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Abstract. We characterize the Lefschetz periodic point free self–
continuous maps on the following connected compact manifolds: CPn

the n–dimensional complex projective space, HPn the n–dimensional
quaternion projective space, Sn the n–dimensional sphere and Sp ×
Sq the product space of the p–dimensional with the q–dimensional
spheres.

1. Introduction and statement of the main results

We consider the discrete dynamical system (M, f) where M is a topo-
logical space and f : M → M be a continuous map. A point x is called
fixed if f(x) = x, and periodic of period k if fk(x) = x and f i(x) 6= x
if 0 < i < k. By Per(f) we denote the set of periods of all the periodic
points of f .

If x ∈ M the set {x, f(x), f 2(x), . . . , fn(x), . . .} is called the orbit of
the point x. Here fn means the composition of n times f with itself.
To study the dynamics of the map f is to study all the different kind of
orbits of f . Of course if x is a periodic point of f of period k, then its
orbit is {x, f(x), f 2(x), . . . , fk−1(x)}, and it is called a periodic orbit.

The periodic orbits play an important role in the general dynamics of
the system, for studying them we can use topological information. Per-
haps the best known example in this direction are the results contained
in the seminal paper entitle Period three implies chaos for continuous
self–maps on the interval, see [15].

Let M be a connected compact manifold. Our aim would be charac-
terize classes of continuous self–maps f on M which are periodic point
free, i.e. for which Per(f) = ∅.

There are only two 1–dimensional connected compact manifolds, the
interval and the circle. It is well known that any continuous self–map
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on the interval has fixed points, so there are no periodic point free maps
on the interval. The circle admits periodic point free maps but then the
degree of such maps must be 1, this is a necessary condition but not
sufficient in order that a continuous self–map of the circle be periodic
point free, see for definitions and details [1].

There are several papers studying different classes of periodic point
free self–maps on the annulus see [10, 12], or on the 2–dimensional torus
see [3, 11, 14], . . . But in general to characterize the periodic point free
maps on a connected compact manifold M is a very hard problem. Here
we will consider a more easier problem, and then we will get results for
continuous self–maps on some connected compact manifolds of arbitrary
dimension. First we need to introduce some definitions.

Probably the main contribution of the Lefschetz’s work in 1920’s was to
link the homology class of a given map with an earlier work on the indices
of Brouwer on the continuous self–maps on compact manifolds. These
two notions provide equivalent definitions for the Lefschetz numbers, and
from their comparison, can be obtained information about the existence
of fixed points.

Let M be an n–dimensional manifold. We denote by Hk(M,Q) for
k = 0, 1, ..., n the homological groups with coefficients in Q. Each of these
groups is a finite dimensional linear space over Q. Given a continuous
map f :M→M there exist n+1 induced linear maps f∗k : Hk(M,Q) →
Hk(M,Q) for k = 0, 1, . . . , n by f . Every linear map f∗k is given by
an nk × nk matrix with integer entries, where nk is the dimension of
Hk(M,Q).

Given a continuous map f : M → M on a compact n–dimensional
manifold M, its Lefschetz number L(f) is defined as

(1) L(f) =
n∑

k=0

(−1)ktrace(f∗k).

One of the main results connecting the algebraic topology with the fixed
point theory is the Lefschetz Fixed Point Theorem which establishes the
existence of a fixed point if L(f) 6= 0, see for instance [4]. We can
consider the Lefschetz number of fm but, in general, it is not true that
L(fm) 6= 0 implies that f has a periodic point of period m; it only implies
the existence of a periodic point with period a divisor of m.

Clearly a necessary condition in order that a map be periodic point free
is that all Lefschetz numbers L(fm) be zero for m = 1, 2, 3, . . . This is the
case of the continuous self–maps of the circle with degree 1, because the
Lefschetz number of a continuous self–map of the circle with degree d is
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1−d, and all the iterates fm of f have degree 1 if f is of degree 1, for more
details see again [1]. Then we define that a continuous self–map f on
the compact manifold M is Lefschetz periodic point free if L(fm) = 0 for
m = 1, 2, 3, . . . For additional information about the sequence {L(fm)}
see [2].

As far as we know the unique class of continuous self–maps for which
have been characterized the ones which are Lefschetz periodic point free
are: The continuous self–maps on the n–dimensional torus are Lefschetz
periodic point free if and only if 1 is an eigenvalue of the induced homology
homomorphism f∗1, see for instance [13].

Our objective will be to characterize some classes of continuous self–
maps on connected compact manifolds which be Lefschetz periodic point
free, but recall that this does not imply that they are periodic point free.
As we have seen this is a necessary condition but not sufficient as it is
shown by the continuous self–maps on the circle of degree 1, see [1]. If
we restrict our attention to the class of Morse–Smale diffeomorphisms
on the 2–dimensional sphere and on the n–dimensional torus we have
characterize the ones which are Lefschetz periodic point free, see [7, 8, 9].

