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We analyze the dynamics of the susceptible-infected-susceptible epidemic model when the transmission
rate displays Gaussian white noise fluctuations around its mean value. We obtain analytic expressions for the
final size distribution of infectives and the mean infected number of individuals. The model displays a variety of
noise-induced transitions as a function of the basic reproductive rate and the noise intensity. We derive a threshold
criterion for epidemic invasion in the presence of external noise and determine the mean epidemic duration and
the mean epidemic extinction time.
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I. INTRODUCTION

Epidemics are a set of complex processes based on the
transmission of a disease between the individuals of a popula-
tion [1]. Mathematical models have become important tools in
analyzing the spread and control of infectious diseases and are
used in comparing, planning, implementing, evaluating, and
optimizing various detection, prevention, therapy, and control
programs [1–3]. They provide flexible and useful tools to study
aspects such as passive immunity, gradual loss of immunity
acquired either by vaccine or disease, stages of infection,
vertical transmission, disease vectors, macroparasitic loads,
age structure, social and sexual mixing groups, spatial spread,
vaccination, quarantine, and chemotherapy. Specific models
have been formulated for diseases such as measles, rubella,
chickenpox, whooping cough, smallpox, malaria, gonorrhea,
and HIV/AIDS, to name only a few. The choice of which
epidemiological classes (compartments) to include in a model
depends on the characteristics of the particular disease being
modeled and the purpose of the model. Early models are
largely based on deterministic equations. They represent
a mean-field description that considers the behaviour of
averaged quantities and assumes homogeneous mixing of
the population. Their justification lies in the assumption that
the stochastic fluctuations (demographic noise) around the
averaged quantities tend to zero as the system size grows.
A mean-field description fails in systems that display near
extinction events, where a class of the population becomes so
small that the stochastic effects become important and can no
longer be neglected.

Demographic noise or internal fluctuations are due to the
discrete nature of the constituents of the system (i.e., the
susceptible and infected individuals). The effects of such
fluctuations on the dynamics of epidemics have been widely
explored previously in the literature of the field (see, e.g,
Refs. [3–8]). Much less attention has been paid, however, to
the effects of external fluctuations, which account for other
sources of stochasticity such as environmental fluctuations
due to changes in meteorological conditions, variability within
and between individuals, and other factors. External noise
can be taken into account by replacing the characteristic
parameters of the deterministic mean-field equations, such
as birth and death rates [9] or the transmission rate [10],

for example, by random quantities. In this case, the external
noise appears multiplicatively in the equations and is able
to modify dramatically the mean dynamical behavior of the
population [11].

We study the role of external noise in the transmission rate
of a susceptible-infected-susceptible (SIS) model. The origin
of the external fluctuations lies, for example, in the varying
susceptibility to infection of an individual due to circadian
rhythms and daily activities, varying susceptibilities between
individuals, and variability in the number of contacts between
infected and susceptible individuals. These random variations
occur on a time scale of hours or less, which is short compared
to the time scale of the epidemic dynamics. Therefore the
fluctuations in the transmission rate can be modeled by a white
noise process [11–13].

The paper is organized as follows. In Sec. II we introduce
the SIS model with external noise. We analyze the initial
dynamics of the infectious disease in Sec. III and define the
basic reproductive rate in the presence of random fluctuations.
Section IV deals with the behavior of the fluctuations in the
number of infected individuals near the boundaries of the state
space and establishes the criterion for extinction. In Sec. V we
determine analytically the probability distribution of the final
size of the epidemic and three of its important characteristics,
namely the most likely number of infectives, the mean number
of infectives, and the variance of the number of infectives.
We determine the mean first passage for the epidemic to evolve
from a small initial fraction of infectives to the mean final size
as well as the mean epidemic extinction time in Sec. VI. We
present concluding remarks in Sec. VII.

