltonian systems with two degrees of freedom the involution condition
is redundant, because the fact that G is a first integral of the Hamiltonian system, implies that
the mentioned Poisson parenthesis is always zero. A flow defined on a subspace of the phase
space is complete if its solutions are defined for all time.

Now we shall state the Liouville–Arnold Theorem restricted to Hamiltonian systems of two
degrees of freedom.

Theorem 3. Suppose that a Hamiltonian system with two degrees of freedom defined on the
phase space M has its Hamiltonian H and the function G as two independent first integrals in
involution. If Ihc = {p ∈ M : H(p) = h and C(p) = c} 6= ∅ and (h, c) is a regular value of the
map (H,G), then the following statements hold.

(a) Ihc is a two dimensional submanifold of M invariant under the flow of the Hamiltonian
system.
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(b) If the flow on a connected component I∗hc of Ihc is complete, then I∗hc is diffeomorphic
either to the torus S1×S1, or to the cylinder S1×R, or to the plane R2. If I∗hc is compact,
then the flow on it is always complete and I∗hc ≈ S1 × S1.

(c) Under the hypothesis (b) the flow on I∗hc is conjugated to a linear flow on S1 × S1, on
S1 × R, or on R2.

The main result of this theorem is that the connected components of the invariant sets as-
sociated with the two independent first integrals in involution are generically submanifolds of
the phase space, and if the flow on them is complete then they are diffeomorphic to a torus, a
cylinder or a plane, where the flow is conjugated to a linear one.

Using the notation of Theorem 3 when a connected component I∗hc is diffeomorphic to a
torus, either all orbits on this torus are periodic if the rotation number associated to this torus
is rational, or they are quasi-periodic (i.e. every orbit is dense in the torus) if the rotation
number associated to this torus is not rational.

We consider the autonomous differential system

(17) ẋ = f(x),

where f : U → Rn is C2, U is an open subset of Rn and the dot denotes the derivative respect
to the time t. We write its general solution as φ(t, x0) with φ(0, x0) = x0 ∈ U and t belonging
to its maximal interval of definition.

We say that φ(t, x0) is T -periodic with T > 0 if and only if φ(T, x0) = x0 and φ(t, x0) 6= x0
for t ∈ (0, T ). The periodic orbit associated to the periodic solution φ(t, x0) is γ = {φ(t, x0), t ∈
[0, T ]}. The variational equation associated to the T -periodic solution φ(t, x0) is

(18) Ṁ =

(
∂f(x)

∂x

∣∣∣
x=φ(t,x0)

)
M,

where M is an n × n matrix. The monodromy matrix associated to the T -periodic solution
φ(t, x0) is the solution M(T, x0) of (18) satisfying that M(0, x0) is the identity matrix. The
eigenvalues λ of the monodromy matrix associated to the periodic solution φ(t, x0) are called
the multipliers of the periodic orbit.

For an autonomous differential system, one of the multipliers is always 1, and its corresponding
eigenvector is tangent to the periodic orbit.

A periodic orbit of an autonomous Hamiltonian system always has two multipliers equal to
one. One multiplier is 1 because the Hamiltonian system is autonomous, and another is 1 due
to the existence of the first integral given by the Hamiltonian.

Theorem 4. If a Hamiltonian system with two degrees of freedom and Hamiltonian H is
Liouville–Arnold integrable, and G is a second first integral such that the gradients of H and G
are linearly independent at each point of a periodic orbit of the system, then all the multipliers
of this periodic orbit are equal to 1.

Theorem 4 is due to Poincaré [15]. It gives us a tool to study the non Liouville–Arnold
integrability, independently of the class of differentiability of the second first integral. The main
problem for applying this theorem is to find periodic orbits having multipliers different from 1.

4.2. Averaging Theory of First Order. Now we shall present the basic results from averaging
theory that we need for proving the results of this paper.

The next theorem provides a first order approximation for the periodic solutions of a periodic
differential system, for the proof see Theorems 11.5 and 11.6 of Verhulst [17].
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Consider the differential equation

(19) ẋ = εF1(t,x) + ε2F2(t,x, ε), x(0) = x0

with x ∈ D ⊂ Rn, t ≥ 0. Moreover we assume that both F1(t,x) and F2(t,x, ε) are T−periodic
in t. Separately we consider in D the averaged differential equation

(20) ẏ = εf1(y), y(0) = x0,

where

f1(y) =
1

T

∫ T

0
F1(t,y)dt.

Under certain conditions, equilibrium solutions of the averaged equation turn out to correspond
with T−periodic solutions of equation (19).

Theorem 5. Consider the two initial value problems (19) and (20). Suppose:

(i) F1, its Jacobian ∂F1/∂x, its Hessian ∂2F1/∂x
2, F2 and its Jacobian ∂F2/∂x are defined,

continuous and bounded by a constant independent of ε in [0,∞) ×D and ε ∈ (0, ε0].
(ii) F1 and F2 are T−periodic in t (T independent of ε).
(iii) y(t) belongs to Ω on the interval of time [0, 1/ε].

Then the following statements hold.

(a) For t ∈ [1, ε] we have that x(t)− y(t) = O(ε), as ε → 0.
(b) If p is a singular point of the averaged equation (20) and

det

(
∂f1
∂y

)∣∣∣∣
y=p

6= 0,

then there exists a T−periodic solution ϕ(t, ε) of equation (19) which is close to p such
that ϕ(0, ε) → p as ε → 0.

(c) The stability or instability of the limit cycle ϕ(t, ε) is given by the stability or instability
of the singular point p of the averaged system (20). In fact, the singular point p has the
stability behavior of the Poincaré map associated to the limit cycle ϕ(t, ε).

In the follow we use the idea of the proof of Theorem 5(c). For more details see the section
6.3 and 11.8 of [17]. Suppose that ϕ(t, ε) is a periodic solution of (19) corresponding to y = p a
singular point of the averaged equation (20). We linearise equation (19) in a neighbourhood of
the periodic solution ϕ(t, ε) and obtain a linear equation with T−periodic coefficients

(21) ẋ = εA(T, ε)x,

with A(t, ε) =
∂

∂x
[F1(t, x) + εF2(t, x, ε)]x=ϕ(t,ε) .

We introduce the T−periodic matrix

B(t) =
∂F1

∂x
(t, p).

From Theorem 5 we have limε→0A(t, ε) = B(t). We shall use the matrices

B1 =
1

T

∫ T

0
B(t)dt

and

C(t) =

∫ t

0
[B(s)−B1] ds.
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Note that B1 is the matrix of the linearized averaged equation. The matrix C(t) is T–periodic
and it has average zero. The near-identity transformation

(22) x 7→ y = (I − εC(t))x

writes equation (21) as

(23) ẏ = εB1y + ε(A(t, ε) −B(t))y +O(ε2).

We note that A(t, ε)−B(t) → 0 as ε → 0, and also that the characteristic exponents of equation
(23) depend continuously on the small parameter ε. It follows that, for ε sufficiently small, if
the determinant of B1 is not zero, then 0 is not an eigenvalue of the matrix B1 and then it is not
a characteristic exponent of (23). By the near-identity transformation we obtain that system
(21) has not multipliers equal to 1.
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