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Optimal discrimination of quantum states with a fixed rate of inconclusive outcomes
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2Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065, USA

(Received 20 June 2012; published 15 October 2012)

We present the solution to the problem of optimally discriminating among quantum states, i.e., identifying
the states with maximum probability of success when a certain fixed rate of inconclusive answers is allowed.
By varying the inconclusive rate, the scheme optimally interpolates between unambiguous and minimum error
discrimination, the two standard approaches to quantum state discrimination. We introduce a very general method
that enables us to obtain the solution in a wide range of cases and give a complete characterization of the minimum
discrimination error as a function of the rate of inconclusive answers. A critical value of this rate is identified
that coincides with the minimum failure probability in the cases where unambiguous discrimination is possible
and provides a natural generalization of it when states cannot be unambiguously discriminated. The method
is illustrated on two explicit examples: discrimination of two pure states with arbitrary prior probabilities and
discrimination of trine states.
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State discrimination has long been recognized to play a
central role in quantum information and quantum computing.
In these fields the information is encoded in the state of
quantum systems; thus, one often needs to identify in which
of N known states {ρi}Ni=1 one such system was prepared.
If the possible states are mutually orthogonal this is an easy
task: we just set up detectors along these orthogonal directions
and determine which one clicks (assuming perfect detectors).
However, if the states are not mutually orthogonal the problem
is highly nontrivial and optimization with respect to some
reasonable criteria leads to complex strategies often involving
generalized measurements. Finding such optimal strategies is
the subject of state discrimination.

The two fundamental state discrimination strategies are
discrimination with minimum error (ME) and unambiguous
discrimination (UD). In ME, every time a system is given and
a measurement is performed on it a conclusion must be drawn
about its state. Accordingly, the measurement is described
by an N -element positive operator valued measure (POVM)
� = {�i}Ni=1, where each element represents a conclusive
outcome. Errors are permitted and in the optimal strategy
the probability of making an error is minimized [1]. In
UD, no errors are tolerated but at the expense of permitting
an inconclusive measurement outcome, represented by the
positive operator �0. Hence, the corresponding POVM is � =
{�i}Ni=0. When �0 clicks we do not learn anything about the
state of the system and in the optimal strategy the probability
of the inconclusive outcome is minimized [2]. It has been
recognized that states can be discriminated unambiguously
only if they are linearly independent [3]. Discrimination with
maximum confidence (MC) can be applied to states that are
not necessarily independent and for linearly independent states
it reduces to unambiguous discrimination [4,5], so the MC
scheme can be regarded as a generalized UD strategy.

It is clear that UD (or MC for linearly dependent states) and
ME are the two extremes of a more general scheme that can be
approached by relaxing the conditions at either end. That is,
we may reduce the optimal error rate in the ME approach by
allowing a certain fixed rate Q of inconclusive outcomes [6–9],

or, starting from UD, allow some fixed rate Pe of errors to occur
[10–12] and hence reduce Q. The first approach yields the
minimal error rate as a function of the given inconclusive rate
P min

e (Q), while the second yields the minimum Q as a function
of the given error rate Qmin(Pe). Since the two expressions
are the result of optimizations with different conditions, it is
not immediately obvious, yet true, that one is the inverse of
the other [13]. Notice that these general scenarios encompass
many practical situations, where resources are scarce and one
can only afford a limited rate of inconclusive outcomes, or
where the error rate must be kept below a certain level but
need not be strictly vanishing.

The function P min
e (Q) has never been solved in full

generality. Analytical solutions have been provided for two
pure states with equal occurrence probabilities, otherwise
only useful bounds have been established [6–9]. The second
approach has recently been solved for the case of two pure
states with arbitrary occurrence probabilities [12], but it is
not obvious whether the method can be extended to other
cases involving, e.g., mixed states, more than two states, etc.
Furthermore the connection with the first approach remains
unnoticed, and the connection with the MC scheme has only
been briefly discussed previously [5,14].