II. STOCHASTIC SUSCEPTIBLE-INFECTED-
SUSCEPTIBLE MODEL

The SIS model is the simplest description of the population
dynamics for bacterial and other diseases, such as many
sexually transmitted diseases [1], where following treatment
an infectious individual recovers from the disease but is again
susceptible to infection. The system of equations reads

dS

dt
= −βSI + γ I, (2.1a)

dI

dt
= βSI − γ I, (2.1b)
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MÉNDEZ, CAMPOS, AND HORSTHEMKE PHYSICAL REVIEW E 86, 011919 (2012)

where S is the number of susceptible and I the number
of infected individuals (i.e., individuals able to transmit the
disease). The transmission rate is denoted by β and the
recovery rate by γ . Adding (2.1a) and (2.1b), we find that
the total population number N = S + I is constant, and (2.1b)
can be written as

dI

dt
= βI (N − I ) − γ I. (2.2)

We include external fluctuations in the model by allowing
the transmission rate β to fluctuate around the mean value β0

such that β(t) = β0[1 + ζ (t)]. Here ζ (t) is a noise term with
zero mean 〈ζ (t)〉 = 0. (The brackets 〈 〉 denote averaging
over the realizations of the noise.) To begin exploring the
effects of a fluctuating transmission rate on the dynamics
of infectious diseases, we consider the case that is most
tractable analytically. We assume, as discussed above, that the
transmission rate fluctuates rapidly compared to the evolution
of the disease, so that the noise term ζ (t) can be modeled by
Gaussian white noise,

〈ζ (t)ζ (s)〉 = 2Dδ(t − s), (2.3)

where D is the noise intensity, a measure of the amplitude
of fluctuations in the infection rate with respect to the mean
value β0. The frequency spectrum of a real noise with a short
correlation time is nearly flat [12]. The white noise idealization
replaces this spectrum by a completely flat spectrum, and the
noise intensity D represents the power level of the frequency
spectrum of the transmission rate fluctuations. The stochastic
SIS model with external fluctuations of the transmission rate
reads

dS

dt
= −β0SI − β0SIζ (t) + γ I, (2.4a)

dI

dt
= β0SI + β0SIζ (t) − γ I. (2.4b)

Equation (2.2) for the number of infected individuals turns
into the Langevin equation

dI

dt
= β0I (N − I ) − γ I + β0I (N − I )ζ (t), (2.5)

where the noise enters multiplicatively.
Internal fluctuations can also be described by a Langevin

equation with multiplicative noise (see, e.g., Refs. [12,14,15]).
The functional form of the noise term is different, and more
importantly, the noise intensity scales as N−1. Note that the
noise intensity D for the case of external fluctuations scales as
N0. The effects of internal fluctuations and external noise can
be differentiated by their scaling behavior. If the population,
that is, N , is large enough, then external noise dominates the
dynamics of the epidemic.

Throughout this paper we will interpret (2.5) as a
Stratonovich stochastic differential equation,

dI = [β0I (N − I ) − γ I ]dt +
√

2Dβ0I (N − I ) ◦ dW (t),

(2.6)

where W (t) is the standard Wiener process and ◦ denotes the
Stratonovich integral [11,16]. We are interested in analyzing
the conditions under which the Langevin equation (2.5), or
the stochastic differential equation (2.6), predicts an epidemic

invasion and an endemic state and in finding the final size of
the epidemics, that is, the stationary probability density Pst(I ).
It is also useful to determine three important characteristics of
the final size distribution, namely, the mean number of infected
individuals 〈I∞〉, the variance of the number of infectives, and
the most likely number of infectives in the endemic state.
An equation similar to (2.6), though interpreted as an Ito
equation, was considered in Ref. [17]. That study focuses
mainly on the existence and uniqueness of the solution and
does not address most of the topics we deal with here. In
particular no analytic expression for the final size distribution is
derived. Further, since Gaussian white noise is an idealization
of real noise with a short correlation time, we prefer the
Stratonovich interpretation. As shown by Wong and Zakai and
others [12,18,19], if one considers a differential equation with a
noise term with some nonzero correlation time, then in the limit
that the noise becomes δ correlated (i.e., has a flat spectrum)
the differential equation becomes a Stratonovich stochastic
differential equation. Consequently, Langevin equations that
describe system with real noise should be interpreted as a
Stratonovich equation. While Ito and Stratonovich equations
often, but not always, predict the same qualitative noise-
induced behavior, the thresholds where transitions occur are
generally different [11].