Our main results are the following.

Theorem 1. Let f be a continuous self–map on CPn, the n–dimensional
complex projective space, such that f∗2 = (a). Then f is Lefschetz peri-
odic point free if and only if a = 0.

Of course the notation f∗2 = (a) means the action by the 1 × 1
matrix (a), that is, just multiplication by a in the homological group
H2(CPn,Q) ≈ Q.
Theorem 2. Let f be a continuous self–map on HPn, the n–dimensional
quaternion projective space, such that f∗4 = (a). Then f is Lefschetz
periodic point free if and only if a = 0.

Theorems 1 and 2 are proved in section 3

Theorem 3. Let f be a continuous self–map on Sn, the n–dimensional
sphere, such that f∗n = (d), i.e. d is the degree of f . Then f is Lefschetz
periodic point free if and only if n is odd and d = 1.

Theorem 4. Let f be a continuous self–map on Sp × Sq with 1 ≤ p < q,
and let f∗p = (a), f∗q = (b) and f∗p+q = (c) be. Then f is Lefschetz
periodic point free if and only if one of the following conditions holds:

(i) p odd, q odd, a = 1 and b = c;
(ii) p odd, q odd, a = c and b = 1;
(iii) p even, q odd, a = c and b = 1;
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(iv) p even, q odd, a = b and c = 1;
(v) p odd, q even, a = 1 and b = c;
(vi) p odd, q even, a = b and c = 1.

Theorem 5. For p ≥ 1 let f be a continuous self–map on Sp × Sp of

degree e, and let f∗p =
(

a b
c d

)
. Then f is Lefschetz periodic point free

if and only if p is odd, a+ d = 1 + e and ad− bc = e.

Theorems 3, 4 and 5 are proved in section 4.
Consider the family F of all self-maps f of a given compact manifold

with given maps induced in homology groups by iterates of f . Suppose
that all Lefschetz numbers are 0, or equivalently Zf (t) ≡ 1. Does that
mean that there is a map from F with no periodic point? As it was
mentioned before for a continuous self–maps f of Tn it is well known
that the Lefschetz numbers L(f r) are zero for r = 1, 2, . . . if and only if
1 is an eigenvalue of f∗1. For the continuous self-maps of the circle T1 of
degree 1, denoted simply as circle maps in what follows, all possible sets
of periods have been characterized, see for instance the chapter 3 of the
reference [1]. There are circle maps without periodic points, there are
circle maps with periodic points of any period, and ... Using these circle
maps identical set of periods to those of the circle maps can be obtained
easily for continuous self–maps of Tn such that 1 is an eigenvalue of
f∗1. These families of maps show that when a map has all its Lefschetz
numbers L(f r) zero almost anything can occurs with its set of periods.

On the other hand the previous question seems very hard. We think
that it is possible that if for a continuous self-map f of a compact man-
ifold M its Lefschetz numbers L(f r) are zero for r = 1, 2, . . ., then there
exists a continuous self-map g of a compact manifold N with the same
homology spaces than M (i.e. Hk(M,Q) ≈ Hk(N,Q) for all k) and hav-
ing g the same induced homology endomorphims than f (i.e. g∗k = f∗k
for all k) such that g is periodic point free. But for the moment we do
not have a clear idea for proving or disproving this.

In section 2 we recall some basic results on the Lefschetz zeta function
that we shall use in the proof of our main results.

2. The Lefschetz zeta function

The Lefschetz zeta function Zf (t) will simplify the study of the periodic
points of f , and in particular it also facilitates to determine when f is
Lefschetz periodic point free. The function Zf (t) is a generating function
for all the Lefschetz numbers of all iterates of f . More precisely the
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Lefschetz zeta function of f is defined as

(2) Zf (t) = exp

(∑

m≥1

L(fm)

m
tm

)
.

This function keeps the information of the Lefschetz number for all the
iterates of f , so this function gives information about the set of periods
of f . There is the following alternative way to compute it

(3) Zf (t) =
n∏

k=0

det(Idk − tf∗k)
(−1)k+1

,

where n = dimM and Idk is the identity map of Hk(M,Q), and by
convention det(Idk − tf∗k) = 1 if nk = 0, for more details see [6]. Note
that from (3) the Lefschetz zeta function is a rational function.

From the definition of Lefschetz zeta function follows immediately that
f is Lefschetz periodic point free if and only if its Lefschetz zeta function
Zf (t) ≡ 1. We shall use this fact as a key point for proving our results.

3. Proof of Theorems 1 and 2

Proof of Theorem 1. Assume that we are under the assumptions of The-
orem 1.

For n ≥ 1 let f : CP n → CP n be a continuous map. The homological
groups of CP n over Q are of the form

Hq(CP n,Q) =

{
Q if q ∈ {0, 2, 4, ..., 2n},
0 otherwise.