Here we state some fundamental features of the optimal
discrimination with fixed rate of inconclusive outcome (FRIO)
scheme, in particular of the function P min

e (Q), and show its
links to the other schemes discussed above. We thus give
a complete unified picture of quantum state discrimination.
Most importantly, we present a very general method to obtain
P min

e (Q) and give explicit solutions for some cases. This in turn
provides also the solution, Qmin(Pe), to the second approach.

The idea is to first introduce a suitable transformation which
formally eliminates the inconclusive part of the problem and
reduces it to a ME problem. Since the optimal solution to
the ME problem is known for many special cases, we can
immediately adopt it as our starting point. This formal solution
still depends on free parameters of the transformation. In the
next step we carry out a second optimization with respect to
these free parameters which then yields the complete solution.
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For clarity’s sake, we will introduce FRIO discrimination
on the case of two states, ρ1 and ρ2, with general a
priori probabilities η1 and η2 such that η1 + η2 = 1. The
generalization to more than two states is straightforward.
We introduce a three element POVM � = {�0,�1,�2}, with
�1 + �2 + �0 = I, where �1(2) identifies ρ1(2), while �0

corresponds to the inconclusive outcome. The average success,
error, and inconclusive probabilities are

Ps = tr (η1ρ1�1) + tr (η2ρ2�2), (1)

Pe = tr (η1ρ1�2) + tr (η2ρ2�1), (2)

Q = tr (ρ�0), (3)

where ρ ≡ η1ρ1 + η2ρ2, and we assume a fixed Q. Clearly
we have Ps + Pe + Q = 1. The optimal strategy minimizes
Pe under the constraint that Q is fixed, yielding P min

e (Q).
It follows from the above definitions that P min

e (Q) is a
convex function. To show this, let us assume that �′ (�′′) is the
optimal POVM for a rate Q′ (Q′′) of inconclusive outcomes.
Then, the mixed strategy that consists in performing the
measurement �′ (�′′) with probability p (p̄ = 1 − p), i.e., the
measurement strategy given by the POVM p�′ + p̄ �′′, has
an error probability pP min

e (Q′) + p̄P min
e (Q′′) for a rate Q =

p Q′ + p̄ Q′′ of inconclusive outcomes. Since p� + p̄ �′ is
not necessarily optimal for Q, we have the convexity inequality

P min
e (Q = p Q′ + p̄ Q′′) � pP min

e (Q′) + p̄P min
e (Q′′). (4)

Convexity implies the following useful properties [15]:
(i) P min(Q) is continuous in (0,1]; (ii) P min(Q) is differ-
entiable in (0,1) except, at most, at countably many points;
(iii) left and right derivatives exist, they satisfy (P min

e )′(Q−) �
(P min

e )′(Q+), and are monotonically nondecreasing functions
of Q; and (iv) since P min

e (Q) � 0 and P min
e (1) = 0, we have

that (P min
e )′(Q±) � 0 and P min

e (Q) is nonincreasing.
Because of these properties, there must exist a critical rate

Qc such that for Qc � Q � 1 the right derivative (P min
e )′(Q+)

is constant and takes its maximum value −α ≡ (P min
e )′(Qc+).

Hence,

P min
e (Q) = α(1 − Q), Qc � Q � 1. (5)

Note that P min
e (Q)/(1 − Q) is the error probability conditioned

on obtaining a conclusive answer. Equation (5) states that this
conditioned probability becomes a constant for inconclusive
rates larger than Qc. The quantity ᾱ ≡ 1 − α can be interpreted
as a confidence C. Indeed, for symmetric states, such as those
in our second example below, ᾱ is the maximum confidence
and Qc coincides with the minimum rate of inconclusive
outcome in the MC scheme: Qc = QMC [5]. Note that when
the states can be unambiguously discriminated, as in the case
of two pure states, we have α = 0 (C = ᾱ = 1); Qc is equal
to the optimal inconclusive (or failure) probability in the UD
scheme: Qc = QUD; and P min

e (Q) = 0 for Qc � Q � 1.
To obtain optimal FRIO measurement strategies, it suffices

to find optimal POVMs in the region of Q where P min
e (Q) is

strictly convex. Outside this region, the proof given above
shows that the best measurements will be trivial convex
combinations of those optimal POVMs, i.e., mixed strategies.
This provides an important simplification to our optimization
problem (see examples below) through the following theorem:

Theorem. At values of Q such that P min
e (Q) is strictly

convex (i.e., where optimal strategies are pure), the element
�0 of the optimal POVM necessarily has a zero eigenvalue.