III. INITIAL BEHAVIOR

To find the conditions under which the system evolves into
an endemic state, we linearize (2.5) around the infection-free
steady state (S = N,I = 0) and obtain

dI

dt
= (β0N − γ )I + β0NIζ (t). (3.1)

Integration of (3.1) yields

I (t) = I (0) exp[(β0N − γ )t] exp[β0NW̃ (t)], (3.2)

where

W̃ (t) =
∫ t

0
ζ (s)ds =

√
2DW (t). (3.3)

Averaging (3.2) we obtain

〈I (t)〉 = 〈I (0)〉 exp[(β0N − γ )t]〈exp[β0N
√

2DW (t)]〉.
(3.4)

For any Gaussian random variable z with zero mean 〈exp(z)〉 =
exp(〈z2〉/2), so that

〈exp[β0N
√

2DW (t)]〉 = exp
[
β2

0N2〈2DW 2(t)〉/2
]

= exp
[
β2

0N2Dt
]
, (3.5)

and (3.4) turns into

〈I (t)〉 = 〈I (0)〉 exp
[(

β0N − γ + Dβ2
0N2)t]. (3.6)

Equation (3.6) implies that the intrinsic growth rate μ is given
by

μ = β0N − γ + Dβ2
0N2. (3.7)

The basic reproductive rate R0 in the deterministic SIS
model is defined by I (t) = I (0) exp[γ (R0 − 1)t], where R0 =
β0N/γ . If we assume by analogy that this definition also
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FIG. 1. (Color online) Intrinsic growth rate as a function of R0

for different values of the noise intensity D. Symbols represent the
results of numerical simulations and solid curves correspond to (3.7).

holds in the mean in the presence of noise, then 〈I (t)〉 =
〈I (0)〉 exp[γ (R0 − 1)t] with the stochastic basic reproductive
rate R0 given by

R0 = R0(1 + DγR0). (3.8)

Epidemic invasion occurs if μ > 0 or R0 > 1. In Figure 1
we plot the intrinsic growth rate from (3.7) and compare it to
numerical simulations. Note that even in cases where R0 < 1
(i.e., no invasion occurs in the deterministic case) the epidemic
can grow initially, μ > 0, because of the noise, leading to
a transient epidemic advance. Equation (3.7) implies that if
R0 < 1, noise will induce initial epidemic growth if

R∗ ≡ (1 + Dγ )−1 < R0 < 1. (3.9)

In Fig. 2 we plot the number of infected individuals
as a function of time by integrating the Langevin equation
(2.5) numerically. Each color represents a different stochastic
realization. As the noise intensity D increases, the fluctuations
around the mean number of infected individuals also increase.
The strength of the fluctuations can be quantified by the
dependence of the standard deviation of the number of infected
individuals on the noise intensity D. This analysis will be
carried out Sec. V.

IV. BEHAVIOR NEAR THE BOUNDARIES I = 0 AND I = N

As the noise intensity increases, the noise causes excursions
of the infectives population that approach closer and closer
to the lower boundary I = 0 (i.e., epidemic extinction) (see
Fig. 2). Excursions do not appear to approach the upper
boundary I = N as closely. It is therefore useful to investigate
the nature of these boundaries.

Consider the general Stratonovich stochastic differential
equation

dX(t) = f (X)dt +
√

2Dg(X) ◦ dW (t), (4.1)

FIG. 2. (Color online) Temporal behavior of the fraction of
infected individuals I (t)/N obtained by integrating (2.5) numerically.
We plot ten different stochastic realizations in each panel. β0 = 1 and
γ = 0.5 (i.e., R0 = 2).

or the equivalent Ito stochastic differential equation,

dX(t) = f̃ (X)dt +
√

2Dg(X)dW (t), (4.2)

where

f̃ (X) = f (X) + Dg′(X)g(X). (4.3)

For the epidemic model with a fluctuating transmission rate
we have

f (I ) = β0I (N − I ) − γ I, (4.4)

g(I ) = β0I (N − I ). (4.5)