The induced linear maps are f∗q = (aq/2) for q ∈ {0, 2, 4, ..., 2n} with
a ∈ Z, and f∗q = (0) otherwise (see for more details [17, Corollary
5.28]). We recall that since we work with connected manifolds always
H0(M,Q) = Q and f∗0 = (1).

From (3) the Lefschetz zeta function of f has the form

(4) Zf (t) =

(∏

q

(1− aq/2t)

)−1

,

where q runs over {0, 2, 4, ..., 2n}.
By section 2 the map f is Lefschetz periodic point free if and only if

Zf (t) ≡ 1. From (4) Zf (t) ≡ 1 if and only if a = 0. So the theorem is
proved. ¤
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Proof of Theorem 2. Assume that we are under the assumptions of The-
orem 2.

For n ≥ 1 let f : HP n → HP n be a continuous map. The homological
groups of HP n over Q are of the form

Hq(HP n,Q) =

{
Q if q ∈ {0, 4, 8, ..., 4n},
0 otherwise.

The induced linear maps are f∗q = (aq/4) for q ∈ {0, 4, 8, ..., 4n} with
a ∈ Z, and f∗q = (0) otherwise (see for more details [17, Corollary 5.33]).

The rest of the proof can be made using the same arguments than in
the proof of Theorem 1. ¤

4. Proof of Theorems 3, 4 and 5

Proof of Theorem 3. Assume that we are under the assumptions of The-
orem 3.

Let f : Sn → Sn be a continuous map. The homological groups of Sn
over Q are of the form

Hq(Sn,Q) =

{
Q if q ∈ {0, n},
0 otherwise.

The induced linear maps are f∗0 = (1) and f∗n = (d), where d is the
degree of the map f and f∗i = 0 for i ∈ {1, ..., n−1} (see for more details
[16]).

From (3) we have that

Zf (t) =
(1− dt)(−1)n+1

1− t
=





1− dt

1− t
if n is odd,

1

(1− t)(1− dt)
6= 1 if n is even.

So clearly Zf (t) ≡ 1 if and only if n is odd and d = 1. This completes
the proof of the theorem. ¤

Proof of Theorem 4. Assume that we are under the assumptions of The-
orem 4.

For 1 ≤ p < q, let f : Sp × Sq → Sp × Sq be a continuous map. The
homological groups of Sp × Sq over Q are of the form

Hq(Sp × Sq,Q) =
{
Q if q ∈ {0, p, q, p+ q},
0 otherwise.
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The induced linear maps are f∗0 = (1), f∗p = (a), f∗q = (b) with a, b ∈ Z,
f∗p+q = (c), where c is the degree of the map f and f∗i = (0) for i ∈
{1, ..., p+ q} and i 6= p, q, p+ q (see for more details [5]).

From (3) the Lefschetz zeta function of f is of the form

(5) Zf (t) =
(1− at)(−1)p+1

(1− bt)(−1)q+1
(1− ct)(−1)p+q+1

1− t
.

Now we consider four cases.
Case 1: p and q even. Then

(6) Zf (t) =
1

(1− t)(1− at)(1− bt)(1− ct)
6= 1.

Case 2: p and q odd. Then

(7) Zf (t) =
(1− at)(1− bt)

(1− t)(1− ct)
.

Therefore Zf (t) ≡ 1 if and only if either a = 1 and b = c, or a = c and
b = 1.
Case 3: p even and q odd.

(8) Zf (t) =
(1− bt)(1− ct)

(1− t)(1− at)
.

So Zf (t) ≡ 1 if and only if either b = 1 and a = c, or a = b and c = 1.
Case 4: p odd and q even.

(9) Zf (t) =
(1− at)(1− ct)

(1− t)(1− bt)
.

Hence Zf (t) ≡ 1 if and only if either a = 1 and b = c, or a = b and c = 1.
From the expressions (6) to (9) if follows easily the proof of the theo-

rem. ¤
Proof of Theorem 5. Assume that we are under the assumptions of The-
orem 5.

Let f : Sp × Sp → Sp × Sp be a continuous map. The homological
groups of Sp × Sp over Q are of the form

Hq(Sp × Sp,Q) =





Q if q ∈ {0, 2p},
Q⊕Q if q = p,

0 otherwise.

The induced linear maps are f∗0 = (1), f∗p =
(

a b

c d

)
with a, b, c, d ∈ Z,

f∗2p = (e) where e is the degree of the map f , and f∗i = (0) for i ∈
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{1, ..., 2p}, i 6= 1, p, 2p (see for more details [5]). From (3) the Lefschetz
zeta function of f is

(10) Zf (t) =
(1− (a+ d)t+ (ad− bc)t2)(−1)p+1

(1− t)(1− et)
.

Clearly if p is even then Zf (t) 6≡ 1, and if p is odd then Zf (t) ≡ 1 if
and only if a + d = 1 + e and ad − bc = e. Therefore the theorem is
proved. ¤
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