This is so because if all the eigenvalues of �0 were
nonzero, it could be written as �0 = p̄ �′

0 + pI for some
values of p, 0 < p < 1, and some non-negative operator �′

0.
Note that � = p̄ �′ + p�′′, where �′ = {�′

0,p̄
−1�1(2)} and

�′′ = {I,0,0} are proper POVMs (the latter is the trivial
strategy with no conclusive outcomes). Thus, � would define
a mixed rather than a pure strategy and P min

e (Q) would not be
strictly convex.

We next show how to transform the problem of finding
the optimal FRIO strategy to a minimum error problem with
no inconclusive outcome. The starting point is to write �1 +
�2 = I − �0 ≡ �. Multiplying both sides of this equation by
�−1/2 we have �̃1 + �̃2 = I, where

�̃i = �−1/2�i �
−1/2 � 0. (6)

So {�̃1,�̃2} is a POVM. Note that �−1/2 exists unless �0

has a unit eigenvalue, in which case we address the problem
differently (see later). Defining the normalized transformed
states ρ̃i and a priori probabilities η̃i as

ρ̃i = �1/2ρi�
1/2

tr (�ρi)
, η̃i = ηi tr (�ρi)

Q̄
, (7)

where Q̄ ≡ 1 − Q, the success and error probabilities Ps(e) =
Q̄P̃s(e) become

P̃e = tr (η̃1ρ̃1�̃2) + tr (η̃2ρ̃2�̃1), (8)

and P̃s = 1 − P̃e. Equation (8) and �̃1 + �̃2 = I define a ME
discrimination problem for the transformed states and priors
given in Eq. (7). The optimal solution to this ME discrimination
problem is well known [1]: P̃ ME

e = (1 − ‖η̃2ρ̃2 − η̃1ρ̃1‖1)/2,
where ‖ · ‖1 is the trace norm.

A general formula does not exist for ME of more than two
states. Explicit solutions are known only in some particular
cases like, e.g., N symmetric states. When the ME solution
is known, one can carry out a further minimization over the
choice of �0, such that tr ρ�0 = Q, giving the desired result
P min

e (Q) = min Q̄ P̃ ME
e .

We next illustrate the method on the example of two pure
states ρ1 = |ψ1〉〈ψ1| and ρ2 = |ψ2〉〈ψ2| with general a priori
probabilities η1 and η2. Since ρ̃i = |ψ̃i〉〈ψ̃i | are also pure
states, we can use the more explicit expression

P̃ ME
e = 1

2 (1 −
√

1 − 4η̃1η̃2|〈ψ̃1|ψ̃2〉|2 ). (9)

Since two pure states can be unambiguously discriminated,
the critical probability Qc coincides with the optimal failure
probability QUD which reads [17]

Qc =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

η1 + η2 cos2 θ, if η1 <
cos2 θ

1 + cos2 θ
≡ η

(l)
1 ,

η2 + η1 cos2 θ, if η1 >
1

1 + cos2 θ
≡ η

(r)
1 ,

2
√

η1η2 cos θ ≡ Q0, if η
(l)
1 � η1 � η

(r)
1 ,

(10)
where |〈ψ1|ψ2〉| ≡ cos θ is the overlap of the states.

We now set out to find the optimal POVM that will minimize
Pe for a fixed Q in the interval 0 � Q � Qc. Because the
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Hilbert space spanned by two pure states is two dimensional
and the optimal �0 has a zero eigenvalue, it is effectively a
positive rank one operator. We denote the positive eigenvalue
by ξ , 0 � ξ � 1, the eigenstate belonging to ξ by |0〉 and the
orthogonal state by |1〉. In this basis �0 = ξ |0〉〈0|, and � =
ξ̄ |0〉〈0| + |1〉〈1|, where ξ̄ ≡ 1 − ξ . Writing the input states in
this basis, |ψi〉 = ci |0〉 + si |1〉, where ci ≡ cos θi , si ≡ sin θi ,
and obtaining the transformed states and priors from Eq. (7),
after some simplifications we get