In order for the model to be acceptable, the deterministic
dynamics must not drive the population of infectives out
of the interval [0,N ] [i.e., the kinetic term f (I ) must be
such that f (0) � 0 and f (N ) � 0]. Both conditions are
fulfilled for (4.4), f (0) = 0 and f (N ) = −γN < 0. It is
equally desirable that the external noise does not drive the
population of infectives out of the interval [0,N ] (i.e., we
require I = 0 and I = N to be intrinsic boundaries of the
stochastic differential equation). A boundary b (|b| 
= ∞) is
intrinsic if g(b) = 0 [11]. This condition is fulfilled at both
boundaries, g(0) = g(N ) = 0.

A boundary b is called natural, if it is attained only with
probability zero even if time goes to infinity. The boundary is
natural if

L1(b) =
∫ b∗

b

φ(x)dx (4.6)

diverges [11]. Here b∗ is near b, and

φ(x) = exp

(
−

∫ x

b∗

f̃ (z)

Dg2(z)
dz

)
. (4.7)

From (4.4) we find that

φ(I ) = cIα2 (N − I )α1 exp

[
γ

Dβ2
0N (N − I )

]
, (4.8)
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where c is a constant that depends on b∗ and

α1 = 1

Dβ0N

(
1 − γ

β0N

)
− 1 = R0 − 1

DγR2
0

− 1, (4.9)

α2 = − 1

Dβ0N

(
1 − γ

β0N

)
− 1 = −R0 − 1

DγR2
0

− 1. (4.10)

So

L1(0) = c

∫ ε

0
Iα2 (N − I )α1 exp

[
γ

Dβ2
0N (N − I )

]
dI

� cNα1 exp

[
γ

Dβ2
0N2

] ∫ ε

0
Iα2dI for ε � 1. (4.11)

The integral diverges if and only if α2 + 1 < 0. Since α2 + 1 =
−(R0 − 1)/(DγR2

0), we find that the boundary I = 0 is natural
(i.e., unattainable at all times) if R0 > 1. This means that
if R0 > 1 the epidemic never completely goes to extinction,
regardless of the noise intensity. This condition coincides with
the criterion for invasion in the deterministic model.

If α2 + 1 > 0 (i.e., R0 < 1) we need to consider the quantity
L2. The boundary b is attracting if L1(b) is finite and

L2(b) =
∫ b∗

b

1

Dg2(y)

∫ y

b

φ(x)dx φ−1(y)dy (4.12)

diverges [11]. The behavior near an attracting boundary is as
follows: If the random process X(t) starts at t = 0 at x0 ∈
(b,b∗), then it either leaves this interval in a finite time via the
right point, or it never leaves this interval and then X(t) → b

as t → ∞. We find

L2(0) � c̃

∫ ε

0
y−1dy, (4.13)

which always diverges. The boundary I = 0 is an attracting
boundary for R0 < 1. Since f (0) = 0 and g(0), the boundary
I = 0 is also a stationary point of (2.5), or (2.6). The fact that it
is attracting for R0 < 1 implies that in that case the stationary
probability will be concentrated entirely on zero,

Pst(I ) = δ(I ) for R0 < 1. (4.14)

If the deterministic basic reproductive rate is less than one,
the final size of the epidemic is zero and the epidemic
becomes extinct, even in the presence of Gaussian white noise
fluctuations of the transmission rate. Though the epidemic
will initially grow in the presence of noise if R∗ < R0 < 1,
the dynamics are unable to establish an endemic state under
these conditions.

To determine the nature of the boundary I = N , we need
to evaluate

L1(N ) = c

∫ N

N−ε

I α2 (N − I )α1 exp

[
γ

Dβ2
0N (N − I )

]
dI.

(4.15)

Carrying out the variable transformation ξ = N − I , we obtain

L1(N ) � cNα2

∫ ε

0
ξα1 exp

[
γ

Dβ2
0Nξ

]
dξ. (4.16)

The integrand goes to infinity exponentially as ξ → 0, and
L1(N ) = ∞ for all values of the parameters. The upper
boundary is always a natural boundary, as expected since
f (N ) < 0 and g(N ) = 0.

V. FINAL SIZE OF THE EPIDEMIC

To determine the final size of the epidemic we employ the
Fokker-Planck equation, an evolution equation for P (I,t), the
probability that the number of infected individuals is I at
time t . The following Fokker-Planck equation corresponds to
the Langevin equation (2.5),

∂P

∂t
= − ∂

∂I
{[β0I (N − I ) − γ I ]P }

+Dβ2
0

∂

∂I

{
I (N − I )

∂

∂I
[I (N − I )P ]

}
. (5.1)

The final size distribution of the epidemic is given by the
stationary solution Pst(I ) of (5.1). If I = 0 and I = N are
natural boundaries, then

Pst(I ) = CIα1 (N − I )α2 exp

[
− γ

Dβ2
0N (N − I )

]
, (5.2)

where C is a constant to be determined from the normalization
condition

∫ N

0 Pst(I )dI = 1. Introducing the new variable x =
I/N , (5.2) can be rewritten as

Pst(x) = Z−1xα1 (1 − x)α2 exp[−χ/(1 − x)], (5.3)

where

Z =
∫ 1

0
xα1 (1 − x)α2 exp[−χ/(1 − x)]dx

= χ−1−α1e−χ�(1 + α1), (5.4)

χ = 1/DγR2
0 and �(·) is the Gamma function. The normaliza-

tion constant Z is well defined (finite) if and only if 1 + α1 > 0,
which is equivalent to the condition that R0 > 1. As shown in
Sec. IV, that is exactly the requirement for I = 0 to be a
natural boundary. As also discussed in that section, for R0 < 1
the final size distribution is concentrated entirely on zero and
an endemic state is impossible. In Fig. 3 we show the results
given by (5.3) and (5.4) for the stationary distribution for
different values of R0 and provide a comparison with results
from Langevin dynamics simulations using (2.5), which shows
an excellent agreement.

While the stationary probability distribution provides the
most complete characterization of the epidemic’s final size,
various numerical characteristics of Pst(I ), such as the mean
and the variance and the local extrema, are often useful in

FIG. 3. (Color online) Stationary probability distribution (i.e.,
final size distribution, of the number of infected individuals for
different values of R0 and γ = 1). The symbols represent the results
of the numerical simulations, and the solid curves correspond to the
exact analytic results from (5.3) and (5.4).
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FIG. 4. (Color online) Mean final size of the epidemic as function
of the basic reproductive rate (left panel) and as function of the noise
intensity (right panel). Symbols correspond to the results of numerical
simulations and solid curves to the exact results (5.6). (γ = 1).

applications. The mean value of the final size is given by

〈I∞〉 =
∫ N

0
Pst(I )IdI, (5.5)

and from (5.2) we obtain

〈I∞〉
N

= (1 + α1)χα1/2eχ/2Wα2
2 , 1

2 + α2
2

(χ ), (5.6)

where Wa,b(z) is the Whittaker function. In Fig. 4 we plot the
mean final size of the epidemic 〈I∞〉/N as D increases (right
panel) and as R0 increases (left panel). As shown above, the
mean final size is 0 for R0 < 1 and increases monotonically
with R0 if R0 > 1. The mean final size decreases monotoni-
cally as the noise intensity increases.

As we showed in Sec. III (see Fig. 1) the intrinsic growth
rate is positive in the presence of noise for R∗ < R0 < 1. The
epidemic grows initially, but approaches extinction as time
goes to infinity. The noise can cause a transient epidemic
in situations where R∗ < R0 < 1, but it cannot sustain an
endemic state. However, although the presence of external
noise does not modify the epidemic invasion threshold, its
intensity affects the mean epidemic size.