Q̄ P̃ ME
e = 1

2 {Q̄ −
√

Q̄2 − 4η1η2(cos θ − ξc1c2)2}, (11)

where we used that θ1 − θ2 ≡ θ . It follows from Eq. (3) that

ξ = Q

η1c
2
1 + η2c

2
2

. (12)

Hence Eq. (11) depends only on one parameter, say θ1, which
determines the orientation of �0 relative to that of the two
pure states. The minimization over �0, i.e., over θ1, simplifies
considerably using Eq. (12) and defining c1 η

1/2
1 (η1c

2
1 +

η2c
2
2)−1/2 ≡ cos ϕ, and c2 η

1/2
2 (η1c

2
1 + η2c

2
2)−1/2 ≡ sin ϕ. The

resulting expression is minimum for ϕ = π/4, yielding

P
min/max
e/s = 1

2 {Q̄ ∓
√

Q̄2 − (Q0 − Q)2}, Q � Q0, (13)

where Q0 was introduced in the third line of Eq. (10). This
is the optimal error/success rate for an intermediate range of
the prior probabilities. One can invert P min

e (Q) to obtain Q

and, in turn, P max
s as function of Pe, P max

s (Pe) = [P 1/2
e + (1 −

Q0)1/2]2, in agreement with [11].
For the validity of these results, ξ � 1 must hold. This

condition determines the range of priors for which Eq. (13)
is valid. The definitions of cos ϕ and sin ϕ after Eq. (12) give√

η2c2 = √
η1c1 for ϕ = π/4. Some straightforward algebra

leads to η1c
2
1 = η2c

2
2 = η1η2 sin2 θ/(1 − Q0), and Eq. (12)

yields ξ = (1 − Q0)Q/(2η1η2 sin2 θ ). Setting ξ = 1 defines
a threshold,

Qth ≡ 2η1η2 sin2 θ/(1 − Q0). (14)

Hence ξ � 1 if Q � Qth and ξ = 1 if Q > Qth.
In Fig. 1 we plot Qc and Qth vs η1 together for a fixed

overlap, cos θ = 0.5 (θ = π/3). The two curves intersect at
η1 = η

(l)
1 and η1 = η

(r)
1 , the same points as in Eq. (10). The
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FIG. 1. (Color online) Qc (solid line) and Qth (dashed line) vs η1

for θ = π/3. The area of interest lies under the solid line. The
regions I, II, and III are defined in Eq. (10).

interval 0 � η1 � 1 is thus divided into three regions. In
regions I and III, we have Qth < Qc and the solution (13)
is valid for 0 � Q < Qth only. In region II, η

(l)
1 � η1 � η

(r)
1 ,

we have Qc = Q0 < Qth and the solution (13) is valid for the
entire 0 � Q � Qc range.

In the shaded parts of regions I and II one has Qth �
Q � Qc and, necessarily, ξ = 1. Hence, �0 = |0〉〈0| and
� = |1〉〈1| are projectors. Therefore, �−1/2 does not exist in
these areas and the case needs special consideration.

The calculation of the error probability is most easily
performed by realizing that �1 and �2 become degenerate,
both must be proportional to �d = |1〉〈1|. The three-element
POVM becomes a standard two-element projective measure-
ment, {�d = |1〉〈1|, �0 = |0〉〈0|}. We identify a click in �d

with ρ1 (ρ2) if η1 � η2 (η2 � η1), so Pe(s) = η2s
2
2 , Ps(e) =

η1s
2
1 , with Q = 1 − Pe − Ps . These equations completely

determine the solution. There is nothing to optimize here,
so we drop the superscript min in what follows. θ1 − θ2 = θ

immediately gives Q(Pe) as

Q = 1 − Pe − η1(2)

(√
Pe

η2(1)
cos θ ±

√
1 − Pe

η2(1)
sin θ

)2

.

(15)

Inverting this equation gives Pe(Q) but the resulting expression
is not particularly insightful and we will not give it here. Note
that for Pe = 0 (UD limit) one has Q = Qc, given by the first
and second lines in Eq. (10), and for Q = Qth, Pe reduces to
Eq. (13), as it should.