Figure 2 shows that the fluctuations around the mean
value of the number of infected individuals increase with
increasing noise intensity. This dependence can be quantified
by determining the variance of the final size distribution. We
calculate the variance using (5.3) and (5.4) and find

σ 2 =
〈
I 2
∞

〉 − 〈I∞〉2

N2
= (1 + α1)eχ/2χα1/2

×
[

(2 + α1)W−1+ α2
2 ,

1+α2
2

(χ )

− (1 + α1)eχχα1/2W 2
α2
2 ,

1+α2
2

(χ )

]
. (5.7)

If the noise intensity is small, D � 1, the fluctuations depend
linearly on the noise intensity,

σ 2 � Dγ
R0 − 1

R2
0

+ O(D2). (5.8)

In Figure 5 we compare the variance σ 2 obtained by nu-
merical simulations, the exact result (5.7), and the approximate
value (5.8). The fluctuations around the mean value increase
indeed linearly with the noise intensity in the small noise
regime.

FIG. 5. Variance of the number of infected individuals. Solid
curves represent the exact analytic result given by (5.7), the broken
curves correspond to the approximation (5.8), and the symbols
represent the results of numerical simulations. The circles correspond
to γ = 0.5 and β0 = 1, and the triangles to γ = 1 and β0 = 2.

The local extrema of the stationary probability distribution
for the stochastic differential equation (4.1) are the roots of the
following equation [11]:

f (x) − Dg′(x)g(x) = 0. (5.9)

From (4.4), (4.5), and (5.9) we obtain

β0I (N − I ) − γ I − Dβ0(N − 2I )β0I (N − I ) = 0. (5.10)

Consequently either I = 0 or

β0N − γ − β0I − Dβ2
0 (N − I )(N − 2I ) = 0. (5.11)

We carry out the variable substitution x = I/N in (5.11),
divide both sides by Dβ2

0N2, and obtain

R0 − 1

DγR2
0

− 1 −
(

1

DγR0
− 3

)
x − 2x2 = 0. (5.12)

The roots of this equation are

xm,± = 1

4DγR0

[
3DγR0 − 1

±
√

(3DγR0 − 1)2 − 8Dγ
(
DγR2

0 − R0 + 1
)]

. (5.13)

The roots are real if the discriminant D2γ 2R2
0 + 2DγR0 +

1 − 8Dγ is nonnegative. The discriminant passes through zero
at

Rd = 2
√

2Dγ − 1

Dγ
, (5.14)

and xm,± are real if R0 > Rd . To represent local extrema of
Pst(x), the roots xm,± must also be in the interval (0,1). If

Rp,− < R0 < Rp,+, (5.15)

where

Rp,± = 1

2Dγ
[1 ±

√
1 − 4Dγ ], (5.16)

then xm,− is negative and xm,+ ∈ (0,1). If R0 >

max{Rp,+,Rd}, then both xm,− and xm,+ are in (0,1). Note
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that the thresholds Rp,± are real and distinct for Dγ < 0.25.
They coalesce and become complex conjugates at Dγ = 0.25.

As the noise intensity D goes to zero, xm,+ goes to the
deterministic steady state, the endemic state, (R0 − 1)/R0,
and xm,− goes to minus infinity. If the basic reproductive rate
R0 becomes large (i.e., goes to infinity) then xm,+ → 1 and
xm,− → 1/2.

The roots xm,± correspond to the local extrema. To gain a
complete picture of the maxima and minima of the final size
distribution, we need to examine also the behavior of Pst(x)
near the boundaries. Equation (5.3) implies that Pst(x) → 0
exponentially as x → 1. Near the boundary 0, Pst(x) ∼ xα1

and Pst(x) → 0 as x → 0 if α1 > 0. Otherwise, the final size
distribution diverges integrably near zero for R0 > 1. In other
words, x = 0 changes from a maximum to a minimum at

R0 − 1

DγR2
0

− 1 = 0, (5.17)

which coincides with the condition (5.16) for the roots to pass
through zero.

We draw the regions of the possible shapes of the final
size distribution Pst(x) in Fig. 6. In region A, defined by
R < max{Rp,−,Rd}, the roots xm,± are complex conjugate or
negative. The final size distribution Pst(x) diverges integrably
at x = 0 and decreases monotonically as x increases in this
region. In other words, the most likely final size of the epidemic
is zero in this region. The thresholds Rp,− and Rd coalesce at
Dγ = 0.22. For Dγ < 0.22, a noise-induced transition occurs
at R0 = Rp,−. In region B, xm,+ lies between 0 and 1, while
xm,− is negative. The final size distribution is zero at x = 0
and has a maximum at xm,+. It is only for R0 > Rp,− that
the SIS model with a fluctuating transmission rate leads to
a most likely nonzero final size. The external noise makes it
harder for the epidemic to take hold in the population. At
R0 = Rp,+ a re-entrant noise-induced transition occurs. In
region C, the final size distribution diverges again integrably
at x = 0, and both xm,+ and xm,− lie between 0 and 1.

FIG. 6. (Color online) Diagram for the different shapes of the
final size distribution.

The former corresponds to a maximum and the latter to a
minimum.

For 0.22 < Dγ < 0.25, we have a succession of noise-
induced transitions as R increases. At R = Rd the final size
distribution changes from shape A to shape C. The final size
distribution continues to diverge integrably at x = 0, but a local
minimum, xm,− and a local maximum, xm,+ appear, giving rise
to bistability. At R = Rp,−, the bistability and the divergence
at zero disappear. The final size distribution Pst(x) changes to
shape B; it is monomodal with a local maximum at xm,+. At
R = Rp,+ a re-entrant noise-induced transition back to shape
C, bistability, occurs. For Dγ > 0.25, only one noise-induced
transition occurs at R = Rd , where the final size distribution
changes from shape A to shape C.

Region C corresponds to epidemics with a basic repro-
ductive rate R0 bounded away from 1. Counterintuitively, the
model predicts bistability for larger R0. The most likely final
sizes are x = 0 and x = xm,+. The epidemic either dies out or
establishes itself in the population.

VI. MEAN FIRST PASSAGE TIMES

To gain further insight into the dynamics of the SIS with
a fluctuating transmission rate, we have determined the mean
first passage time between two given sizes of the epidemic.
In terms of the variable x = I/N , the stochastic differential
equation (2.6) reads

dx = [γR0x(1 − x) − γ x]dt +
√

2DγR0x(1 − x) ◦ dWt

(6.1)

[i.e., g(x) = γR0x(1 − x)]. Since the boundaries 0 and 1 are
natural boundaries for R0 > 1, the mean first passage time
(MFPT) from y to z, M1(y → z), with 0 � y � z < 1, is given
by the expression [20]

M1(y → z) =
∫ z

y

dηφ(η)
∫ η

0
dξ [Dg2(ξ )φ(ξ )]−1, (6.2)

and the MFPT from y to z with 0 < z � y � 1 is given by
[20]

M1(z → y) =
∫ y

z

dηφ(η)
∫ 1

η

dξ [Dg2(ξ )φ(ξ )]−1, (6.3)

where φ(x) is given by (4.8) with x = I/N .
Equation (6.2) allows us to calculate the mean epidemic

duration time, that is, the mean time for the number of infected
individuals to evolve from the initial value to the final size.
Figure 7 shows the dependence of the MFPT on the parameters
of the model. Figures 7(a), 7(b), and 7(c) display the mean
epidemic duration computed from an initial size of y = 10−3

to the mean final size z = 〈I∞〉/N given by (5.6), in terms
of the recovery rate γ , the noise intensity D, and the mean
transmission rate β0. The mean epidemic duration increases
with the recovery rate, if the other parameters D and β0 are
fixed [see Fig. 7(a)]. If γ increases, then R0 decreases and the
epidemics evolves slower to the final state by virtue of (3.7).
Therefore, we expect the mean epidemic duration to decrease
with γ . The mean epidemic duration decreases with the noise
intensity if one keeps γ and β fixed. By virtue of (3.7), the
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(a) (b)

(c) (d)

FIG. 7. Mean first passage time. In panels (a), (b), and (c) we
plot the mean epidemic duration versus γ , D, and β0, respectively.
In panel (d) we plot the mean extinction time versus β0. The
symbols correspond to the results of numerical simulations, and
the solid curves are obtained from the expressions (6.2) and (6.3)
for the mean epidemic duration and mean epidemic extinction time,
respectively.

epidemic evolves faster as D increases, and in consequence
the mean epidemic duration is expected to decrease with D. In
Fig. 7(c) we show how the mean epidemic duration decreases,
as the mean transmission rate increases, with D and γ fixed.
If β0 increases, then R0 increases too, and the mean epidemic
duration is expected to decrease.