Let us now briefly discuss a second example with linearly
dependent states, which is interesting because such states
cannot be unambiguously discriminated. Consider the trine
qubit states |ψk〉 = cos θ |0〉 + e

2iπ
3 k sin θ |1〉, 0 � θ � π/4,

with equal prior probabilities ηk = 1/3, k = 1,2,3. Note that
2θ is the polar angle on the Bloch sphere. The set of signal
states is covariant with respect to the Abelian group of unitaries
{I,u,u2}, where u = |0〉〈0| + e

2iπ
3 |1〉〈1|. This implies that �0

can be chosen diagonal in the basis {|0〉,|1〉}. Moreover,
since an optimal pure strategy requires that �0 has a zero
eigenvalue, we must have �0 = ξ |0〉〈0| (the other possible

Α
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FIG. 2. (Color online) Trine-state minimum error P min
e (Q) (solid

line) and minimum error conditioned on obtaining a conclusive
outcome P min

e (Q)/Q̄ (dashed-dotted line). For Q � Qc, the two lines
become straight, with a slope of α = 1 − C = 1/3 (solid line) and
0 (dotted line). For the plot θ = π/10.
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choice, �0 = ξ |1〉〈1|, turns out not to be optimal). Using
Eq. (7) one easily obtains |ψ̃k〉 = cos θ̃ |0〉 + e

2iπ
3 k sin θ̃ |1〉,

with cos θ̃ = ξ̄ 1/2(ξ̄ cos 2θ + sin 2θ )−1/2 cos θ and η̃k = ηk =
1/3, i.e., the transformed states are themselves trine states with
polar angle 2θ̃ . Equation (3) gives Q = ξ cos2 θ , where we
have used that the averaged density matrix ρ for the trine states
is ρ = (1/3)

∑3
k=1 |ψk〉〈ψk|, hence ξ is determined, and we

simply have P min
e (Q) = Q̄P̃ ME

e , since no minimization over
�0 is possible. After some algebra we can rewrite cos θ̃ as
cos θ̃ = Q̄−1/2(cos2 θ − Q)1/2, and sin θ̃ = Q̄−1/2 sin θ . Sub-
stituting in P̃ ME

e = (2 − sin 2θ̃ )/3 (see, e.g., [4]) we obtain

P min
e (Q) = 2

3 (Q̄ − sin θ
√

cos2 θ − Q), Q � Qc. (16)

To calculate Qc we insert Q = Qc in Eq. (5). For the case
at hand it reads P min(Qc) = (Qc − 1)(P min

e )′(Qc), where we
have used that P min

e (Q), defined in Eq. (16), is differentiable.
The solution is Qc = cos 2θ which, in turn, yields α = 1/3.
Then, P min

e (Q) is given by Eq. (5) with these particular values
of α and Qc. The latter and ᾱ = 2/3 are both in agreement
with the values of the optimal failure probability QMC and the
maximum confidence C, respectively, for the trine states in [4].
These results are illustrated in Fig. 2. The FRIO strategy in this
case optimally interpolates between the ME (for Q = 0) and
MC (for Q = Qc) strategies.

In summary, we have introduced a general transformation
in Eqs. (6) and (7) that turns every problem with fixed rate of
inconclusive outcomes (FRIO) into an equivalent ME problem.
When the solution of the resulting ME problem is known, one
can optimize it over the free parameters of the transformation.
We identified a critical value Qc of inconclusive rate that
generalizes the notion of failure probability used in UD to other
cases where UD cannot be applied, such as discrimination of
linearly dependent states or full rank mixed states. Explicit
results are given for two pure qubit states with arbitrary priors
and for trine states. Analytical results can also be obtained in
some other special cases, including symmetric states [16,17]
or two mixed states whose density matrices are diagonal in
the Jordan basis [18]. This and further details are left for a
separate publication [19]. We note that related work has been
done independently by Herzog [20]. The method presented
here is quite powerful and can be applied in many other cases,
including quantum state estimation with postprocessing [21].
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