The MFPT given by (6.3) provides the mean epidemic
extinction time, that is, the mean time for the final epidemic
size 〈I∞〉/N to evolve to 10−3. In Fig. 7(d) we show the mean
epidemic extinction time as function of β0 fixing D and γ .
In this case the dependence is not monotonic. There exists a
value of β0 for which the mean extinction time reaches its
maximum value. This is due to opposite effects caused by an
increase in β0. As we have seen in Fig. 7(c), if β0 increases
the epidemics evolves faster and the mean epidemic duration
decreases. At the same time the final size increases with β0

(i.e., with R0) (see Fig. 4), which implies that the epidemic
duration increases with β0. We find excellent agreement
between theoretical predictions and results from numerical
simulations.

VII. CONCLUSION

Rohani et al. have studied the effects of environmental
stochasticity, causing the transmission rate to be a normally
distributed random variable, in the dynamics of childhood
diseases [10]. Fluctuations in the transmission rate have also
been considered to account for seasonal fluctuations due to
rural-urban migration or seasonal migrations [21]. The effects

of rapid fluctuations in the transmission rate on the dynamics
of the SIS model are then expected to play a significant role
in dynamics of epidemics, and we have analyzed the role
of fluctuations both analytically and numerically. We have
defined the stochastic basic reproductive rate based on an
analysis of the initial behavior of the infectious disease. That
analysis also revealed that external noise can induce initial
epidemic growth, even if the deterministic basic reproductive
rate is less than 1. We have derived the criterion for extinction
and persistence of the epidemic by determining the nature of
the boundary I = 0 of the state space. An analytic expression
for the final size distribution of infectives is obtained by solving
the stationary Fokker-Planck equation and is compared with
numerical simulations.

In the presence of Gaussian white noise, there is an endemic
state for R0 > 1. The value of the final size depends on the
noise intensity as well as on the transmission and recovery
rate. The epidemic becomes extinct, that is, the final size
of the epidemic is zero, regardless of the noise intensity if
R0 < 1. If R∗ < R0 < 1, the noise induces an initial epidemic
growth, but the final outcome is still extinction. We find that
various noise-induced transitions occur in the stochastic SIS
model. If the noise intensity is sufficiently small, a re-entrant
transition occurs, where I = 0 goes from being a maximum to
a minimum back to a maximum of the final size distribution
as R0 increases from 1. If the noise intensity surpasses a
certain threshold, Dγ = 0.25, then I = 0 is a maximum
of the final size distribution for all R0 larger than 1. As
R0 crosses a threshold, R0 = Rd , the final size distribution
develops an inflection point that splits into a minimum and
a maximum, which migrate towards 0.5 and 1, respectively,
as R0 becomes large. The final size distribution displays
noise-induced bistability. Finally, we have computed the mean
epidemic duration, the mean time the system takes to evolve
from the initial condition of x(0) = 10−3 to reach the mean
final size, and the mean epidemic extinction time, the mean
time the system takes to evolve from the mean final size to
x = 10−3, and their behavior in terms of the parameters of
the model. Our findings and methodology could be useful to
study the evolution of specific epidemics where environmental
stochasticity can play an important role, as in the case of
malaria or pertussis.

We have focused on situations where external noise dom-
inates the dynamics of the epidemic and internal fluctuations
are negligible. This is the case in sufficiently large populations.
An open problem is the interplay between external and internal
fluctuations in populations of small to moderate size, where
both types of noise are expected to play a role. Interactions
between the two noises could possibly give rise to unexpected
phenomena; this is a subject that deserves further exploration
in future works.

ACKNOWLEDGMENTS

We thank Pejman Rohani for fruitful discussions. This
research has been partially supported by the Generalitat de
Catalunya with the Grant No. SGR 2009-164 (V.M., D.C.)
and by Ministerio de Ciencia e Innovación with the Grant No.
FIS2009-13370-C02-01 (V.M.).

011919-7
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